1
|
Wang K, Zhao YL, Jiang YZ, Liu W, Wang XP. Seven up regulates reproductive diapause initiation via juvenile hormone biosynthesis in the cabbage beetle Colaphellus bowringi. INSECT SCIENCE 2025. [PMID: 39822051 DOI: 10.1111/1744-7917.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
Reproductive diapause is an insect survival strategy in which reproduction temporarily halts in response to adverse environmental changes. This process is characterized by arrested ovarian development and lipid accumulation in females. A reduction in juvenile hormone (JH) biosynthesis is known to initiate reproductive diapause, but its regulatory mechanism remains unclear. Seven up (Svp), a transcription factor from the nuclear receptor family, plays a crucial role in various developmental processes in insects. In this study, using the cabbage beetle Colaphellus bowringi as a model, we observed higher expression of Svp in the heads of female adults under reproductive photoperiodic conditions (short-day [SD]) compared to diapause conditions (long-day [LD]). RNA interference-mediated knockdown of Svp in SD females induced typical diapause phenotypes, including ovarian arrest and lipid accumulation. The application of methoprene (ME), a JH receptor agonist, reversed these diapause phenotypes and restored reproduction, indicating that Svp's regulation of reproductive diapause is dependent on JH signaling. Additionally, Svp knockdown led to the downregulation of JH pathway genes and a reduction in JH titers. Further evidence suggested that Svp regulates the expression of JHAMT1, a critical gene in JH biosynthesis, which determines diapause entry in C. bowringi. These findings suggest that diapause-inducing photoperiods suppress Svp expression, blocking JH production and triggering diapause. This work reveals a critical transcription factor that regulates reproductive diapause initiation through modulating JH production, providing a potential target for controlling pests capable of entering reproductive diapause.
Collapse
Affiliation(s)
- Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu-Lian Zhao
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan-Zi Jiang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Department of Biological Sciences, University of Alberta, G-504, Biological Sciences Bldg., Edmonton, Alberta, Canada
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
He Q, Chen S, Hou T, Chen J. Juvenile hormone-induced microRNA miR-iab-8 regulates lipid homeostasis and metamorphosis in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2024; 33:792-805. [PMID: 39005109 DOI: 10.1111/imb.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Metamorphosis plays an important role in the evolutionary success of insects. Accumulating evidence indicated that microRNAs (miRNAs) are involved in the regulation of processes associated with insect metamorphosis. However, the miRNAs coordinated with juvenile hormone (JH)-regulated metamorphosis remain poorly reported. In the present study, using high-throughput miRNA sequencing combined with Drosophila genetic approaches, we demonstrated that miR-iab-8, which primarily targets homeotic genes to modulate haltere-wing transformation and sterility was up-regulated by JH and involved in JH-mediated metamorphosis. Overexpression of miR-iab-8 in the fat body resulted in delayed development and failure of larval-pupal transition. Furthermore, metabolomic analysis results revealed that overexpression of miR-iab-8 caused severe energy metabolism defects especially the lipid metabolism, resulting in significantly reduced triacylglycerol (TG) content and glycerophospholipids but enhanced accumulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In line with this, Nile red staining demonstrated that during the third larval development, the TG content in the miR-iab-8 overexpression larvae was continuously decreased, which is opposite to the control. Additionally, the transcription levels of genes committed to TG synthesis and breakdown were found to be significantly increased and the expression of genes responsible for glycerophospholipids metabolism were also altered. Overall, we proposed that JH induced miR-iab-8 expression to perturb the lipid metabolism homeostasis especially the TG storage in the fat body, which in turn affected larval growth and metamorphosis.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tianlan Hou
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinxia Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
3
|
Toprak U, İnak E, Nauen R. Lipid Metabolism as a Target Site in Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39466572 DOI: 10.1007/5584_2024_822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of "lipid biosynthesis inhibitors", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).
Collapse
Affiliation(s)
- Umut Toprak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey.
| | - Emre İnak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
4
|
Kubrak O, Jørgensen AF, Koyama T, Lassen M, Nagy S, Hald J, Mazzoni G, Madsen D, Hansen JB, Larsen MR, Texada MJ, Hansen JL, Halberg KV, Rewitz K. LGR signaling mediates muscle-adipose tissue crosstalk and protects against diet-induced insulin resistance. Nat Commun 2024; 15:6126. [PMID: 39033139 PMCID: PMC11271308 DOI: 10.1038/s41467-024-50468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.
Collapse
Affiliation(s)
- Olga Kubrak
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Anne F Jørgensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Jacob Hald
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | | | - Dennis Madsen
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark.
| |
Collapse
|
5
|
Musselman LP, Truong HG, DiAngelo JR. Transcriptional Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38782870 DOI: 10.1007/5584_2024_808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Transcriptional control of lipid metabolism uses a framework that parallels the control of lipid metabolism at the protein or enzyme level, via feedback and feed-forward mechanisms. Increasing the substrates for an enzyme often increases enzyme gene expression, for example. A paucity of product can likewise potentiate transcription or stability of the mRNA encoding the enzyme or enzymes needed to produce it. In addition, changes in second messengers or cellular energy charge can act as on/off switches for transcriptional regulators to control transcript (and protein) abundance. Insects use a wide range of DNA-binding transcription factors (TFs) that sense changes in the cell and its environment to produce the appropriate change in transcription at gene promoters. These TFs work together with histones, spliceosomes, and additional RNA processing factors to ultimately regulate lipid metabolism. In this chapter, we will first focus on the important TFs that control lipid metabolism in insects. Next, we will describe non-TF regulators of insect lipid metabolism such as enzymes that modify acetylation and methylation status, transcriptional coactivators, splicing factors, and microRNAs. To conclude, we consider future goals for studying the mechanisms underlying the control of lipid metabolism in insects.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Huy G Truong
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Justin R DiAngelo
- Division of Science, Pennsylvania State University, Berks Campus, Reading, PA, USA.
| |
Collapse
|
6
|
Tuthill II BF, Quaglia CJ, O'Hara E, Musselman LP. Loss of Stearoyl-CoA desaturase 1 leads to cardiac dysfunction and lipotoxicity. J Exp Biol 2021; 224:jeb240432. [PMID: 34423827 PMCID: PMC8502255 DOI: 10.1242/jeb.240432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/16/2021] [Indexed: 12/28/2022]
Abstract
Diets high in carbohydrates are associated with type 2 diabetes and its co-morbidities, including hyperglycemia, hyperlipidemia, obesity, hepatic steatosis and cardiovascular disease. We used a high-sugar diet to study the pathophysiology of diet-induced metabolic disease in Drosophila melanogaster. High-sugar diets produce hyperglycemia, obesity, insulin resistance and cardiomyopathy in flies, along with ectopic accumulation of toxic lipids, or lipotoxicity. Stearoyl-CoA desaturase 1 is an enzyme that contributes to long-chain fatty acid metabolism by introducing a double bond into the acyl chain. Knockdown of stearoyl-CoA desaturase 1 in the fat body reduced lipogenesis and exacerbated pathophysiology in flies reared on high-sucrose diets. These flies exhibited dyslipidemia and growth deficiency in addition to defects in cardiac and gut function. We assessed the lipidome of these flies using tandem mass spectrometry to provide insight into the relationship between potentially lipotoxic species and type 2 diabetes-like pathophysiology. Oleic acid supplementation is able to rescue a variety of phenotypes produced by stearoyl-CoA desaturase 1 RNAi, including fly mass, triglyceride storage, gut development and cardiac failure. Taken together, these data suggest a protective role for monounsaturated fatty acids in diet-induced metabolic disease phenotypes.
Collapse
|
7
|
Voigt S, Kost L. Differences in temperature-sensitive expression of PcG-regulated genes among natural populations of Drosophila melanogaster. G3 (BETHESDA, MD.) 2021; 11:jkab237. [PMID: 34544136 PMCID: PMC8496320 DOI: 10.1093/g3journal/jkab237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Environmental temperature can affect chromatin-based gene regulation, in particular in ectotherms such as insects. Genes regulated by the Polycomb group (PcG) vary in their transcriptional output in response to changes in temperature. Expression of PcG-regulated genes typically increases with decreasing temperatures. Here, we examined variations in temperature-sensitive expression of PcG target genes in natural populations from different climates of Drosophila melanogaster, and differences thereof across different fly stages and tissues. Temperature-induced expression plasticity was found to be stage- and sex-specific with differences in the specificity between the examined PcG target genes. Some tissues and stages, however, showed a higher number of PcG target genes with temperature-sensitive expression than others. Overall, we found higher levels of temperature-induced expression plasticity in African tropical flies from the ancestral species range than in flies from temperate Europe. We also observed differences between temperate flies, however, with more reduction of expression plasticity in warm-temperate than in cold-temperate populations. Although in general, temperature-sensitive expression appeared to be detrimental in temperate climates, there were also cases in which plasticity was increased in temperate flies, as well as no changes in expression plasticity between flies from different climates.
Collapse
Affiliation(s)
- Susanne Voigt
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01217, Germany
| | - Luise Kost
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01217, Germany
| |
Collapse
|
8
|
Keith SA, Bishop C, Fallacaro S, McCartney BM. Arc1 and the microbiota together modulate growth and metabolic traits in Drosophila. Development 2021; 148:271091. [PMID: 34323271 DOI: 10.1242/dev.195222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/01/2021] [Indexed: 12/20/2022]
Abstract
Perturbations to animal-associated microbial communities (the microbiota) have deleterious effects on various aspects of host fitness, but the molecular processes underlying these impacts are poorly understood. Here, we identify a connection between the microbiota and the neuronal factor Arc1 that affects growth and metabolism in Drosophila. We find that Arc1 exhibits tissue-specific microbiota-dependent expression changes, and that germ-free flies bearing a null mutation of Arc1 exhibit delayed and stunted larval growth, along with a variety of molecular, cellular and organismal traits indicative of metabolic dysregulation. Remarkably, we show that the majority of these phenotypes can be fully suppressed by mono-association with a single Acetobacter sp. isolate, through mechanisms involving both bacterial diet modification and live bacteria. Additionally, we provide evidence that Arc1 function in key neuroendocrine cells of the larval brain modulates growth and metabolic homeostasis under germ-free conditions. Our results reveal a role for Arc1 in modulating physiological responses to the microbial environment, and highlight how host-microbe interactions can profoundly impact the phenotypic consequences of genetic mutations in an animal host.
Collapse
Affiliation(s)
- Scott A Keith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cassandra Bishop
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samantha Fallacaro
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Ingham VA, Elg S, Nagi SC, Dondelinger F. Capturing the transcription factor interactome in response to sub-lethal insecticide exposure. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:None. [PMID: 34977825 PMCID: PMC8702396 DOI: 10.1016/j.cris.2021.100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
The increasing levels of pesticide resistance in agricultural pests and disease vectors represents a threat to both food security and global health. As insecticide resistance intensity strengthens and spreads, the likelihood of a pest encountering a sub-lethal dose of pesticide dramatically increases. Here, we apply dynamic Bayesian networks to a transcriptome time-course generated using sub-lethal pyrethroid exposure on a highly resistant Anopheles coluzzii population. The model accounts for circadian rhythm and ageing effects allowing high confidence identification of transcription factors with key roles in pesticide response. The associations generated by this model show high concordance with lab-based validation and identifies 44 transcription factors putatively regulating insecticide-responsive transcripts. We identify six key regulators, with each displaying differing enrichment terms, demonstrating the complexity of pesticide response. The considerable overlap of resistance mechanisms in agricultural pests and disease vectors strongly suggests that these findings are relevant in a wide variety of pest species.
Collapse
|
10
|
Weaver LN, Drummond-Barbosa D. The Nuclear Receptor Seven Up Regulates Genes Involved in Immunity and Xenobiotic Response in the Adult Drosophila Female Fat Body. G3 (BETHESDA, MD.) 2020; 10:4625-4635. [PMID: 33087412 PMCID: PMC7718730 DOI: 10.1534/g3.120.401745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/17/2020] [Indexed: 01/02/2023]
Abstract
The physiology of organisms depends on inter-organ communication in response to changes in the environment. Nuclear receptors are broadly expressed transcription factors that respond to circulating molecules to control many biological processes, including immunity, detoxification, and reproduction. Although the tissue-intrinsic roles of nuclear receptors in reproduction have been extensively studied, there is increasing evidence that nuclear receptor signaling in peripheral tissues can also influence oogenesis. We previously showed that the Drosophila nuclear receptor Seven up (Svp) is required in the adult fat body to regulate distinct steps of oogenesis; however, the relevant downstream targets of Svp remain unknown. Here, we took an RNA sequencing approach to identify candidate Svp targets specifically in the adult female fat body that might mediate this response. svp knockdown in the adult female fat body significantly downregulated immune genes involved in the first line of pathogen defense, suggesting a role for Svp in stimulating early immunity. In addition, we found that Svp transcriptionally regulates genes involved in each step of the xenobiotic detoxification response. Based on these findings, we propose a testable model in which Svp functions in the adult female fat body to stimulate early defense against pathogens and facilitate detoxification as part of its mechanisms to promote oogenesis.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
11
|
Jacobs HT, George J, Kemppainen E. Regulation of growth in Drosophila melanogaster: the roles of mitochondrial metabolism. J Biochem 2020; 167:267-277. [PMID: 31926002 PMCID: PMC7048069 DOI: 10.1093/jb/mvaa002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/05/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial functions are often considered purely from the standpoint of catabolism, but in growing cells they are mainly dedicated to anabolic processes, and can have a profound impact on the rate of growth. The Drosophila larva, which increases in body mass ∼200-fold over the course of ∼3 days at 25°C, provides an excellent model to study the underlying regulatory machinery that connects mitochondrial metabolic capacity to growth. In this review, we will focus on several key aspects of this machinery: nutrient sensing, endocrine control of feeding and nutrient mobilization, metabolic signalling, protein synthesis regulation and pathways of steroid biosynthesis and activity. In all these aspects, mitochondria appear to play a crucial role.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Jack George
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Esko Kemppainen
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| |
Collapse
|
12
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
13
|
Toprak U. The Role of Peptide Hormones in Insect Lipid Metabolism. Front Physiol 2020; 11:434. [PMID: 32457651 PMCID: PMC7221030 DOI: 10.3389/fphys.2020.00434] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Lipids are the primary storage molecules and an essential source of energy in insects during reproduction, prolonged periods of flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. The fat body is primarily composed of adipocytes, which accumulate triacylglycerols in intracellular lipid droplets. Genomics and proteomics, together with functional analyses, such as RNA interference and CRISPR/Cas9-targeted genome editing, identified various genes involved in lipid metabolism and elucidated their functions. However, the endocrine control of insect lipid metabolism, in particular the roles of peptide hormones in lipogenesis and lipolysis are relatively less-known topics. In the current review, the neuropeptides that directly or indirectly affect insect lipid metabolism are introduced. The primary lipolytic and lipogenic peptide hormones are adipokinetic hormone and the brain insulin-like peptides (ILP2, ILP3, ILP5). Other neuropeptides, such as insulin-growth factor ILP6, neuropeptide F, allatostatin-A, corazonin, leucokinin, tachykinins and limostatin, might stimulate lipolysis, while diapause hormone-pheromone biosynthesis activating neuropeptide, short neuropeptide F, CCHamide-2, and the cytokines Unpaired 1 and Unpaired 2 might induce lipogenesis. Most of these peptides interact with one another, but mostly with insulin signaling, and therefore affect lipid metabolism indirectly. Peptide hormones are also involved in lipid metabolism during reproduction, flight, diapause, starvation, infections and immunity; these are also highlighted. The review concludes with a discussion of the potential of lipid metabolism-related peptide hormones in pest management.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Lab., Department of Plant Protection Ankara, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Musselman LP, Fink JL, Baranski TJ. Similar effects of high-fructose and high-glucose feeding in a Drosophila model of obesity and diabetes. PLoS One 2019; 14:e0217096. [PMID: 31091299 PMCID: PMC6519815 DOI: 10.1371/journal.pone.0217096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/04/2019] [Indexed: 12/25/2022] Open
Abstract
As in mammals, high-sucrose diets lead to obesity and insulin resistance in the model organism Drosophila melanogaster (called Drosophila hereafter). To explore the relative contributions of glucose and fructose, sucrose’s component monosaccharides, we compared their effects on larval physiology. Both sugars exhibited similar effects to sucrose, leading to obesity and hyperglycemia. There were no striking differences resulting from larvae fed high glucose versus high fructose. Some small but statistically significant differences in weight and gene expression were observed that suggest Drosophila is a promising model system for understanding monosaccharide-specific effects on metabolic homeostasis.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - Jill L. Fink
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thomas J. Baranski
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
15
|
Sharrock J, Estacio-Gomez A, Jacobson J, Kierdorf K, Southall TD, Dionne MS. fs(1)h controls metabolic and immune function and enhances survival via AKT and FOXO in Drosophila. Dis Model Mech 2019; 12:dmm.037259. [PMID: 30910908 PMCID: PMC6505478 DOI: 10.1242/dmm.037259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
The Drosophila fat body is the primary organ of energy storage as well as being responsible for the humoral response to infection. Its physiological function is of critical importance to the survival of the organism; however, many molecular regulators of its function remain ill-defined. Here, we show that the Drosophila melanogaster bromodomain-containing protein FS(1)H is required in the fat body for normal lifespan as well as metabolic and immune homeostasis. Flies lacking fat body fs(1)h exhibit short lifespan, increased expression of immune target genes, an inability to metabolize triglyceride, and low basal AKT activity, mostly resulting from systemic defects in insulin signalling. Removal of a single copy of the AKT-responsive transcription factor foxo normalises lifespan, metabolic function, uninduced immune gene expression and AKT activity. We suggest that the promotion of systemic insulin signalling activity is a key in vivo function of fat body fs(1)h. This article has an associated First Person interview with the first author of the paper. Summary: The bromodomain-containing protein FS(1)H is required in the Drosophila fat body for normal lifespan and metabolic and immune function, largely via the insulin pathway.
Collapse
Affiliation(s)
- Jessica Sharrock
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK.,Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Jake Jacobson
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK.,Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Katrin Kierdorf
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK.,Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Marc S Dionne
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK .,Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|