1
|
Kumar M, Has C, Lam-Kamath K, Ayciriex S, Dewett D, Bashir M, Poupault C, Schuhmann K, Thomas H, Knittelfelder O, Raghuraman BK, Ahrends R, Rister J, Shevchenko A. Lipidome Unsaturation Affects the Morphology and Proteome of the Drosophila Eye. J Proteome Res 2024; 23:1188-1199. [PMID: 38484338 PMCID: PMC11002927 DOI: 10.1021/acs.jproteome.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/26/2024]
Abstract
Organisms respond to dietary and environmental challenges by altering the molecular composition of their glycerolipids and glycerophospholipids (GPLs), which may favorably adjust the physicochemical properties of lipid membranes. However, how lipidome changes affect the membrane proteome and, eventually, the physiology of specific organs is an open question. We addressed this issue in Drosophila melanogaster, which is not able to synthesize sterols and polyunsaturated fatty acids but can acquire them from food. We developed a series of semisynthetic foods to manipulate the length and unsaturation of fatty acid moieties in GPLs and singled out proteins whose abundance is specifically affected by membrane lipid unsaturation in the Drosophila eye. Unexpectedly, we identified a group of proteins that have muscle-related functions and increased their abundances under unsaturated eye lipidome conditions. In contrast, the abundance of two stress response proteins, Turandot A and Smg5, is decreased by lipid unsaturation. Our findings could guide the genetic dissection of homeostatic mechanisms that maintain visual function when the eye is exposed to environmental and dietary challenges.
Collapse
Affiliation(s)
- Mukesh Kumar
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Canan Has
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Khanh Lam-Kamath
- Department
of Biology, University of Massachusetts
Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Sophie Ayciriex
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Deepshe Dewett
- Department
of Biology, University of Massachusetts
Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Mhamed Bashir
- Department
of Biology, University of Massachusetts
Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Clara Poupault
- Department
of Biology, University of Massachusetts
Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Kai Schuhmann
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Henrik Thomas
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Oskar Knittelfelder
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Bharath Kumar Raghuraman
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Robert Ahrends
- Department
of Analytical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Jens Rister
- Department
of Biology, University of Massachusetts
Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Andrej Shevchenko
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
2
|
Lidsky PV, Dmitriev SE, Andino R. Introduction of Dicistrovirus IRESs into UAS/SV40-polyA constructs results in premature polyadenylation and strong overexpression of the upstream ORF in Drosophila animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560905. [PMID: 37873388 PMCID: PMC10592961 DOI: 10.1101/2023.10.04.560905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
To evaluate the properties of insect virus internal ribosomal entry sites (IRESs) for protein expression in Drosophila, we have introduced Cricket Paralysis virus (CrPV) and Drosophila C virus (DCV) IRESs into UAS/SV40-polyA vector. We found that introduction of IRESs induce premature polyadenylation, resulting in both truncation of the mRNA, and an increase in mRNA levels of approximately 40-fold. The increase in mRNA levels was accompanied by increased resistance to nonsense-mediated mRNA decay (NMD)-mediated degradation. Our results suggest that premature polyadenylation increases mRNA stability in the SV40 polyadenylation site-containing constructs, suggesting a novel method for robust overexpression of transgenes in Drosophila.
Collapse
Affiliation(s)
- Peter V. Lidsky
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, 94158, CA
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, 94158, CA
| |
Collapse
|
3
|
Viscardi MJ, Arribere JA. NMD targets experience deadenylation during their maturation and endonucleolytic cleavage during their decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560204. [PMID: 37808772 PMCID: PMC10557752 DOI: 10.1101/2023.09.29.560204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Premature stop codon-containing mRNAs can produce truncated and dominantly acting proteins that harm cells. Eukaryotic cells protect themselves by degrading such mRNAs via the Nonsense-Mediated mRNA Decay (NMD) pathway. The precise reactions by which cells attack NMD target mRNAs remain obscure, precluding a mechanistic understanding of NMD and hampering therapeutic efforts to control NMD. A key step in NMD is the decay of the mRNA, which is proposed to occur via several competing models including deadenylation, exonucleolytic decay, and/or endonucleolytic decay. We set out to clarify the relative contributions of these decay mechanisms to NMD, and to identify the role of key factors. Here, we modify and deploy single-molecule nanopore mRNA sequencing to capture full-length NMD targets and their degradation intermediates, and we obtain single-molecule measures of splicing isoform, cleavage state, and poly(A) tail length. We observe robust endonucleolytic cleavage of NMD targets in vivo that depends on the nuclease SMG-6 and we use the occurence of cleavages to identify several known NMD targets. We show that NMD target mRNAs experience deadenylation, but similar to the extent that normal mRNAs experience as they enter the translational pool. Furthermore, we show that a factor (SMG-5) that historically was ascribed a function in deadenylation, is in fact required for SMG-6-mediated cleavage. Our results support a model in which NMD factors act in concert to degrade NMD targets in animals via an endonucleolytic cleavage near the stop codon, and suggest that deadenylation is a normal part of mRNA (and NMD target) maturation rather than a facet unique to NMD. Our work clarifies the route by which NMD target mRNAs are attacked in an animal.
Collapse
Affiliation(s)
- Marcus J. Viscardi
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Joshua A. Arribere
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
4
|
Yang L, Wei J, Ma X, Cheng R, Zhang H, Jin T. Pan-Cancer Analysis of the Prognostic and Immunological Role of SMG5: A Biomarker for Cancers. Oncology 2023; 102:168-182. [PMID: 37699361 DOI: 10.1159/000533421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/29/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION SMG5 is involved in tumor cell development and viewed as a potential target for immunotherapy. The purpose of this study was to systematically analyze the expression level, function, and prognostic value of SMG5 in pan-cancers. METHODS Differential expression of SMG5 in normal and tumor tissues was analyzed using The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression Database (GTEx) data. Survival analysis was performed by Kaplan-Meier method and Cox risk regression. The relationship between SMG5 expression and lymphocyte abundance, tumor cell immune infiltration level, molecular and immune subtypes as well as immune checkpoints was analyzed by tumor-immune system interactions database (TISIDB), Tumor Immune Estimation Resource (TIMER), and Sangerbox databases. The correlation between SMG5 and immune scores was studied using the Estimation of Stromal and Immune Cells in Malignant Tumours using Expression (ESTIMATE) data algorithm. Further, drug sensitivity analysis of SMG5 with low-grade glioma (LGG) was conducted using the CellMiner database. RESULTS SMG5 was highly expressed in 23 tumors and only had a significant impact on the prognosis of patients with LGG only. In addition, in tumor microenvironment and tumor immune analysis, we found that the level of immune infiltration, tumor mutational load, microsatellite instability, and immune checkpoints of LGG were significantly correlated with SMG5 expression. Furthermore, SMG5 was significantly associated with immune scores, stromal scores, and sensitivity of some drugs in LGG. CONCLUSION SMG5 is differentially expressed in several cancers and is significantly associated with prognosis, immune microenvironment, and immune checkpoints in LGG patients. Therefore, SMG5 could be a potential pan-cancer biomarker and an immunotherapeutic target for LGG.
Collapse
Affiliation(s)
- Leteng Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Jie Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Xiaoya Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Rui Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Huan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- College of Life Science, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Kumar M, Has C, Lam-Kamath K, Ayciriex S, Dewett D, Bashir M, Poupault C, Schuhmann K, Knittelfelder O, Raghuraman BK, Ahrends R, Rister J, Shevchenko A. Lipidome unsaturation affects the morphology and proteome of the Drosophila eye. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539765. [PMID: 37214967 PMCID: PMC10197557 DOI: 10.1101/2023.05.07.539765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
While the proteome of an organism is largely determined by the genome, the lipidome is shaped by a poorly understood interplay of environmental factors and metabolic processes. To gain insights into the underlying mechanisms, we analyzed the impacts of dietary lipid manipulations on the ocular proteome of Drosophila melanogaster . We manipulated the lipidome with synthetic food media that differed in the supplementation of an equal amount of saturated or polyunsaturated triacylglycerols. This allowed us to generate flies whose eyes had a highly contrasting length and unsaturation of glycerophospholipids, the major lipid class of biological membranes, while the abundance of other membrane lipid classes remained unchanged. By bioinformatically comparing the resulting ocular proteomic trends and contrasting them with the impacts of vitamin A deficiency, we identified ocular proteins whose abundances are differentially affected by lipid saturation and unsaturation. For instance, we unexpectedly identified a group of proteins that have muscle-related functions and increase their abundances in the eye upon lipidome unsaturation but are unaffected by lipidome saturation. Moreover, we identified two differentially lipid-responsive proteins involved in stress responses, Turandot A and Smg5, whose abundances decrease with lipid unsaturation. Lastly, we discovered that the ocular lipid class composition is robust to dietary changes and propose that this may be a general homeostatic feature of the organization of eukaryotic tissues, while the length and unsaturation of fatty acid moieties is more variable to compensate environmental challenges. We anticipate that these insights into the molecular responses of the Drosophila eye proteome to specific lipid manipulations will guide the genetic dissection of the mechanisms that maintain visual function when the eye is exposed to dietary challenges.
Collapse
|
6
|
Glashauser J, Camelo C, Hollmann M, Backer W, Jacobs T, Sanchez JI, Schleutker R, Förster D, Berns N, Riechmann V, Luschnig S. Acute manipulation and real-time visualization of membrane trafficking and exocytosis in Drosophila. Dev Cell 2023; 58:709-723.e7. [PMID: 37023749 DOI: 10.1016/j.devcel.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
Intracellular trafficking of secretory proteins plays key roles in animal development and physiology, but so far, tools for investigating the dynamics of membrane trafficking have been limited to cultured cells. Here, we present a system that enables acute manipulation and real-time visualization of membrane trafficking through the reversible retention of proteins in the endoplasmic reticulum (ER) in living multicellular organisms. By adapting the "retention using selective hooks" (RUSH) approach to Drosophila, we show that trafficking of GPI-linked, secreted, and transmembrane proteins can be controlled with high temporal precision in intact animals and cultured organs. We demonstrate the potential of this approach by analyzing the kinetics of ER exit and apical secretion and the spatiotemporal dynamics of tricellular junction assembly in epithelia of living embryos. Furthermore, we show that controllable ER retention enables tissue-specific depletion of secretory protein function. The system is broadly applicable to visualizing and manipulating membrane trafficking in diverse cell types in vivo.
Collapse
Affiliation(s)
- Jade Glashauser
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Carolina Camelo
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Manuel Hollmann
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Wilko Backer
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Thea Jacobs
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Jone Isasti Sanchez
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Raphael Schleutker
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Dominique Förster
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Nicola Berns
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Veit Riechmann
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Stefan Luschnig
- Institute of Integrative Cell Biology and Physiology, Faculty of Biology and Cells in Motion (CiM) Interfaculty Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
7
|
Ganesan R, Mangkalaphiban K, Baker RE, He F, Jacobson A. Ribosome-bound Upf1 forms distinct 80S complexes and conducts mRNA surveillance. RNA (NEW YORK, N.Y.) 2022; 28:1621-1642. [PMID: 36192133 PMCID: PMC9670811 DOI: 10.1261/rna.079416.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Upf1, Upf2, and Upf3, the central regulators of nonsense-mediated mRNA decay (NMD), appear to exercise their NMD functions while bound to elongating ribosomes, and evidence for this conclusion is particularly compelling for Upf1. Hence, we used selective profiling of yeast Upf1:ribosome association to define that step in greater detail, understand whether the nature of the mRNA being translated influences Upf1:80S interaction, and elucidate the functions of ribosome-associated Upf1. Our approach has allowed us to clarify the timing and specificity of Upf1 association with translating ribosomes, obtain evidence for a Upf1 mRNA surveillance function that precedes the activation of NMD, identify a unique ribosome state that generates 37-43 nt ribosome footprints whose accumulation is dependent on Upf1's ATPase activity, and demonstrate that a mutated form of Upf1 can interfere with normal translation termination and ribosome release. In addition, our results strongly support the existence of at least two distinct functional Upf1 complexes in the NMD pathway.
Collapse
Affiliation(s)
- Robin Ganesan
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Kotchaphorn Mangkalaphiban
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
8
|
Gilbert A, Saveanu C. Unusual SMG suspects recruit degradation enzymes in nonsense-mediated mRNA decay. Bioessays 2022; 44:e2100296. [PMID: 35266563 DOI: 10.1002/bies.202100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Degradation of eukaryotic RNAs that contain premature termination codons (PTC) during nonsense-mediated mRNA decay (NMD) is initiated by RNA decapping or endonucleolytic cleavage driven by conserved factors. Models for NMD mechanisms, including recognition of PTCs or the timing and role of protein phosphorylation for RNA degradation are challenged by new results. For example, the depletion of the SMG5/7 heterodimer, thought to activate RNA degradation by decapping, leads to a phenotype showing a defect of endonucleolytic activity of NMD complexes. This phenotype is not correlated to a decreased binding of the endonuclease SMG6 with the core NMD factor UPF1, suggesting that it is the result of an imbalance between active (e.g., in polysomes) and inactive (e.g., in RNA-protein condensates) states of NMD complexes. Such imbalance between multiple complexes is not restricted to NMD and should be taken into account when establishing causal links between gene function perturbation and observed phenotypes.
Collapse
Affiliation(s)
- Agathe Gilbert
- Institut Pasteur, Sorbonne Université, CNRS UMR-3525, Paris, F-75015, France
| | - Cosmin Saveanu
- Institut Pasteur, Sorbonne Université, CNRS UMR-3525, Paris, F-75015, France
| |
Collapse
|
9
|
Lee PJ, Yang S, Sun Y, Guo JU. Regulation of nonsense-mediated mRNA decay in neural development and disease. J Mol Cell Biol 2021; 13:269-281. [PMID: 33783512 PMCID: PMC8339359 DOI: 10.1093/jmcb/mjab022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022] Open
Abstract
Eukaryotes have evolved a variety of mRNA surveillance mechanisms to detect and degrade aberrant mRNAs with potential deleterious outcomes. Among them, nonsense-mediated mRNA decay (NMD) functions not only as a quality control mechanism targeting aberrant mRNAs containing a premature termination codon but also as a posttranscriptional gene regulation mechanism targeting numerous physiological mRNAs. Despite its well-characterized molecular basis, the regulatory scope and biological functions of NMD at an organismal level are incompletely understood. In humans, mutations in genes encoding core NMD factors cause specific developmental and neurological syndromes, suggesting a critical role of NMD in the central nervous system. Here, we review the accumulating biochemical and genetic evidence on the developmental regulation and physiological functions of NMD as well as an emerging role of NMD dysregulation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Paul Jongseo Lee
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Suzhou Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Yu Sun
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Junjie U Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
10
|
Raxwal VK, Simpson CG, Gloggnitzer J, Entinze JC, Guo W, Zhang R, Brown JWS, Riha K. Nonsense-Mediated RNA Decay Factor UPF1 Is Critical for Posttranscriptional and Translational Gene Regulation in Arabidopsis. THE PLANT CELL 2020; 32:2725-2741. [PMID: 32665305 PMCID: PMC7474300 DOI: 10.1105/tpc.20.00244] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 05/19/2023]
Abstract
Nonsense-mediated RNA decay (NMD) is an RNA control mechanism that has also been implicated in the broader regulation of gene expression. Nevertheless, a role for NMD in genome regulation has not yet been fully assessed, partially because NMD inactivation is lethal in many organisms. Here, we performed an in-depth comparative analysis of Arabidopsis (Arabidopsis thaliana) mutants lacking the NMD-related proteins UPF3, UPF1, and SMG7. We found different impacts of these proteins on NMD and the Arabidopsis transcriptome, with UPF1 having the biggest effect. Transcriptome assembly in UPF1-null plants revealed genome-wide changes in alternative splicing, suggesting that UPF1 functions in splicing. The inactivation of UPF1 led to translational repression, as manifested by a global shift in mRNAs from polysomes to monosomes and the downregulation of genes involved in translation and ribosome biogenesis. Despite these global changes, NMD targets and mRNAs expressed at low levels with short half-lives were enriched in the polysomes of upf1 mutants, indicating that UPF1/NMD suppresses the translation of aberrant RNAs. Particularly striking was an increase in the translation of TIR domain-containing, nucleotide binding, leucine-rich repeat (TNL) immune receptors. The regulation of TNLs via UPF1/NMD-mediated mRNA stability and translational derepression offers a dynamic mechanism for the rapid activation of TNLs in response to pathogen attack.
Collapse
Affiliation(s)
- Vivek K Raxwal
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Craig G Simpson
- Cell and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | | | - Juan Carlos Entinze
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - John W S Brown
- Cell and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, United Kingdom
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
11
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
12
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|