1
|
Deolal P, Scholz J, Ren K, Bragulat-Teixidor H, Otsuka S. Sculpting nuclear envelope identity from the endoplasmic reticulum during the cell cycle. Nucleus 2024; 15:2299632. [PMID: 38238284 PMCID: PMC10802211 DOI: 10.1080/19491034.2023.2299632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The nuclear envelope (NE) regulates nuclear functions, including transcription, nucleocytoplasmic transport, and protein quality control. While the outer membrane of the NE is directly continuous with the endoplasmic reticulum (ER), the NE has an overall distinct protein composition from the ER, which is crucial for its functions. During open mitosis in higher eukaryotes, the NE disassembles during mitotic entry and then reforms as a functional territory at the end of mitosis to reestablish nucleocytoplasmic compartmentalization. In this review, we examine the known mechanisms by which the functional NE reconstitutes from the mitotic ER in the continuous ER-NE endomembrane system during open mitosis. Furthermore, based on recent findings indicating that the NE possesses unique lipid metabolism and quality control mechanisms distinct from those of the ER, we explore the maintenance of NE identity and homeostasis during interphase. We also highlight the potential significance of membrane junctions between the ER and NE.
Collapse
Affiliation(s)
- Pallavi Deolal
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| | - Julia Scholz
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Kaike Ren
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Helena Bragulat-Teixidor
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Shotaro Otsuka
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria
| |
Collapse
|
2
|
Ferreira PMP, Ramos CLS, Filho JIAB, Conceição MLP, Almeida ML, do Nascimento Rodrigues DC, Porto JCS, de Castro E Sousa JM, Peron AP. Laboratory and physiological aspects of substitute metazoan models for in vivo pharmacotoxicological analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03437-5. [PMID: 39298017 DOI: 10.1007/s00210-024-03437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
New methods are essential to characterize the performance of substitute procedures for detecting therapeutic action(s) of a chemical or key signal of toxicological events. Herein, it was discussed the applications and advantages of using arthropods, worms, and fishes in pharmacological and/or toxicology assessments. First of all, the illusion of similarity covers many differences between humans and mice, remarkably about liver injury and metabolism of xenobiotics. Using invertebrates, especially earthworms (Eisenia fetida), brine shrimps (Artemia salina, Daphnia magna), and insects (Drosophila melanogaster) and vertebrates as small fishes (Oryzias latipes, Pimephales promelas, Danio rerio) has countless advantages, including fewer ethical conflicts, short life cycle, high reproduction rate, simpler to handle, and less complex anatomy. They can be used to find contaminants in organic matters and water and are easier genetically engineered with orthologous-mutated genes to explore specific proteins involved in proliferative and hormonal disturbances, chemotherapy multidrug resistance, and carcinogenicity. As multicellular embryos, larvae, and mature organisms, they can be tested in bigger-sized replication platforms with 24-, 96-, or 384-multiwell plates as cheaper and faster ways to select hit compounds from drug-like libraries to predict acute, subacute or chronic toxicity, pharmacokinetics, and efficacy parameters of pharmaceutical, cosmetic, and personal care products. Meanwhile, sublethal exposures are designed to identify changes in reproduction, body weight, DNA damages, oxidation, and immune defense responses in earthworms and zebrafishes, and swimming behaviors in A. salina and D. rerio. Behavioral parameters also give specificities on sublethal effects that would not be detected in zebrafishes by OECD protocols.
Collapse
Affiliation(s)
- Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil.
| | - Carla Lorena Silva Ramos
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - José Ivo Araújo Beserra Filho
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Micaely Lorrana Pereira Conceição
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Mateus Lima Almeida
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | | | - Jhonatas Cley Santos Porto
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - João Marcelo de Castro E Sousa
- Toxicological Genetics Research Laboratory (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, 64049-550, Brazil
| | - Ana Paula Peron
- Laboratory of Ecotoxicology (Labecotox), Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, 87301-899, Brazil
| |
Collapse
|
3
|
Le Cunff Y, Chesneau L, Pastezeur S, Pinson X, Soler N, Fairbrass D, Mercat B, Rodriguez-Garcia R, Alayan Z, Abdouni A, de Neidhardt G, Costes V, Anjubault M, Bouvrais H, Héligon C, Pécréaux J. Unveiling inter-embryo variability in spindle length over time: Towards quantitative phenotype analysis. PLoS Comput Biol 2024; 20:e1012330. [PMID: 39236069 PMCID: PMC11376571 DOI: 10.1371/journal.pcbi.1012330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
How can inter-individual variability be quantified? Measuring many features per experiment raises the question of choosing them to recapitulate high-dimensional data. Tackling this challenge on spindle elongation phenotypes, we showed that only three typical elongation patterns describe spindle elongation in C. elegans one-cell embryo. These archetypes, automatically extracted from the experimental data using principal component analysis (PCA), accounted for more than 95% of inter-individual variability of more than 1600 experiments across more than 100 different conditions. The two first archetypes were related to spindle average length and anaphasic elongation rate. The third archetype, accounting for 6% of the variability, was novel and corresponded to a transient spindle shortening in late metaphase, reminiscent of kinetochore function-defect phenotypes. Importantly, these three archetypes were robust to the choice of the dataset and were found even considering only non-treated conditions. Thus, the inter-individual differences between genetically perturbed embryos have the same underlying nature as natural inter-individual differences between wild-type embryos, independently of the temperatures. We thus propose that beyond the apparent complexity of the spindle, only three independent mechanisms account for spindle elongation, weighted differently in the various conditions. Interestingly, the spindle-length archetypes covered both metaphase and anaphase, suggesting that spindle elongation in late metaphase is sufficient to predict the late anaphase length. We validated this idea using a machine-learning approach. Finally, given amounts of these three archetypes could represent a quantitative phenotype. To take advantage of this, we set out to predict interacting genes from a seed based on the PCA coefficients. We exemplified this firstly on the role of tpxl-1 whose homolog tpx2 is involved in spindle microtubule branching, secondly the mechanism regulating metaphase length, and thirdly the central spindle players which set the length at anaphase. We found novel interactors not in public databases but supported by recent experimental publications.
Collapse
Affiliation(s)
- Yann Le Cunff
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Laurent Chesneau
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Sylvain Pastezeur
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Xavier Pinson
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Nina Soler
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Danielle Fairbrass
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Benjamin Mercat
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Ruddi Rodriguez-Garcia
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Zahraa Alayan
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Ahmed Abdouni
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Gary de Neidhardt
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Valentin Costes
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Mélodie Anjubault
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Hélène Bouvrais
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Christophe Héligon
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Jacques Pécréaux
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| |
Collapse
|
4
|
Sleeman BD, Stewart IW. A theoretical model of anaphase. Math Biosci 2024; 374:109219. [PMID: 38795952 DOI: 10.1016/j.mbs.2024.109219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
This paper develops a theory for anaphase in cells. After a brief description of microtubules, the mitotic spindle and the centrosome, a mathematical model for anaphase is introduced and developed in the context of the cell cytoplasm and liquid crystalline structures. Prophase, prometaphase and metaphase are then briefly described in order to focus on anaphase, which is the main study of this paper. The entities involved are modelled in terms of liquid crystal defects and microtubules are represented as defect flux lines. The mathematical techniques employed make extensive use of energy considerations based on the work that was developed by Dafermos (1970) from the classical Frank-Oseen nematic liquid crystal energy (Frank, 1958; Oseen, 1933). With regard to liquid crystal theory we introduce the concept of regions of influence for defects which it is believed have important implications beyond the subject of this paper. The results of this paper align with observed biochemical phenomena and are explored in application to HeLa cells and Caenorhabditis elegans. This unified approach offers the possibility of gaining insight into various consequences of mitotic abnormalities which may result in Down syndrome, Hodgkin lymphoma, breast, prostate and various other types of cancer.
Collapse
Affiliation(s)
- Brian D Sleeman
- School of Mathematics, University of Leeds, Leeds, LD2 9JT, United Kingdom
| | - Iain W Stewart
- Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH, United Kingdom.
| |
Collapse
|
5
|
Perrier A, Guiglielmoni N, Naquin D, Gorrichon K, Thermes C, Lameiras S, Dammermann A, Schiffer PH, Brunstein M, Canman JC, Dumont J. Maternal inheritance of functional centrioles in two parthenogenetic nematodes. Nat Commun 2024; 15:6042. [PMID: 39025889 PMCID: PMC11258339 DOI: 10.1038/s41467-024-50427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Centrioles are the core constituent of centrosomes, microtubule-organizing centers involved in directing mitotic spindle assembly and chromosome segregation in animal cells. In sexually reproducing species, centrioles degenerate during oogenesis and female meiosis is usually acentrosomal. Centrioles are retained during male meiosis and, in most species, are reintroduced with the sperm during fertilization, restoring centriole numbers in embryos. In contrast, the presence, origin, and function of centrioles in parthenogenetic species is unknown. We found that centrioles are maternally inherited in two species of asexual parthenogenetic nematodes and identified two different strategies for maternal inheritance evolved in the two species. In Rhabditophanes diutinus, centrioles organize the poles of the meiotic spindle and are inherited by both the polar body and embryo. In Disploscapter pachys, the two pairs of centrioles remain close together and are inherited by the embryo only. Our results suggest that maternally-inherited centrioles organize the embryonic spindle poles and act as a symmetry-breaking cue to induce embryo polarization. Thus, in these parthenogenetic nematodes, centrioles are maternally-inherited and functionally replace their sperm-inherited counterparts in sexually reproducing species.
Collapse
Affiliation(s)
- Aurélien Perrier
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Nadège Guiglielmoni
- Worm∼lab, Institute for Zoology, University of Cologne, Cologne, NRW, Germany
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kevin Gorrichon
- Centre de Référence, d'Innovation, d'eXpertise et de transfert (CRefIX), US 039 CEA/INRIA/INSERM, Evry, France
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sonia Lameiras
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, 75005, Paris, France
| | - Alexander Dammermann
- Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, 1030, Vienna, Austria
| | - Philipp H Schiffer
- Worm∼lab, Institute for Zoology, University of Cologne, Cologne, NRW, Germany
| | - Maia Brunstein
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l'Audition, F-75012, Paris, France
| | - Julie C Canman
- Columbia University Irving Medical Center; Department of Pathology and Cell Biology, New York, NY, 10032, USA
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| |
Collapse
|
6
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Durkan A, Koup A, Bell SE, Lyczak R. Loss of the puromycin-sensitive aminopeptidase, PAM-1, triggers the spindle assembly checkpoint during the first mitotic division in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001167. [PMID: 38633870 PMCID: PMC11022077 DOI: 10.17912/micropub.biology.001167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/19/2024]
Abstract
Puromycin-sensitive aminopeptidases have long been implicated in cell-cycle regulation, but the mechanism remains unknown. Here we show that mutations in the gene encoding the C. elegans puromycin-sensitive aminopeptidase, PAM-1 , cause chromosome segregation defects and an elongated mitosis in the one-cell embryo. Depleting a known regulator of the spindle assembly checkpoint (SAC), MDF-2 (MAD2 in humans), restores normal mitotic timing to pam-1 mutants but exacerbates the chromosome segregation defects. Thus, PAM-1 is required for proper attachment of chromosomes to the mitotic spindle and its absence triggers the SAC.
Collapse
Affiliation(s)
- Aidan Durkan
- Biology, Ursinus College, Collegeville, Pennsylvania, United States
| | - Annalise Koup
- Biology, Ursinus College, Collegeville, Pennsylvania, United States
| | - Sarah E. Bell
- Biology, Ursinus College, Collegeville, Pennsylvania, United States
| | - Rebecca Lyczak
- Biology, Ursinus College, Collegeville, Pennsylvania, United States
| |
Collapse
|
8
|
Wong SS, Wainman A, Saurya S, Raff JW. Regulation of centrosome size by the cell-cycle oscillator in Drosophila embryos. EMBO J 2024; 43:414-436. [PMID: 38233576 PMCID: PMC10898259 DOI: 10.1038/s44318-023-00022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
Mitotic centrosomes assemble when centrioles recruit large amounts of pericentriolar material (PCM) around themselves. In early C. elegans embryos, mitotic centrosome size appears to be set by the limiting amount of a key component. In Drosophila syncytial embryos, thousands of mitotic centrosomes are assembled as the embryo proceeds through 13 rounds of rapid nuclear division, driven by a core cell cycle oscillator. These divisions slow during nuclear cycles 11-13, and we find that centrosomes respond by reciprocally decreasing their growth rate, but increasing their growth period-so that they grow to a relatively consistent size at each cycle. At the start of each cycle, moderate CCO activity initially promotes centrosome growth, in part by stimulating Polo/PLK1 recruitment to centrosomes. Later in each cycle, high CCO activity inhibits centrosome growth by suppressing the centrosomal recruitment and/or maintenance of centrosome proteins. Thus, in fly embryos, mitotic centrosome size appears to be regulated predominantly by the core cell cycle oscillator, rather than by the depletion of a limiting component.
Collapse
Affiliation(s)
- Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
9
|
Kapoor S, Adhikary K, Kotak S. PP2A-B55 SUR-6 promotes nuclear envelope breakdown in C. elegans embryos. Cell Rep 2023; 42:113495. [PMID: 37995185 DOI: 10.1016/j.celrep.2023.113495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Nuclear envelope (NE) disassembly during mitosis is critical to ensure faithful segregation of the genetic material. NE disassembly is a phosphorylation-dependent process wherein mitotic kinases hyper-phosphorylate lamina and nucleoporins to initiate nuclear envelope breakdown (NEBD). In this study, we uncover an unexpected role of the PP2A phosphatase B55SUR-6 in NEBD during the first embryonic division of Caenorhabditis elegans embryo. B55SUR-6 depletion delays NE permeabilization and stabilizes lamina and nucleoporins. As a result, the merging of parental genomes and chromosome segregation is impaired. NEBD defect upon B55SUR-6 depletion is not due to delayed mitotic onset or mislocalization of mitotic kinases. Importantly, we demonstrate that microtubule-dependent mechanical forces synergize with B55SUR-6 for efficient NEBD. Finally, our data suggest that the lamin LMN-1 is likely a bona fide target of PP2A-B55SUR-6. These findings establish a model highlighting biochemical crosstalk between kinases, PP2A-B55SUR-6 phosphatase, and microtubule-generated mechanical forces in timely NE dissolution.
Collapse
Affiliation(s)
- Sukriti Kapoor
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore 560012, India
| | - Kuheli Adhikary
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore 560012, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore 560012, India.
| |
Collapse
|
10
|
Pierron M, Woglar A, Busso C, Jha K, Mikeladze‐Dvali T, Croisier M, Gönczy P. Centriole elimination during Caenorhabditis elegans oogenesis initiates with loss of the central tube protein SAS-1. EMBO J 2023; 42:e115076. [PMID: 37987153 PMCID: PMC10711648 DOI: 10.15252/embj.2023115076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
In most metazoans, centrioles are lost during oogenesis, ensuring that the zygote is endowed with the correct number of two centrioles, which are paternally contributed. How centriole architecture is dismantled during oogenesis is not understood. Here, we analyze with unprecedent detail the ultrastructural and molecular changes during oogenesis centriole elimination in Caenorhabditis elegans. Centriole elimination begins with loss of the so-called central tube and organelle widening, followed by microtubule disassembly. The resulting cluster of centriolar proteins then disappears gradually, usually moving in a microtubule- and dynein-dependent manner to the plasma membrane. Our analysis indicates that neither Polo-like kinases nor the PCM, which modulate oogenesis centriole elimination in Drosophila, do so in C. elegans. Furthermore, we demonstrate that the central tube protein SAS-1 normally departs initially from the organelle, which loses integrity earlier in sas-1 mutants. Overall, our work provides novel mechanistic insights regarding the fundamental process of oogenesis centriole elimination.
Collapse
Affiliation(s)
- Marie Pierron
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Alexander Woglar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Keshav Jha
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | | | - Marie Croisier
- BIO‐EM platform, School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
11
|
Kalbfuss N, Gönczy P. Towards understanding centriole elimination. Open Biol 2023; 13:230222. [PMID: 37963546 PMCID: PMC10645514 DOI: 10.1098/rsob.230222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 11/16/2023] Open
Abstract
Centrioles are microtubule-based structures crucial for forming flagella, cilia and centrosomes. Through these roles, centrioles are critical notably for proper cell motility, signalling and division. Recent years have advanced significantly our understanding of the mechanisms governing centriole assembly and architecture. Although centrioles are typically very stable organelles, persisting over many cell cycles, they can also be eliminated in some cases. Here, we review instances of centriole elimination in a range of species and cell types. Moreover, we discuss potential mechanisms that enable the switch from a stable organelle to a vanishing one. Further work is expected to provide novel insights into centriole elimination mechanisms in health and disease, thereby also enabling scientists to readily manipulate organelle fate.
Collapse
Affiliation(s)
- Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Quiogue AR, Sumiyoshi E, Fries A, Chuang CH, Bowerman B. Microtubules oppose cortical actomyosin-driven membrane ingression during C. elegans meiosis I polar body extrusion. PLoS Genet 2023; 19:e1010984. [PMID: 37782660 PMCID: PMC10569601 DOI: 10.1371/journal.pgen.1010984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/12/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
During C. elegans oocyte meiosis I cytokinesis and polar body extrusion, cortical actomyosin is locally remodeled to assemble a contractile ring that forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness limits membrane ingression throughout the oocyte during meiosis I polar body extrusion. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a group of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize during meiosis I to structures called linear elements, which are present within the assembling oocyte spindle and also are distributed throughout the oocyte in proximity to, but appearing to underlie, the actomyosin cortex. We further show that KNL-1 and BUB-1, like CLS-2, promote the proper organization of sub-cortical microtubules and also limit membrane ingression throughout the oocyte. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules leads to, respectively, excess or decreased membrane ingression throughout the oocyte. Furthermore, taxol treatment, and genetic backgrounds that elevate the levels of cortically associated microtubules, both suppress excess membrane ingression in cls-2 mutant oocytes. We propose that linear elements influence the organization of sub-cortical microtubules to generate a stiffness that limits cortical actomyosin-driven membrane ingression throughout the oocyte during meiosis I polar body extrusion. We discuss the possibility that this regulation of sub-cortical microtubule dynamics facilitates actomyosin contractile ring dynamics during C. elegans oocyte meiosis I cell division.
Collapse
Affiliation(s)
- Alyssa R. Quiogue
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| | - Eisuke Sumiyoshi
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| | - Adam Fries
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
- Imaging Core, Office of the Vice President for Research University of Oregon, Eugene, Oregon, United States of America
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| |
Collapse
|
13
|
Nkombo Nkoula S, Velez-Aguilera G, Ossareh-Nazari B, Van Hove L, Ayuso C, Legros V, Chevreux G, Thomas L, Seydoux G, Askjaer P, Pintard L. Mechanisms of nuclear pore complex disassembly by the mitotic Polo-like kinase 1 (PLK-1) in C. elegans embryos. SCIENCE ADVANCES 2023; 9:eadf7826. [PMID: 37467327 PMCID: PMC10355831 DOI: 10.1126/sciadv.adf7826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The nuclear envelope, which protects and organizes the genome, is dismantled during mitosis. In the Caenorhabditis elegans zygote, nuclear envelope breakdown (NEBD) of the parental pronuclei is spatially and temporally regulated during mitosis to promote the unification of the maternal and paternal genomes. Nuclear pore complex (NPC) disassembly is a decisive step of NEBD, essential for nuclear permeabilization. By combining live imaging, biochemistry, and phosphoproteomics, we show that NPC disassembly is a stepwise process that involves Polo-like kinase 1 (PLK-1)-dependent and -independent steps. PLK-1 targets multiple NPC subcomplexes, including the cytoplasmic filaments, central channel, and inner ring. PLK-1 is recruited to and phosphorylates intrinsically disordered regions (IDRs) of several multivalent linker nucleoporins. Notably, although the phosphosites are not conserved between human and C. elegans nucleoporins, they are located in IDRs in both species. Our results suggest that targeting IDRs of multivalent linker nucleoporins is an evolutionarily conserved driver of NPC disassembly during mitosis.
Collapse
Affiliation(s)
- Sylvia Nkombo Nkoula
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Griselda Velez-Aguilera
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Batool Ossareh-Nazari
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Lucie Van Hove
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Véronique Legros
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Laura Thomas
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Géraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Lionel Pintard
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Programme Équipe Labellisée Ligue contre le Cancer, Paris, France
| |
Collapse
|
14
|
Kalbfuss N, Gönczy P. Extensive programmed centriole elimination unveiled in C. elegans embryos. SCIENCE ADVANCES 2023; 9:eadg8682. [PMID: 37256957 PMCID: PMC10413642 DOI: 10.1126/sciadv.adg8682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Centrioles are critical for fundamental cellular processes, including signaling, motility, and division. The extent to which centrioles are present after cell cycle exit in a developing organism is not known. The stereotypical lineage of Caenorhabditis elegans makes it uniquely well-suited to investigate this question. Using notably lattice light-sheet microscopy, correlative light electron microscopy, and lineage assignment, we found that ~88% of cells lose centrioles during embryogenesis. Our analysis reveals that centriole elimination is stereotyped, occurring invariably at a given time in a given cell type. Moreover, we established that experimentally altering cell fate results in corresponding changes in centriole fate. Overall, we uncovered the existence of an extensive centriole elimination program, which we anticipate to be paradigmatic for a broad understanding of centriole fate regulation.
Collapse
Affiliation(s)
- Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
15
|
Quiogue AR, Sumiyoshi E, Fries A, Chuang CH, Bowerman B. Cortical microtubules oppose actomyosin-driven membrane ingression during C. elegans meiosis I polar body extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542508. [PMID: 37292632 PMCID: PMC10245968 DOI: 10.1101/2023.05.26.542508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During C. elegans oocyte meiosis I, cortical actomyosin is locally remodeled to assemble a contractile ring near the spindle. In contrast to mitosis, when most cortical actomyosin converges into a contractile ring, the small oocyte ring forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness are required for contractile ring assembly within the oocyte cortical actomyosin network. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a complex of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize to patches distributed throughout the oocyte cortex during meiosis I. By reducing their function, we further show that KNL-1 and BUB-1, like CLS-2, are required for cortical microtubule stability, to limit membrane ingression throughout the oocyte, and for meiotic contractile ring assembly and polar body extrusion. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules, respectively, leads to excess or decreased membrane ingression throughout the oocyte and defective polar body extrusion. Finally, genetic backgrounds that elevate cortical microtubule levels suppress the excess membrane ingression in cls-2 mutant oocytes. These results support our hypothesis that CLS-2, as part of a sub-complex of kinetochore proteins that also co-localize to patches throughout the oocyte cortex, stabilizes microtubules to stiffen the oocyte cortex and limit membrane ingression throughout the oocyte, thereby facilitating contractile ring dynamics and the successful completion of polar body extrusion during meiosis I.
Collapse
Affiliation(s)
| | | | - Adam Fries
- Institute of Molecular Biology
- Imaging Core, Office of the Vice President for Research, University of Oregon, Eugene, OR USA 97403
| | | | | |
Collapse
|
16
|
Cuvelier M, Vangheel J, Thiels W, Ramon H, Jelier R, Smeets B. Stability of asymmetric cell division: A deformable cell model of cytokinesis applied to C. elegans. Biophys J 2023; 122:1858-1867. [PMID: 37085996 PMCID: PMC10209142 DOI: 10.1016/j.bpj.2023.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
Cell division during early embryogenesis is linked to key morphogenic events such as embryo symmetry breaking and tissue patterning. It is thought that the physical surrounding of cells together with cell intrinsic cues act as a mechanical "mold," guiding cell division to ensure these events are robust. To quantify how cell division is affected by the mechanical and geometrical environment, we present a novel computational mechanical model of cytokinesis, the final phase of cell division. Simulations with the model reproduced experimentally observed furrow dynamics and describe the volume ratio of daughter cells in asymmetric cell divisions, based on the position and orientation of the mitotic spindle. For dividing cells in geometrically confined environments, we show how the orientation of confinement relative to the division axis modulates the volume ratio in asymmetric cell division. Further, we quantified how cortex viscosity and surface tension determine the shape of a dividing cell and govern bubble-instabilities in asymmetric cell division. Finally, we simulated the formation of the three body axes via sequential (a)symmetric divisions up until the six-cell stage of early C. elegans development, which proceeds within the confines of an eggshell. We demonstrate how model input parameters spindle position and orientation provide sufficient information to reliably predict the volume ratio of daughter cells during the cleavage phase of development. However, for egg geometries perturbed by compression, the model predicts that a change in confinement alone is insufficient to explain experimentally observed differences in cell volume. This points to an effect of the compression on the spindle positioning mechanism. Additionally, the model predicts that confinement stabilizes asymmetric cell divisions against bubble-instabilities.
Collapse
Affiliation(s)
- Maxim Cuvelier
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
| | - Jef Vangheel
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Wim Thiels
- CMPG, M2S Department, KU Leuven, Heverlee, Belgium
| | - Herman Ramon
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Rob Jelier
- CMPG, M2S Department, KU Leuven, Heverlee, Belgium
| | - Bart Smeets
- MeBioS, Department of Biosystems, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Maheshwari R, Rahman MM, Drey S, Onyundo M, Fabig G, Martinez MAQ, Matus DQ, Müller-Reichert T, Cohen-Fix O. A membrane reticulum, the centriculum, affects centrosome size and function in Caenorhabditis elegans. Curr Biol 2023; 33:791-806.e7. [PMID: 36693370 PMCID: PMC10023444 DOI: 10.1016/j.cub.2022.12.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023]
Abstract
Centrosomes are cellular structures that nucleate microtubules. At their core is a pair of centrioles that recruit pericentriolar material (PCM). Although centrosomes are considered membraneless organelles, in many cell types, including human cells, centrosomes are surrounded by endoplasmic reticulum (ER)-derived membranes of unknown structure and function. Using volume electron microscopy (vEM), we show that centrosomes in the Caenorhabditis elegans (C. elegans) early embryo are surrounded by a three-dimensional (3D), ER-derived membrane reticulum that we call the centriculum, for centrosome-associated membrane reticulum. The centriculum is adjacent to the nuclear envelope in interphase and early mitosis and fuses with the fenestrated nuclear membrane at metaphase. Centriculum formation is dependent on the presence of an underlying centrosome and on microtubules. Conversely, increasing centriculum size by genetic means led to the expansion of the PCM, increased microtubule nucleation capacity, and altered spindle width. The effect of the centriculum on centrosome function suggests that in the C. elegans early embryo, the centrosome is not membraneless. Rather, it is encased in a membrane meshwork that affects its properties. We provide evidence that the centriculum serves as a microtubule "filter," preventing the elongation of a subset of microtubules past the centriculum. Finally, we propose that the fusion between the centriculum and the nuclear membrane contributes to nuclear envelope breakdown by coupling spindle elongation to nuclear membrane fenestration.
Collapse
Affiliation(s)
- Richa Maheshwari
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammad M Rahman
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seth Drey
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan Onyundo
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, 450 Life Sciences Building, Stony Brook, NY 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 450 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Orna Cohen-Fix
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Nkoula SN, Velez-Aguilera G, Ossareh-Nazari B, Hove LV, Ayuso C, Legros V, Chevreux G, Thomas L, Seydoux G, Askjaer P, Pintard L. Mechanisms of Nuclear Pore Complex disassembly by the mitotic Polo-Like Kinase 1 (PLK-1) in C. elegans embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.528438. [PMID: 36865292 PMCID: PMC9980100 DOI: 10.1101/2023.02.21.528438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The nuclear envelope, which protects and organizes the interphase genome, is dismantled during mitosis. In the C. elegans zygote, nuclear envelope breakdown (NEBD) of the parental pronuclei is spatially and temporally regulated during mitosis to promote the unification of the parental genomes. During NEBD, Nuclear Pore Complex (NPC) disassembly is critical for rupturing the nuclear permeability barrier and removing the NPCs from the membranes near the centrosomes and between the juxtaposed pronuclei. By combining live imaging, biochemistry, and phosphoproteomics, we characterized NPC disassembly and unveiled the exact role of the mitotic kinase PLK-1 in this process. We show that PLK-1 disassembles the NPC by targeting multiple NPC sub-complexes, including the cytoplasmic filaments, the central channel, and the inner ring. Notably, PLK-1 is recruited to and phosphorylates intrinsically disordered regions of several multivalent linker nucleoporins, a mechanism that appears to be an evolutionarily conserved driver of NPC disassembly during mitosis. (149/150 words). One-Sentence Summary PLK-1 targets intrinsically disordered regions of multiple multivalent nucleoporins to dismantle the nuclear pore complexes in the C. elegans zygote.
Collapse
|
19
|
Zhang P, Chen J, Wang X, Geng Y, Sun L, Zhang H. The centralspindlin complex regulates cytokinesis and morphogenesis in the C. elegans spermatheca. Development 2023; 150:286720. [PMID: 36661358 DOI: 10.1242/dev.200840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/13/2022] [Indexed: 01/21/2023]
Abstract
Organ morphogenesis needs orchestration of a series of cellular events, including cell division, cell shape change, cell rearrangement and cell death. Cytokinesis, the final step of cell division, is involved in the control of organ size, shape and function. Mechanistically, it is unclear how the molecules involved in cytokinesis regulate organ size and shape. Here, we demonstrate that the centralspindlin complex coordinates cell division and epithelial morphogenesis by regulating cytokinesis. Loss of the centralspindlin components CYK-4 and ZEN-4 disrupts cell division, resulting in altered cell arrangement and malformation of the Caenorhabditis elegans spermatheca. Further investigation revealed that most spermathecal cells undergo nuclear division without completion of cytokinesis. Germline mutant-based analyses suggest that CYK-4 regulates cytokinesis of spermathecal cells in a GTPase activator activity-independent manner. Spermathecal morphology defects can be enhanced by double knockdown of rho-1 and cyk-4, and partially suppressed by double knockdown of cdc-42 and cyk-4. Thus, the centralspindlin components CYK-4 and ZEN-4, together with RHO-1 and CDC-42, are central players of a signaling network that guides spermathecal morphogenesis by enabling completion of cytokinesis.
Collapse
Affiliation(s)
- Pei Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Jiwei Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiangchuan Wang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Yingchao Geng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Liangyu Sun
- Biological Imaging and Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
20
|
Harvey AM, Chuang CH, Sumiyoshi E, Bowerman B. C. elegans XMAP215/ZYG-9 and TACC/TAC-1 act at multiple times during oocyte meiotic spindle assembly and promote both spindle pole coalescence and stability. PLoS Genet 2023; 19:e1010363. [PMID: 36608115 PMCID: PMC9851561 DOI: 10.1371/journal.pgen.1010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/19/2023] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The conserved two-component XMAP215/TACC modulator of microtubule stability is required in multiple animal phyla for acentrosomal spindle assembly during oocyte meiotic cell division. In C. elegans, XMAP215/zyg-9 and TACC/tac-1 mutant oocytes exhibit multiple and indistinguishable oocyte spindle assembly defects beginning early in meiosis I. To determine if these defects represent one or more early requirements with additional later and indirect consequences, or multiple temporally distinct and more direct requirements, we have used live cell imaging and fast-acting temperature-sensitive zyg-9 and tac-1 alleles to dissect their requirements at high temporal resolution. Temperature upshift and downshift experiments indicate that the ZYG-9/TAC-1 complex has multiple temporally distinct and separable requirements throughout oocyte meiotic cell division. First, we show that during prometaphase ZYG-9 and TAC-1 promote the coalescence of early pole foci into a bipolar structure, stabilizing pole foci as they grow and limiting their growth rate, with these requirements being independent of an earlier defect in microtubule organization that occurs upon nuclear envelope breakdown. Second, during metaphase, ZYG-9 and TAC-1 maintain spindle bipolarity by suppressing ectopic pole formation. Third, we show that ZYG-9 and TAC-1 also are required for spindle assembly during meiosis II, independently of their meiosis I requirements. The metaphase pole stability requirement appears to be important for maintaining chromosome congression, and we discuss how negative regulation of microtubule stability by ZYG-9/TAC-1 during oocyte meiotic cell division might account for the observed defects in spindle pole coalescence and stability.
Collapse
Affiliation(s)
- Austin M. Harvey
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Eisuke Sumiyoshi
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
21
|
Ozugergin I, Piekny A. Diversity is the spice of life: An overview of how cytokinesis regulation varies with cell type. Front Cell Dev Biol 2022; 10:1007614. [PMID: 36420142 PMCID: PMC9676254 DOI: 10.3389/fcell.2022.1007614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Cytokinesis is required to physically cleave a cell into two daughters at the end of mitosis. Decades of research have led to a comprehensive understanding of the core cytokinesis machinery and how it is regulated in animal cells, however this knowledge was generated using single cells cultured in vitro, or in early embryos before tissues develop. This raises the question of how cytokinesis is regulated in diverse animal cell types and developmental contexts. Recent studies of distinct cell types in the same organism or in similar cell types from different organisms have revealed striking differences in how cytokinesis is regulated, which includes different threshold requirements for the structural components and the mechanisms that regulate them. In this review, we highlight these differences with an emphasis on pathways that are independent of the mitotic spindle, and operate through signals associated with the cortex, kinetochores, or chromatin.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
22
|
Woglar A, Pierron M, Schneider FZ, Jha K, Busso C, Gönczy P. Molecular architecture of the C. elegans centriole. PLoS Biol 2022; 20:e3001784. [PMID: 36107993 PMCID: PMC9531800 DOI: 10.1371/journal.pbio.3001784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/04/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
Uncovering organizing principles of organelle assembly is a fundamental pursuit in the life sciences. Caenorhabditis elegans was key in identifying evolutionary conserved components governing assembly of the centriole organelle. However, localizing these components with high precision has been hampered by the minute size of the worm centriole, thus impeding understanding of underlying assembly mechanisms. Here, we used Ultrastructure Expansion coupled with STimulated Emission Depletion (U-Ex-STED) microscopy, as well as electron microscopy (EM) and electron tomography (ET), to decipher the molecular architecture of the worm centriole. Achieving an effective lateral resolution of approximately 14 nm, we localize centriolar and PeriCentriolar Material (PCM) components in a comprehensive manner with utmost spatial precision. We found that all 12 components analysed exhibit a ring-like distribution with distinct diameters and often with a 9-fold radial symmetry. Moreover, we uncovered that the procentriole assembles at a location on the centriole margin where SPD-2 and ZYG-1 also accumulate. Moreover, SAS-6 and SAS-5 were found to be present in the nascent procentriole, with SAS-4 and microtubules recruited thereafter. We registered U-Ex-STED and EM data using the radial array of microtubules, thus allowing us to map each centriolar and PCM protein to a specific ultrastructural compartment. Importantly, we discovered that SAS-6 and SAS-4 exhibit a radial symmetry that is offset relative to microtubules, leading to a chiral centriole ensemble. Furthermore, we established that the centriole is surrounded by a region from which ribosomes are excluded and to which SAS-7 localizes. Overall, our work uncovers the molecular architecture of the C. elegans centriole in unprecedented detail and establishes a comprehensive framework for understanding mechanisms of organelle biogenesis and function.
Collapse
Affiliation(s)
- Alexander Woglar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Pierron
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Fabian Zacharias Schneider
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Keshav Jha
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Murph M, Singh S, Schvarzstein M. A combined in silico and in vivo approach to the structure-function annotation of SPD-2 provides mechanistic insight into its functional diversity. Cell Cycle 2022; 21:1958-1979. [PMID: 35678569 PMCID: PMC9415446 DOI: 10.1080/15384101.2022.2078458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022] Open
Abstract
Centrosomes are organelles that function as hubs of microtubule nucleation and organization, with key roles in organelle positioning, asymmetric cell division, ciliogenesis, and signaling. Aberrant centrosome number, structure or function is linked to neurodegenerative diseases, developmental abnormalities, ciliopathies, and tumor development. A major regulator of centrosome biogenesis and function in C. elegans is the conserved Spindle-defective protein 2 (SPD-2), a homolog of the human CEP-192 protein. CeSPD-2 is required for centrosome maturation, centriole duplication, spindle assembly and possibly cell polarity establishment. Despite its importance, the specific molecular mechanism of CeSPD-2 regulation and function is poorly understood. Here, we combined computational analysis with cell biology approaches to uncover possible structure-function relationships of CeSPD-2 that may shed mechanistic light on its function. Domain prediction analysis corroborated and refined previously identified coiled-coils and ASH (Aspm-SPD-2 Hydin) domains and identified new domains: a GEF domain, an Ig-like domain, and a PDZ-like domain. In addition to these predicted structural features, CeSPD-2 is also predicted to be intrinsically disordered. Surface electrostatic maps identified a large basic region unique to the ASH domain of CeSPD-2. This basic region overlaps with most of the residues predicted to be involved in protein-protein interactions. In vivo, ASH::GFP localized to centrosomes and centrosome-associated microtubules. Our analysis groups ASH domains, PapD, Usher chaperone domains, and Major Sperm Protein (MSP) domains into a single superfold within the larger Immunoglobulin superfamily. This study lays the groundwork for designing rational hypothesis-based experiments to uncover the mechanisms of CeSPD-2 function in vivo.Abbreviations: AIR, Aurora kinase; ASH, Aspm-SPD-2 Hydin; ASP, Abnormal Spindle Protein; ASPM, Abnormal Spindle-like Microcephaly-associated Protein; CC, coiled-coil; CDK, Cyclin-dependent Kinase; Ce, Caenorhabditis elegans; CEP, Centrosomal Protein; CPAP, centrosomal P4.1-associated protein; D, Drosophila; GAP, GTPase activating protein; GEF, GTPase guanine nucleotide exchange factor; Hs, Homo sapiens/Human; Ig, Immunoglobulin; MAP, Microtubule associated Protein; MSP, Major Sperm Protein; MDP, Major Sperm Domain-Containing Protein; OCRL-1, Golgi endocytic trafficking protein Inositol polyphosphate 5-phosphatase; PAR, abnormal embryonic PARtitioning of the cytosol; PCM, Pericentriolar material; PCMD, pericentriolar matrix deficient; PDZ, PSD95/Dlg-1/zo-1; PLK, Polo like kinase; RMSD, Root Mean Square Deviation; SAS, Spindle assembly abnormal proteins; SPD, Spindle-defective protein; TRAPP, TRAnsport Protein Particle; Xe, Xenopus; ZYG, zygote defective protein.
Collapse
Affiliation(s)
- Mikaela Murph
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
| | - Shaneen Singh
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
- Department of Biology, The Graduate Center at City University of New York, New York, NY, USA
- Department Biochemistry, The Graduate Center at City University of New York, New York, NY, USA
| | - Mara Schvarzstein
- Department of Biology, City University of New York, Brooklyn College, New York, NY, USA
- Department of Biology, The Graduate Center at City University of New York, New York, NY, USA
- Department Biochemistry, The Graduate Center at City University of New York, New York, NY, USA
| |
Collapse
|
24
|
Rodrigues NTL, Bland T, Borrego-Pinto J, Ng K, Hirani N, Gu Y, Foo S, Goehring NW. SAIBR: a simple, platform-independent method for spectral autofluorescence correction. Development 2022; 149:dev200545. [PMID: 35713287 PMCID: PMC9445497 DOI: 10.1242/dev.200545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022]
Abstract
Biological systems are increasingly viewed through a quantitative lens that demands accurate measures of gene expression and local protein concentrations. CRISPR/Cas9 gene tagging has enabled increased use of fluorescence to monitor proteins at or near endogenous levels under native regulatory control. However, owing to typically lower expression levels, experiments using endogenously tagged genes run into limits imposed by autofluorescence (AF). AF is often a particular challenge in wavelengths occupied by commonly used fluorescent proteins (GFP, mNeonGreen). Stimulated by our work in C. elegans, we describe and validate Spectral Autofluorescence Image Correction By Regression (SAIBR), a simple platform-independent protocol and FIJI plug-in to correct for autofluorescence using standard filter sets and illumination conditions. Validated for use in C. elegans embryos, starfish oocytes and fission yeast, SAIBR is ideal for samples with a single dominant AF source; it achieves accurate quantitation of fluorophore signal, and enables reliable detection and quantification of even weakly expressed proteins. Thus, SAIBR provides a highly accessible low-barrier way to incorporate AF correction as standard for researchers working on a broad variety of cell and developmental systems.
Collapse
Affiliation(s)
| | - Tom Bland
- Francis Crick Institute, London NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | | | - KangBo Ng
- Francis Crick Institute, London NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | | | - Ying Gu
- Francis Crick Institute, London NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Sherman Foo
- Francis Crick Institute, London NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Nathan W. Goehring
- Francis Crick Institute, London NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| |
Collapse
|
25
|
Torisawa T, Kimura A. Sequential accumulation of dynein and its regulatory proteins at the spindle region in the Caenorhabditis elegans embryo. Sci Rep 2022; 12:11740. [PMID: 35817834 PMCID: PMC9273622 DOI: 10.1038/s41598-022-15042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Cytoplasmic dynein is responsible for various cellular processes during the cell cycle. The mechanism by which its activity is regulated spatially and temporarily inside the cell remains elusive. There are various regulatory proteins of dynein, including dynactin, NDEL1/NUD-2, and LIS1. Characterizing the spatiotemporal localization of regulatory proteins in vivo will aid understanding of the cellular regulation of dynein. Here, we focused on spindle formation in the Caenorhabditis elegans early embryo, wherein dynein and its regulatory proteins translocated from the cytoplasm to the spindle region upon nuclear envelope breakdown (NEBD). We found that (i) a limited set of dynein regulatory proteins accumulated in the spindle region, (ii) the spatial localization patterns were distinct among the regulators, and (iii) the regulatory proteins did not accumulate in the spindle region simultaneously but sequentially. Furthermore, the accumulation of NUD-2 was unique among the regulators. NUD-2 started to accumulate before NEBD (pre-NEBD accumulation), and exhibited the highest enrichment compared to the cytoplasmic concentration. Using a protein injection approach, we revealed that the C-terminal helix of NUD-2 was responsible for pre-NEBD accumulation. These findings suggest a fine temporal control of the subcellular localization of regulatory proteins.
Collapse
Affiliation(s)
- Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan. .,Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, Japan.
| |
Collapse
|
26
|
Holzer E, Rumpf-Kienzl C, Falk S, Dammermann A. A modified TurboID approach identifies tissue-specific centriolar components in C. elegans. PLoS Genet 2022; 18:e1010150. [PMID: 35442950 PMCID: PMC9020716 DOI: 10.1371/journal.pgen.1010150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/15/2022] [Indexed: 01/26/2023] Open
Abstract
Proximity-dependent labeling approaches such as BioID have been a great boon to studies of protein-protein interactions in the context of cytoskeletal structures such as centrosomes which are poorly amenable to traditional biochemical approaches like immunoprecipitation and tandem affinity purification. Yet, these methods have so far not been applied extensively to invertebrate experimental models such as C. elegans given the long labeling times required for the original promiscuous biotin ligase variant BirA*. Here, we show that the recently developed variant TurboID successfully probes the interactomes of both stably associated (SPD-5) and dynamically localized (PLK-1) centrosomal components. We further develop an indirect proximity labeling method employing a GFP nanobody-TurboID fusion, which allows the identification of protein interactors in a tissue-specific manner in the context of the whole animal. Critically, this approach utilizes available endogenous GFP fusions, avoiding the need to generate multiple additional strains for each target protein and the potential complications associated with overexpressing the protein from transgenes. Using this method, we identify homologs of two highly conserved centriolar components, Cep97 and BLD10/Cep135, which are present in various somatic tissues of the worm. Surprisingly, neither protein is expressed in early embryos, likely explaining why these proteins have escaped attention until now. Our work expands the experimental repertoire for C. elegans and opens the door for further studies of tissue-specific variation in centrosome architecture.
Collapse
Affiliation(s)
- Elisabeth Holzer
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | | | - Sebastian Falk
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | | |
Collapse
|
27
|
Abstract
The nematode Caenorhabditis elegans has shed light on many aspects of eukaryotic biology, including genetics, development, cell biology, and genomics. A major factor in the success of C. elegans as a model organism has been the availability, since the late 1990s, of an essentially gap-free and well-annotated nuclear genome sequence, divided among 6 chromosomes. In this review, we discuss the structure, function, and biology of C. elegans chromosomes and then provide a general perspective on chromosome biology in other diverse nematode species. We highlight malleable chromosome features including centromeres, telomeres, and repetitive elements, as well as the remarkable process of programmed DNA elimination (historically described as chromatin diminution) that induces loss of portions of the genome in somatic cells of a handful of nematode species. An exciting future prospect is that nematode species may enable experimental approaches to study chromosome features and to test models of chromosome evolution. In the long term, fundamental insights regarding how speciation is integrated with chromosome biology may be revealed.
Collapse
Affiliation(s)
- Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, CO 80045, USA.,RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Velez-Aguilera G, Ossareh-Nazari B, Van Hove L, Joly N, Pintard L. Cortical microtubule pulling forces contribute to the union of the parental genomes in the C. elegans zygote. eLife 2022; 11:75382. [PMID: 35259092 PMCID: PMC8956289 DOI: 10.7554/elife.75382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Previously, we reported that the Polo-like kinase PLK-1 phosphorylates the single Caenorhabditis elegans lamin (LMN-1) to trigger lamina depolymerization during mitosis. We showed that this event is required to form a pronuclear envelope scission event that removes membranes on the juxtaposed oocyte and sperm pronuclear envelopes in the zygote, allowing the parental chromosomes to merge in a single nucleus after segregation (Velez-Aguilera et al., 2020). Here, we show that cortical microtubule pulling forces contribute to pronuclear envelopes scission by promoting mitotic spindle elongation, and conversely, nuclear envelopes remodeling facilitates spindle elongation. We also demonstrate that weakening the pronuclear envelopes via PLK-1-mediated lamina depolymerization, is a prerequisite for the astral microtubule pulling forces to trigger pronuclear membranes scission. Finally, we provide evidence that PLK-1 mainly acts via lamina depolymerization in this process. These observations thus indicate that temporal coordination between lamina depolymerization and mitotic spindle elongation facilitates pronuclear envelopes scission and parental genomes unification.
Collapse
Affiliation(s)
| | | | - Lucie Van Hove
- Cell Cycle and Development, Institut Jacques Monod, Paris, France
| | - Nicolas Joly
- Cell Cycle and Development, Institut Jacques Monod, Paris, France
| | - Lionel Pintard
- Cell Cycle and Development, Institut Jacques Monod, Paris, France
| |
Collapse
|
29
|
Thompson JW, Michel MFV, Phillips BT. Centrosomal Enrichment and Proteasomal Degradation of SYS-1/β-catenin Requires the Microtubule Motor Dynein. Mol Biol Cell 2022; 33:ar42. [PMID: 35196020 PMCID: PMC9282011 DOI: 10.1091/mbc.e22-02-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Caenorhabditis elegans Wnt/β-catenin asymmetry (WβA) pathway utilizes asymmetric regulation of SYS-1/β-catenin and POP-1/TCF coactivators. WβA differentially regulates gene expression during cell fate decisions, specifically by asymmetric localization of determinants in mother cells to produce daughters biased toward their appropriate cell fate. Despite the induction of asymmetry, β-catenin localizes symmetrically to mitotic centrosomes in both mammals and C. elegans. Owing to the mitosis-specific localization of SYS-1 to centrosomes and enrichment of SYS-1 at kinetochore microtubules when SYS-1 centrosomal loading is disrupted, we investigated active trafficking in SYS-1 centrosomal localization. Here, we demonstrate that trafficking by microtubule motor dynein is required to maintain SYS-1 centrosomal enrichment, by dynein RNA interference (RNAi)-mediated decreases in SYS-1 centrosomal enrichment and by temperature-sensitive allele of the dynein heavy chain. Conversely, we observe depletion of microtubules by nocodazole treatment or RNAi of dynein-proteasome adapter ECPS-1 exhibits increased centrosomal enrichment of SYS-1. Moreover, disruptions to SYS-1 or negative regulator microtubule trafficking are sufficient to significantly exacerbate SYS-1 dependent cell fate misspecifications. We propose a model whereby retrograde microtubule-mediated trafficking enables SYS-1 enrichment at centrosomes, enhancing its eventual proteasomal degradation. These studies support the link between centrosomal localization and enhancement of proteasomal degradation, particularly for proteins not generally considered “centrosomal.”
Collapse
Affiliation(s)
| | - Maria F Valdes Michel
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242-1324
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324.,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242-1324
| |
Collapse
|
30
|
Tian Y, Yan Y, Fu J. Nine-fold symmetry of centriole: The joint efforts of its core proteins. Bioessays 2022; 44:e2100262. [PMID: 34997615 DOI: 10.1002/bies.202100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022]
Abstract
The centriole is a widely conserved organelle required for the assembly of centrosomes, cilia, and flagella. Its striking feature - the nine-fold symmetrical structure, was discovered over 70 years ago by transmission electron microscopy, and since elaborated mostly by cryo-electron microscopy and super-resolution microscopy. Here, we review the discoveries that led to the current understanding of how the nine-fold symmetrical structure is built. We focus on the recent findings of the centriole structure in high resolution, its assembly pathways, and its nine-fold distributed components. We propose a model that the assembly of the nine-fold symmetrical centriole depends on the concerted efforts of its core proteins.
Collapse
Affiliation(s)
- Yuan Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuxuan Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingyan Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Sugioka K. Symmetry-breaking of animal cytokinesis. Semin Cell Dev Biol 2021; 127:100-109. [PMID: 34955355 DOI: 10.1016/j.semcdb.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Abstract
Cytokinesis is a mechanism that separates dividing cells via constriction of a supramolecular structure, the contractile ring. In animal cells, three modes of symmetry-breaking of cytokinesis result in unilateral cytokinesis, asymmetric cell division, and oriented cell division. Each mode of cytokinesis plays a significant role in tissue patterning and morphogenesis by the mechanisms that control the orientation and position of the contractile ring relative to the body axis. Despite its significance, the mechanisms involved in the symmetry-breaking of cytokinesis remain unclear in many cell types. Classical embryologists have identified that the geometric relationship between the mitotic spindle and cell cortex induces cytokinesis asymmetry; however, emerging evidence suggests that a concerted flow of compressional cell-cortex materials (cortical flow) is a spindle-independent driving force in spatial cytokinesis control. This review provides an overview of both classical and emerging mechanisms of cytokinesis asymmetry and their roles in animal development.
Collapse
Affiliation(s)
- Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T1Z3, Canada; Department of Zoology, The University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
32
|
Unno T, Takatsuka H, Ohnishi Y, Ito M, Kubota Y. A class I histone deacetylase HDA-2 is essential for embryonic development and size regulation of fertilized eggs in Caenorhabditis elegans. Genes Genomics 2021; 44:343-357. [PMID: 34843089 DOI: 10.1007/s13258-021-01195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Caenorhabditis elegans encodes three class I histone deacetylases (HDACs), HDA-1, HDA-2, and HDA-3. Although HDA-1 is known to be involved in embryogenesis, the regulatory roles of HDA-2 and HDA-3 in embryonic development remain unexplored. OBJECTIVE To elucidate the functional roles of the three class I HDACs in C. elegans embryonic development. METHODS The roles of Class I HDACs, HDA-1, HDA-2, and HDA-3 in Caenorhabditis elegans during embryogenesis were investigated through the analysis of embryonic lethality via gene knockdown or deletion mutants. Additionally, the size of these knockdown and mutant eggs was observed using a differential interference contrast microscope. Finally, expression pattern and tissue-specific role of hda-2 and transcriptome of the hda-2 mutant were analyzed. RESULTS Here, we report that HDA-1 and HDA-2, but not HDA-3, play essential roles in Caenorhabditis elegans embryonic development. Our observations of the fertilized egg size variance demonstrated that HDA-2 is involved in regulating the size of fertilized eggs. Combined analysis of expression patterns and sheath cell-specific rescue experiments indicated that the transgenerational role of HDA-2 is involved in the viability of embryonic development and fertilized egg size regulation. Furthermore, transcriptome analysis of hda-2 mutant embryos implies that HDA-2 is involved in epigenetic regulation of embryonic biological processes by downregulating and upregulating the gene expression. CONCLUSION Our finding suggests that HDA-2 regulates the embryonic development in Caenorhabditis elegans by controling a specific subset of genes, and this function might be mediated by transgenerational epigenetic effect.
Collapse
Affiliation(s)
- Takuma Unno
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hisashi Takatsuka
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuto Ohnishi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Masahiro Ito
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.,Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yukihiko Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
33
|
Maheshwari R, Rahman MM, Joseph-Strauss D, Cohen-Fix O. An RNAi screen for genes that affect nuclear morphology in Caenorhabditis elegans reveals the involvement of unexpected processes. G3 (BETHESDA, MD.) 2021; 11:jkab264. [PMID: 34849797 PMCID: PMC8527477 DOI: 10.1093/g3journal/jkab264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Aberration in nuclear morphology is one of the hallmarks of cellular transformation. However, the processes that, when mis-regulated, result aberrant nuclear morphology are poorly understood. In this study, we carried out a systematic, high-throughput RNAi screen for genes that affect nuclear morphology in Caenorhabditis elegans embryos. The screen employed over 1700 RNAi constructs against genes required for embryonic viability. Nuclei of early embryos are typically spherical, and their NPCs are evenly distributed. The screen was performed on early embryos expressing a fluorescently tagged component of the nuclear pore complex (NPC), allowing visualization of nuclear shape as well as the distribution of NPCs around the nuclear envelope. Our screen uncovered 182 genes whose downregulation resulted in one or more abnormal nuclear phenotypes, including multiple nuclei, micronuclei, abnormal nuclear shape, anaphase bridges, and abnormal NPC distribution. Many of these genes fall into common functional groups, including some that were not previously known to affect nuclear morphology, such as genes involved in mitochondrial function, the vacuolar ATPase, and the CCT chaperonin complex. The results of this screen add to our growing knowledge of processes that affect nuclear morphology and that may be altered in cancer cells that exhibit abnormal nuclear shape.
Collapse
Affiliation(s)
- Richa Maheshwari
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammad M Rahman
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Daphna Joseph-Strauss
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Orna Cohen-Fix
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Imaging of Actin Cytoskeleton in the Nematode Caenorhabditis elegans. Methods Mol Biol 2021. [PMID: 34542852 DOI: 10.1007/978-1-0716-1661-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The nematode Caenorhabditis elegans is one of the major model organisms in cell and developmental biology. This organism is easy to culture in laboratories and suitable for microscopic investigation of the cytoskeleton. Because the worms are small and transparent, the actin cytoskeleton in many tissues and cells can be observed with appropriate visualization techniques without sectioning or dissection. This chapter describes the introduction to representative methods for imaging the actin cytoskeleton in C. elegans and a protocol for staining worms with fluorescent phalloidin.
Collapse
|
35
|
Divekar NS, Davis-Roca AC, Zhang L, Dernburg AF, Wignall SM. A degron-based strategy reveals new insights into Aurora B function in C. elegans. PLoS Genet 2021; 17:e1009567. [PMID: 34014923 PMCID: PMC8172070 DOI: 10.1371/journal.pgen.1009567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/02/2021] [Accepted: 04/28/2021] [Indexed: 01/11/2023] Open
Abstract
The widely conserved kinase Aurora B regulates important events during cell division. Surprisingly, recent work has uncovered a few functions of Aurora-family kinases that do not require kinase activity. Thus, understanding this important class of cell cycle regulators will require strategies to distinguish kinase-dependent from independent functions. Here, we address this need in C. elegans by combining germline-specific, auxin-induced Aurora B (AIR-2) degradation with the transgenic expression of kinase-inactive AIR-2. Through this approach, we find that kinase activity is essential for AIR-2’s major meiotic functions and also for mitotic chromosome segregation. Moreover, our analysis revealed insight into the assembly of the ring complex (RC), a structure that is essential for chromosome congression in C. elegans oocytes. AIR-2 localizes to chromosomes and recruits other components to form the RC. However, we found that while kinase-dead AIR-2 could load onto chromosomes, other components were not recruited. This failure in RC assembly appeared to be due to a loss of RC SUMOylation, suggesting that there is crosstalk between SUMOylation and phosphorylation in building the RC and implicating AIR-2 in regulating the SUMO pathway in oocytes. Similar conditional depletion approaches may reveal new insights into other cell cycle regulators. During cell division, chromosomes must be accurately partitioned to ensure the proper distribution of genetic material. In mitosis, chromosomes are duplicated once and then divided once, generating daughter cells with the same amount of genetic material as the original cell. Conversely, during meiosis chromosomes are duplicated once and divided twice, to cut the chromosome number in half to generate eggs and sperm. One important protein that is required for both mitotic and meiotic chromosome segregation is the kinase Aurora B, which phosphorylates a variety of other cell division proteins. However, previous research has shown that some kinases have functions that are independent of their ability to phosphorylate other proteins. Thus, fully understanding how Aurora B regulates cell division requires methods to test whether its various functions require kinase activity. We designed and implemented such a strategy in the model organism C. elegans, by depleting Aurora B from meiotically and mitotically-dividing cells, leaving in place a kinase-inactive version. This work has lent insight into how Aurora B regulates cell division in C. elegans, and also serves as a proof of principle for our approach, which can now be applied to study other essential cell division kinases.
Collapse
Affiliation(s)
- Nikita S. Divekar
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Amanda C. Davis-Roca
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
36
|
Wang X, Zhang D, Zheng C, Wu S, Glotzer M, Tse YC. Cortical recruitment of centralspindlin and RhoA effectors during meiosis I of Caenorhabditis elegans primary spermatocytes. J Cell Sci 2021; 134:jcs.238543. [PMID: 33468621 DOI: 10.1242/jcs.238543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/24/2020] [Indexed: 11/20/2022] Open
Abstract
Haploid male gametes are produced through meiosis during gametogenesis. Whereas the cell biology of mitosis and meiosis is well studied in the nematode Caenorhabditis elegans, comparatively little is known regarding the physical division of primary spermatocytes during meiosis I. Here, we investigated this process using high-resolution time-lapse confocal microscopy and examined the spatiotemporal regulation of contractile ring assembly in C. elegans primary spermatocytes. We found that centralspindlin and RhoA effectors were recruited to the equatorial cortex of dividing primary spermatocytes for contractile ring assembly before segregation of homologous chromosomes. We also observed that perturbations shown to promote centralspindlin oligomerization regulated the cortical recruitment of NMY-2 and impacted the order in which primary spermatocytes along the proximal-distal axis of the gonad enter meiosis I. These results expand our understanding of the cellular division of primary spermatocytes into secondary spermatocytes during meiosis I.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiangchuan Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dandan Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cunni Zheng
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yu Chung Tse
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.,Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
37
|
Ohta M, Zhao Z, Wu D, Wang S, Harrison JL, Gómez-Cavazos JS, Desai A, Oegema KF. Polo-like kinase 1 independently controls microtubule-nucleating capacity and size of the centrosome. J Cell Biol 2021; 220:211652. [PMID: 33399854 PMCID: PMC7788462 DOI: 10.1083/jcb.202009083] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Centrosomes are composed of a centriolar core surrounded by a pericentriolar material (PCM) matrix that docks microtubule-nucleating γ-tubulin complexes. During mitotic entry, the PCM matrix increases in size and nucleating capacity in a process called centrosome maturation. Polo-like kinase 1 (PLK1) is recruited to centrosomes and phosphorylates PCM matrix proteins to drive their self-assembly, which leads to PCM expansion. Here, we show that in addition to controlling PCM expansion, PLK1 independently controls the generation of binding sites for γ-tubulin complexes on the PCM matrix. Selectively preventing the generation of PLK1-dependent γ-tubulin docking sites led to spindle defects and impaired chromosome segregation without affecting PCM expansion, highlighting the importance of phospho-regulated centrosomal γ-tubulin docking sites in spindle assembly. Inhibiting both γ-tubulin docking and PCM expansion by mutating substrate target sites recapitulated the effects of loss of centrosomal PLK1 on the ability of centrosomes to catalyze spindle assembly.
Collapse
Affiliation(s)
- Midori Ohta
- Ludwig Institute for Cancer Research, La Jolla, CA,Midori Ohta:
| | - Zhiling Zhao
- Ludwig Institute for Cancer Research, La Jolla, CA
| | - Di Wu
- Ludwig Institute for Cancer Research, La Jolla, CA
| | - Shaohe Wang
- Ludwig Institute for Cancer Research, La Jolla, CA
| | - Jennifer L. Harrison
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - J. Sebastián Gómez-Cavazos
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA,Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Karen F. Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA,Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA,Correspondence to Karen Oegema:
| |
Collapse
|
38
|
Velez-Aguilera G, Nkombo Nkoula S, Ossareh-Nazari B, Link J, Paouneskou D, Van Hove L, Joly N, Tavernier N, Verbavatz JM, Jantsch V, Pintard L. PLK-1 promotes the merger of the parental genome into a single nucleus by triggering lamina disassembly. eLife 2020; 9:59510. [PMID: 33030429 PMCID: PMC7544505 DOI: 10.7554/elife.59510] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Life of sexually reproducing organisms starts with the fusion of the haploid egg and sperm gametes to form the genome of a new diploid organism. Using the newly fertilized Caenorhabditis elegans zygote, we show that the mitotic Polo-like kinase PLK-1 phosphorylates the lamin LMN-1 to promote timely lamina disassembly and subsequent merging of the parental genomes into a single nucleus after mitosis. Expression of non-phosphorylatable versions of LMN-1, which affect lamina depolymerization during mitosis, is sufficient to prevent the mixing of the parental chromosomes into a single nucleus in daughter cells. Finally, we recapitulate lamina depolymerization by PLK-1 in vitro demonstrating that LMN-1 is a direct PLK-1 target. Our findings indicate that the timely removal of lamin is essential for the merging of parental chromosomes at the beginning of life in C. elegans and possibly also in humans, where a defect in this process might be fatal for embryo development.
Collapse
Affiliation(s)
- Griselda Velez-Aguilera
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Sylvia Nkombo Nkoula
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Batool Ossareh-Nazari
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Jana Link
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Dimitra Paouneskou
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Lucie Van Hove
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Nicolas Joly
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Nicolas Tavernier
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | | | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Lionel Pintard
- Programme Equipe Labéllisée Ligue Contre le Cancer - Team Cell Cycle & Development - Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
39
|
Schlientz AJ, Bowerman B. C. elegans CLASP/CLS-2 negatively regulates membrane ingression throughout the oocyte cortex and is required for polar body extrusion. PLoS Genet 2020; 16:e1008751. [PMID: 33027250 PMCID: PMC7571700 DOI: 10.1371/journal.pgen.1008751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/19/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
The requirements for oocyte meiotic cytokinesis during polar body extrusion are not well understood. In particular, the relationship between the oocyte meiotic spindle and polar body contractile ring dynamics remains largely unknown. We have used live cell imaging and spindle assembly defective mutants lacking the function of CLASP/CLS-2, kinesin-12/KLP-18, or katanin/MEI-1 to investigate the relationship between meiotic spindle structure and polar body extrusion in C. elegans oocytes. We show that spindle bipolarity and chromosome segregation are not required for polar body contractile ring formation and chromosome extrusion in klp-18 mutants. In contrast, oocytes with similarly severe spindle assembly defects due to loss of CLS-2 or MEI-1 have penetrant and distinct polar body extrusion defects: CLS-2 is required early for contractile ring assembly or stability, while MEI-1 is required later for contractile ring constriction. We also show that CLS-2 both negatively regulates membrane ingression throughout the oocyte cortex during meiosis I, and influences the dynamics of the central spindle-associated proteins Aurora B/AIR-2 and MgcRacGAP/CYK-4. We suggest that proper regulation by CLS-2 of both oocyte cortical stiffness and central spindle protein dynamics may influence contractile ring assembly during polar body extrusion in C. elegans oocytes.
Collapse
Affiliation(s)
- Aleesa J. Schlientz
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
40
|
Joly N, Beaumale E, Van Hove L, Martino L, Pintard L. Phosphorylation of the microtubule-severing AAA+ enzyme Katanin regulates C. elegans embryo development. J Cell Biol 2020; 219:e201912037. [PMID: 32412594 PMCID: PMC7265321 DOI: 10.1083/jcb.201912037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
The evolutionarily conserved microtubule (MT)-severing AAA-ATPase enzyme Katanin is emerging as a critical regulator of MT dynamics. In Caenorhabditis elegans, Katanin MT-severing activity is essential for meiotic spindle assembly but is toxic for the mitotic spindle. Here we analyzed Katanin dynamics in C. elegans and deciphered the role of Katanin phosphorylation in the regulation of its activity and stability. Katanin is abundant in oocytes, and its levels drop after meiosis, but unexpectedly, a significant fraction is present throughout embryogenesis, where it is dynamically recruited to the centrosomes and chromosomes during mitosis. We show that the minibrain kinase MBK-2, which is activated during meiosis, phosphorylates Katanin at multiple serines. We demonstrate unequivocally that Katanin phosphorylation at a single residue is necessary and sufficient to target Katanin for proteasomal degradation after meiosis, whereas phosphorylation at the other sites only inhibits Katanin ATPase activity stimulated by MTs. Our findings suggest that cycles of phosphorylation and dephosphorylation fine-tune Katanin level and activity to deliver the appropriate MT-severing activity during development.
Collapse
Affiliation(s)
- Nicolas Joly
- Programme Equipes Labellisées Ligue contre le Cancer – Team “Cell Cycle and Development,” Centre National de la Recherche Scientifique – UMR7592, Institut Jacques Monod/University of Paris, Paris, France
| | | | | | | | - Lionel Pintard
- Programme Equipes Labellisées Ligue contre le Cancer – Team “Cell Cycle and Development,” Centre National de la Recherche Scientifique – UMR7592, Institut Jacques Monod/University of Paris, Paris, France
| |
Collapse
|
41
|
Fabig G, Kiewisz R, Lindow N, Powers JA, Cota V, Quintanilla LJ, Brugués J, Prohaska S, Chu DS, Müller-Reichert T. Male meiotic spindle features that efficiently segregate paired and lagging chromosomes. eLife 2020; 9:50988. [PMID: 32149606 PMCID: PMC7101234 DOI: 10.7554/elife.50988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/08/2020] [Indexed: 01/25/2023] Open
Abstract
Chromosome segregation during male meiosis is tailored to rapidly generate multitudes of sperm. Little is known about mechanisms that efficiently partition chromosomes to produce sperm. Using live imaging and tomographic reconstructions of spermatocyte meiotic spindles in Caenorhabditis elegans, we find the lagging X chromosome, a distinctive feature of anaphase I in C. elegans males, is due to lack of chromosome pairing. The unpaired chromosome remains tethered to centrosomes by lengthening kinetochore microtubules, which are under tension, suggesting that a ‘tug of war’ reliably resolves lagging. We find spermatocytes exhibit simultaneous pole-to-chromosome shortening (anaphase A) and pole-to-pole elongation (anaphase B). Electron tomography unexpectedly revealed spermatocyte anaphase A does not stem solely from kinetochore microtubule shortening. Instead, movement of autosomes is largely driven by distance change between chromosomes, microtubules, and centrosomes upon tension release during anaphase. Overall, we define novel features that segregate both lagging and paired chromosomes for optimal sperm production.
Collapse
Affiliation(s)
- Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - James A Powers
- Light Microscopy Imaging Center, Indiana University, Bloomington, United States
| | - Vanessa Cota
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Luis J Quintanilla
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Centre for Systems Biology Dresden, Dresden, Germany
| | | | - Diana S Chu
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
42
|
Torisawa T, Kimura A. The Generation of Dynein Networks by Multi-Layered Regulation and Their Implication in Cell Division. Front Cell Dev Biol 2020; 8:22. [PMID: 32083077 PMCID: PMC7004958 DOI: 10.3389/fcell.2020.00022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic dynein-1 (hereafter referred to as dynein) is a major microtubule-based motor critical for cell division. Dynein is essential for the formation and positioning of the mitotic spindle as well as the transport of various cargos in the cell. A striking feature of dynein is that, despite having a wide variety of functions, the catalytic subunit is coded in a single gene. To perform various cellular activities, there seem to be different types of dynein that share a common catalytic subunit. In this review, we will refer to the different kinds of dynein as “dyneins.” This review attempts to classify the mechanisms underlying the emergence of multiple dyneins into four layers. Inside a cell, multiple dyneins generated through the multi-layered regulations interact with each other to form a network of dyneins. These dynein networks may be responsible for the accurate regulation of cellular activities, including cell division. How these networks function inside a cell, with a focus on the early embryogenesis of Caenorhabditis elegans embryos, is discussed, as well as future directions for the integration of our understanding of molecular layering to understand the totality of dynein’s function in living cells.
Collapse
Affiliation(s)
- Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
43
|
Abstract
Using neXtProt release 2019-01-11, we manually curated a list of 1837 functionally uncharacterized human proteins. Using OrthoList 2, we found that 270 of them have homologues in Caenorhabditis elegans, including 60 with a one-to-one orthology relationship. According to annotations extracted from WormBase, the vast majority of these 60 worm genes have RNAi experimental data or mutant alleles, but manual inspection shows that only 15% have phenotypes that could be interpreted in terms of a specific function. One third of the worm orthologs have protein-protein interaction data, and two of these interactions are conserved in humans. The combination of phenotypic, protein-protein interaction, and gene expression data provides functional hypotheses for 8 uncharacterized human proteins. Experimental validation in human or orthologs is necessary before they can be considered for annotation.
Collapse
Affiliation(s)
- Paula Duek
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| | - Lydie Lane
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine , University of Geneva, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| |
Collapse
|
44
|
Bergwell M, Smith A, Lakin H, Slay R, Iyer J. Generation of sas-6::ha by CRISPR/Cas9 editing. MICROPUBLICATION BIOLOGY 2019; 2019:10.17912/micropub.biology.000141. [PMID: 32550418 PMCID: PMC7252276 DOI: 10.17912/micropub.biology.000141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Mary Bergwell
- University of Tulsa, 800 S. Tucker Dr, Tulsa, OK- 74104
| | - Amy Smith
- University of Tulsa, 800 S. Tucker Dr, Tulsa, OK- 74104
| | - Holly Lakin
- University of Tulsa, 800 S. Tucker Dr, Tulsa, OK- 74104
| | - Rebecca Slay
- University of Tulsa, 800 S. Tucker Dr, Tulsa, OK- 74104
| | - Jyoti Iyer
- University of Tulsa, 800 S. Tucker Dr, Tulsa, OK- 74104,
Correspondence to: Jyoti Iyer ()
| |
Collapse
|