1
|
Man B, Kim E, Vadlakonda A, Stern DL, Crown KN. Analysis of meiotic recombination in Drosophila simulans shows no evidence of an interchromosomal effect. Genetics 2024; 227:iyae084. [PMID: 38762892 PMCID: PMC11304986 DOI: 10.1093/genetics/iyae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/09/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Chromosome inversions are of unique importance in the evolution of genomes and species because when heterozygous with a standard arrangement chromosome, they suppress meiotic crossovers within the inversion. In Drosophila species, heterozygous inversions also cause the interchromosomal effect, whereby the presence of a heterozygous inversion induces a dramatic increase in crossover frequencies in the remainder of the genome within a single meiosis. To date, the interchromosomal effect has been studied exclusively in species that also have high frequencies of inversions in wild populations. We took advantage of a recently developed approach for generating inversions in Drosophila simulans, a species that does not have inversions in wild populations, to ask if there is an interchromosomal effect. We used the existing chromosome 3R balancer and generated a new chromosome 2L balancer to assay for the interchromosomal effect genetically and cytologically. We found no evidence of an interchromosomal effect in D. simulans. To gain insights into the underlying mechanistic reasons, we qualitatively analyzed the relationship between meiotic double-stranded break (DSB) formation and synaptonemal complex (SC) assembly. We found that the SC is assembled prior to DSB formation as in D. melanogaster; however, we show that the SC is assembled prior to localization of the oocyte determination factor Orb, whereas in D. melanogaster, SC formation does not begin until the Orb is localized. Together, our data show no evidence that heterozygous inversions in D. simulans induce an interchromosomal effect and that there are differences in the developmental programming of the early stages of meiosis.
Collapse
Affiliation(s)
- Bowen Man
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elizabeth Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Alekhya Vadlakonda
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - K Nicole Crown
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Berdan EL, Aubier TG, Cozzolino S, Faria R, Feder JL, Giménez MD, Joron M, Searle JB, Mérot C. Structural Variants and Speciation: Multiple Processes at Play. Cold Spring Harb Perspect Biol 2024; 16:a041446. [PMID: 38052499 PMCID: PMC10910405 DOI: 10.1101/cshperspect.a041446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Research on the genomic architecture of speciation has increasingly revealed the importance of structural variants (SVs) that affect the presence, abundance, position, and/or direction of a nucleotide sequence. SVs include large chromosomal rearrangements such as fusion/fissions and inversions and translocations, as well as smaller variants such as duplications, insertions, and deletions (CNVs). Although we have ample evidence that SVs play a key role in speciation, the underlying mechanisms differ depending on the type and length of the SV, as well as the ecological, demographic, and historical context. We review predictions and empirical evidence for classic processes such as underdominance due to meiotic aberrations and the coupling effect of recombination suppression before exploring how recent sequencing methodologies illuminate the prevalence and diversity of SVs. We discuss specific properties of SVs and their impact throughout the genome, highlighting that multiple processes are at play, and possibly interacting, in the relationship between SVs and speciation.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, Gothenburg University, Gothenburg 40530, Sweden
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas G Aubier
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italia
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mabel D Giménez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Genética Humana de Misiones (IGeHM), Parque de la Salud de la Provincia de Misiones "Dr. Ramón Madariaga," N3300KAZ Posadas, Misiones, Argentina
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Misiones, Argentina
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - Claire Mérot
- CNRS, UMR 6553 Ecobio, OSUR, Université de Rennes, 35000 Rennes, France
| |
Collapse
|
3
|
Yamazaki A, Kuroda T, Kawasaki N, Kato K, Shimojima Yamamoto K, Iwasa T, Kuwahara A, Taniguchi Y, Takeshita T, Kita Y, Mikami M, Irahara M, Yamamoto T. Preimplantation genetic testing using comprehensive genomic copy number analysis is beneficial for balanced translocation carriers. J Hum Genet 2024; 69:41-45. [PMID: 37872345 DOI: 10.1038/s10038-023-01202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Balanced chromosomal translocation is one of chromosomal variations. Carriers of balanced chromosomal translocations have an increased risk of spontaneous miscarriage. To avoid the risk, preimplantation genetic testing (PGT) using comprehensive genomic copy number analysis has been developed. This study aimed to verify whether and how embryos from couples in which one partner is a balanced translocation carrier have a higher ratio of chromosomal abnormalities. A total of 894 biopsied trophectoderms (TEs) were obtained from 130 couples in which one partner was a balanced translocation carrier (Robertsonian translocation, reciprocal translocation, or intrachromosomal inversion) and grouped as PGT-SR. Conversely, 3269 TEs from 697 couples who experienced recurrent implantation failure or recurrent pregnancy loss were included in the PGT-A group. The transferable blastocyst ratio was significantly lower in the PGT-SR group, even when bias related to the sample number and patient age was corrected. Subgroup analysis of the PGT-SR group revealed that the transferable blastocyst ratio was higher in the Robertsonian translocation group. Because the PGT-SR group had a higher proportion of untransferable embryos than the PGT-A group, PGT using comprehensive genomic copy number analysis was more beneficial for balanced translocation carriers than for infertility patients without chromosomal translocations. The frequencies of de novo aneuploidies were further analyzed, and the frequency in the PGT-SR group was lower than that in the PGT-A group. Therefore, we could not confirm the existence of interchromosomal effects in this study.
Collapse
Affiliation(s)
- Aya Yamazaki
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | | | | | | | - Keiko Shimojima Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-0042, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-0042, Japan
- Clinic Cosmos, Kochi, 780-0072, Japan
| | - Yuka Taniguchi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-0042, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical University, Tokyo, 113-8602, Japan
- Takeshita Ladies Clinic, Tokyo, 160-0017, Japan
| | - Yosuke Kita
- Department of Psychology, Faculty of Letters, Keio University, Tokyo, 108-8345, Japan
| | - Mikio Mikami
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Kanagawa, 259-1143, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-0042, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
| |
Collapse
|
4
|
Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE, Mérot C, Durmaz Mitchell E, Pascual M, Peichel CL, Rafajlović M, Westram AM, Schaeffer SW, Johannesson K, Flatt T. How chromosomal inversions reorient the evolutionary process. J Evol Biol 2023; 36:1761-1782. [PMID: 37942504 DOI: 10.1111/jeb.14242] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.
Collapse
Affiliation(s)
- Emma L Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas H Barton
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Roger Butlin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Ecology and Evolutionary Biology, School of Bioscience, The University of Sheffield, Sheffield, UK
| | - Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rui Faria
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Inês Fragata
- CHANGE - Global Change and Sustainability Institute/Animal Biology Department, cE3c - Center for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum of Vienna, Vienna, Austria
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Claire Mérot
- UMR 6553 Ecobio, Université de Rennes, OSUR, CNRS, Rennes, France
| | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anja M Westram
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Stephen W Schaeffer
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kerstin Johannesson
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Dang T, Xie P, Zhang Z, Hu L, Tang Y, Tan Y, Luo K, Gong F, Lu G, Lin G. The effect of carrier characteristics and female age on preimplantation genetic testing results of blastocysts from Robertsonian translocation carriers. J Assist Reprod Genet 2023; 40:1995-2002. [PMID: 37338749 PMCID: PMC10371959 DOI: 10.1007/s10815-023-02853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE To analyze factors affecting segregation and ploidy results from Robertsonian carriers, and determine chromosomes involved impact chromosome stability during meiosis and mitosis. METHODS This retrospective study include 928 oocyte retrieval cycles from 763 couples with Robertsonian translocations undergoing preimplantation genetic testing for structural rearrangements (PGT-SR) using next-generation sequencing (NGS) between December 2012 and June 2020.The segregation patterns of the trivalent of 3423 blastocysts were analyzed according to the carrier's sex and age. A total of 1492 couples who received preimplantation genetic testing for aneuploidy (PGT-A) were included as the control group and matched according to maternal age and testing time stage. RESULTS A total of 1728 (50.5%) normal/balanced embryos were identified from 3423 embryos diagnosed. The rate of alternate segregation in male Robertsonian translocation carriers was significantly higher than that in female carriers (82.3% vs. 60.0%, P < 0.001). However, the segregation ratio exhibited no difference between young and older carriers. Further, increasing maternal age decreased the proportion of transferable embryo cycle in both female and male carriers. And the ratio of chromosome mosaic from the Robertsonian translocation carrier group was significantly higher than that in the PGT-A control group (1.2% vs. 0.5%, P < 0.01). CONCLUSIONS The meiotic segregation modes were affected by the carrier sex and were independent of the carrier's age. Advanced maternal age decreased the probability of obtaining a normal/balanced embryo. In additional, the Robertsonian translocation chromosome could increase the possibility of chromosome mosaicism during mitosis in blastocysts.
Collapse
Affiliation(s)
- Tongyuan Dang
- Hospital of Hunan Guangxiu, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Pingyuan Xie
- Hospital of Hunan Guangxiu, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Zhiqi Zhang
- Hospital of Hunan Guangxiu, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Liang Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Yi Tang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Yueqiu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Keli Luo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, China.
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China.
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.
| |
Collapse
|
6
|
Hanlon SL, Hawley RS. B chromosomes reveal a female meiotic drive suppression system in Drosophila melanogaster. Curr Biol 2023:S0960-9822(23)00476-1. [PMID: 37146608 DOI: 10.1016/j.cub.2023.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/08/2023] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
Selfish genetic elements use a myriad of mechanisms to drive their inheritance and ensure their survival into the next generation, often at a fitness cost to its host.1,2 Although the catalog of selfish genetic elements is rapidly growing, our understanding of host drive suppression systems that counteract self-seeking behavior is lacking. Here, we demonstrate that the biased transmission of the non-essential, non-driving B chromosomes in Drosophila melanogaster can be achieved in a specific genetic background. Combining a null mutant of matrimony, a gene that encodes a female-specific meiotic regulator of Polo kinase,3,4 with the TM3 balancer chromosome creates a driving genotype that is permissive for the biased transmission of the B chromosomes. This drive is female-specific, and both genetic components are necessary, but not individually sufficient, for permitting a strong drive of the B chromosomes. Examination of metaphase I oocytes reveals that B chromosome localization within the DNA mass is mostly abnormal when drive is the strongest, indicating a failure of the mechanism(s) responsible for the proper distribution of B chromosomes. We propose that some proteins important for proper chromosome segregation during meiosis, like Matrimony, may have an essential role as part of a meiotic drive suppression system that modulates chromosome segregation to prevent genetic elements from exploiting the inherent asymmetry of female meiosis.
Collapse
Affiliation(s)
- Stacey L Hanlon
- Genetics and Genomics, Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
7
|
Fozard JA, Morgan C, Howard M. Coarsening dynamics can explain meiotic crossover patterning in both the presence and absence of the synaptonemal complex. eLife 2023; 12:e79408. [PMID: 36847348 PMCID: PMC10036115 DOI: 10.7554/elife.79408] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
The shuffling of genetic material facilitated by meiotic crossovers is a critical driver of genetic variation. Therefore, the number and positions of crossover events must be carefully controlled. In Arabidopsis, an obligate crossover and repression of nearby crossovers on each chromosome pair are abolished in mutants that lack the synaptonemal complex (SC), a conserved protein scaffold. We use mathematical modelling and quantitative super-resolution microscopy to explore and mechanistically explain meiotic crossover pattering in Arabidopsis lines with full, incomplete, or abolished synapsis. For zyp1 mutants, which lack an SC, we develop a coarsening model in which crossover precursors globally compete for a limited pool of the pro-crossover factor HEI10, with dynamic HEI10 exchange mediated through the nucleoplasm. We demonstrate that this model is capable of quantitatively reproducing and predicting zyp1 experimental crossover patterning and HEI10 foci intensity data. Additionally, we find that a model combining both SC- and nucleoplasm-mediated coarsening can explain crossover patterning in wild-type Arabidopsis and in pch2 mutants, which display partial synapsis. Together, our results reveal that regulation of crossover patterning in wild-type Arabidopsis and SC-defective mutants likely acts through the same underlying coarsening mechanism, differing only in the spatial compartments through which the pro-crossover factor diffuses.
Collapse
Affiliation(s)
- John A Fozard
- Computational and Systems Biology, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Chris Morgan
- Cell and Developmental Biology, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
8
|
Evidence for nonhomologous meiotic coorientation in man. J Hum Genet 2023; 68:333-337. [PMID: 36694000 DOI: 10.1038/s10038-023-01123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Nonhomologous meiotic co-orientation (NMC) was postulated for humans a half of century ago to explain the association between the presence of a rearranged chromosome(s) and the occurrence of aneuploidy for an unrelated chromosome ("interchromosomal effect", ICE). However subsequent studies did not support meiotic nature of ICE phenomenon. At the same time, NMC model can be fruitful for solving a number of problems regarding the etiology of human aneuploidy. Published and own data on the offspring of 322 parental carrier of chromosomal abnormality were analyzed according to the carrier's gender. In families with transmission of der(21;21), among patients with maternally derived trisomy 21 (T21), there is a typical male-biased sex ratio (SR), with 33 males/28 females. Among patients with paternally derived T21, five-fold male prevalence is observed (16 males/3 females), p = 0.0373. In families with maternal balanced non-contributing rearrangement (Rea), SR was male-biased among T21 patients, both those inherited (42 males/30 females) and not inherited the Rea (17 males/11 females). However, in families with paternal balanced Rea, there is an impressive difference between T21 offspring with transmitted paternal Rea and those not inherited paternal Rea, 49 males/21 females vs 4 males/15 females, p = 0.0003. A female predominance is also observed among non-trisomic offspring of paternal carriers of gonadal mosaicism for T21 (2 males/12 females), but not in non-trisomic offspring of maternal carriers (19 males/16 females), p = 0.0253. Unusual sex ratios in offspring of male carriers are considered as the result of NMC of a chromosome abnormality with the X chromosome operating in spermatogenesis.
Collapse
|
9
|
Zhu S, Zhu Y, Zhang F, Wu J, Chen Y, Sun Y, Fu J, Wu J, Xiao M, Zhang S, Zhou J, Lei C, Jiang F. FISH analysis of numerical chromosomal abnormalities in the sperm of robertsonian translocation der(13; 14)(q10;q10) carriers. Front Genet 2022; 13:1010568. [PMID: 36238152 PMCID: PMC9551382 DOI: 10.3389/fgene.2022.1010568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Fluorescence in situ hybridization analysis of numerical chromosomal abnormalities in the sperm of Robertsonian translocation der (13;14) (q10;q10) carriers has focused on a limited number of chromosomes mainly on chromosome 13, 18, 21, X, and Y. Here, we aimed to expand the analysis to all chromosomes by increasing the number of probes analyzed in fluorescence in situ hybridization. The incidence of numerical abnormalities of all chromosomes (1–22, X, and Y) was determined in sperm from 10 carriers of the Robertsonian translocation der(13;14)(q10;q10) and 10 normozoospermic males to fully assess the effect of translocation-derived chromosome on the segregation of all chromosomes during meiosis. Numerical abnormalities of the two translocated chromosomes were frequently detected in the sperm of der (13;14) translocation carriers, with an average frequency of 14.55% ± 6.00% for chromosome 13 and 13.27% ± 4.14% for chromosome 14. Numerical abnormalities of nontranslocated chromosomes, with an average frequency of 1.77% ± 0.62% (range, 1.16%–3.73%), was lower than that of translocated chromosome. However, the cumulative numerical abnormality of the 22 nontranslocated chromosomes was comparable to that of the two translocated chromosomes. Significantly increased numerical abnormalities in der(13;14) translocation carriers compared with those in normozoospermic males indicates the presence of translocation-derived chromosome disturbances, with translocated chromosomes being most affected; nontranslocated chromosomes were also affected, but to a lesser extent due to a mild interchromosomal effect.
Collapse
Affiliation(s)
- Saijuan Zhu
- Laboratory of Genetics, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Yong Zhu
- Human Sperm Bank, Fudan University, Shanghai, China
| | - Feng Zhang
- Human Sperm Bank, Fudan University, Shanghai, China
| | - Junping Wu
- Laboratory of Genetics, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Ying Chen
- Laboratory of Andrology, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Yijuan Sun
- Laboratory of Embryology, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Jing Fu
- Laboratory of Embryology, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Jiangnan Wu
- Department of Clinical Epidemiology, Clinical Research Unit, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Min Xiao
- Laboratory of Genetics, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Shuo Zhang
- Laboratory of Genetics, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Jing Zhou
- Laboratory of Genetics, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
| | - Caixia Lei
- Laboratory of Genetics, Shanghai Ji Ai Genetics and IVF Institute, Shanghai, China
- *Correspondence: Caixia Lei, ; Feng Jiang,
| | - Feng Jiang
- Human Sperm Bank, Fudan University, Shanghai, China
- *Correspondence: Caixia Lei, ; Feng Jiang,
| |
Collapse
|
10
|
Fan J, Zhang X, Chen Y, Zhang J, Zhang L, Bi X, Wang J, Huang X, Yan M, Wu X. Exploration of the interchromosomal effects in preimplantation genetic testing for structural rearrangements based on next-generation sequencing. Mol Genet Genomic Med 2022; 10:e2017. [PMID: 35941827 PMCID: PMC9482390 DOI: 10.1002/mgg3.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/22/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND To investigate the interchromosomal effect (ICE) in chromosome translocation carriers. METHODS Data on preimplantation genetic testing aneuploidy and structural rearrangements (translocation) were retrospectively collected and classified into a reciprocal translocation group, a Robertsonian translocation group and a control group. According to the carrier's gender and age, all cases underwent further subgroup difference analysis of de novo abnormal embryo rates and the number of chromosomes involved in de novo abnormal embryos. RESULTS Among the 283 couples who participated in this study, 1076 blastocysts from 352 cycles were collected, and 246 de novo abnormal embryos were included. There was a significant difference in the rate of de novo abnormal embryos among the three groups (p < .05) but no significant difference in the number of de novo abnormal chromosomes in the abnormal embryos (p > .05). Gender and age (classified by 35 years old) had no effect on the de novo abnormal embryo ratios among the translocation carriers (p > .05). However, the de novo abnormal ratio increased with age. The embryo constitution reflected no significant difference between the translocation groups (p > .05). CONCLUSION The ICE was detected for the translocation carriers. The de novo abnormal embryo ratio increased with age. Gender had no effect on the de novo abnormal embryo ratio. Translocation status played a more important role than age and gender.
Collapse
Affiliation(s)
- Junmei Fan
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, China
| | - Xueluo Zhang
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, China
| | - Yanhua Chen
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, China
| | - Junkun Zhang
- Department of Medical College, Datong University of Shanxi, Datong, China
| | - Lei Zhang
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, China
| | - Xingyu Bi
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, China
| | - Jinbao Wang
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, China
| | - Xiang Huang
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, China
| | - Meiqin Yan
- Department of Science and Education Division, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, China
| | - Xueqing Wu
- Department of Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Ogur C, Kahraman S, Griffin DK, Cinar Yapan C, Tufekci MA, Cetinkaya M, Temel SG, Yilmaz A. PGT for structural chromosomal rearrangements in 300 couples reveals specific risk factors but an interchromosomal effect is unlikely. Reprod Biomed Online 2022; 46:713-727. [PMID: 36803887 DOI: 10.1016/j.rbmo.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
RESEARCH QUESTION What factors affect the proportion of chromosomally balanced embryos in structural rearrangement carriers? Is there any evidence for an interchromosomal effect (ICE)? DESIGN Preimplantation genetic testing outcomes of 300 couples (198 reciprocal, 60 Robertsonian, 31 inversion and 11 complex structural rearrangement carriers) were assessed retrospectively. Blastocysts were analysed either by array-comparative genomic hybridization or next-generation sequencing techniques. ICE was investigated using a matched control group and sophisticated statistical measurement of effect size (φ). RESULTS 300 couples underwent 443 cycles; 1835 embryos were analysed and 23.8% were diagnosed as both normal/balanced and euploid. The overall cumulative clinical pregnancy and live birth rates were 69.5% and 55.8%, respectively. Complex translocations and female age (≥35) were found to be risk factors associated with lower chance of having a transferable embryo (P < 0.001). Based on analysis of 5237 embryos, the cumulative de-novo aneuploidy rate was lower in carriers compared to controls (45.6% versus 53.4%, P < 0.001) but this was a 'negligible' association (φ < 0.1). A further assessment of 117,033 chromosomal pairs revealed a higher individual chromosome error rate in embryos of carriers compared to controls (5.3% versus 4.9%), which was also a 'negligible' association (φ < 0.1), despite a P-value of 0.007. CONCLUSIONS These findings suggest that rearrangement type, female age and sex of the carrier have significant impacts on the proportion of transferable embryos. Careful examination of structural rearrangement carriers and controls indicated little or no evidence for an ICE. This study helps to provide a statistical model for investigating ICE and an improved personalized reproductive genetics assessment for structural rearrangement carriers.
Collapse
Affiliation(s)
- Cagri Ogur
- Yildiz Technical University, Department of Bioengineering, Istanbul, Turkey; Igenomix Avrupa Laboratories, Istanbul, Turkey.
| | - Semra Kahraman
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Darren Karl Griffin
- School of Biosciences, Centre for Interdisciplinary Studies of Reproduction, University of Kent, Canterbury CT2 7NJ, UK
| | - Cigdem Cinar Yapan
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Mehmet Ali Tufekci
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Murat Cetinkaya
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Sehime Gulsun Temel
- Uludag University, Faculty of Medicine, Department of Medical Genetics, Bursa, Turkey.
| | - Alper Yilmaz
- Yildiz Technical University, Department of Bioengineering, Istanbul, Turkey.
| |
Collapse
|
12
|
Yuan P, Zheng L, Ou S, Zhao H, Li R, Luo H, Tan X, Zhang Q, Wang W. Evaluation of chromosomal abnormalities from preimplantation genetic testing to the reproductive outcomes: a comparison between three different structural rearrangements based on next-generation sequencing. J Assist Reprod Genet 2021; 38:709-718. [PMID: 33409753 DOI: 10.1007/s10815-020-02053-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE The aim of this study was to determine factors affecting the chromosome imbalance in blastocysts and reproductive outcomes by a comparison between the reciprocal translocation (REC), inversion (INV), and Robertsonian translocation (ROB) carriers. METHODS Couples with one partner carrying translocation or inversion underwent preimplantation genetic testing for chromosomal structural rearrangement (PGT-SR) cycles, including 215 PGT-SR cycles performed in subsequent 164 frozen-thawed embryo transfer cycles and 61 prenatal diagnoses of fetuses and 59 normal live birth babies. A total of 899 samples were processed by whole-genome amplification followed by next-generation sequencing (NGS). Karyotype and chromosome microarray analyses were used to confirm the PGT results from the amniotic fluid samples. RESULTS A total of 843 blastocysts from 124 REC, 21 INV, and 35 ROB carriers were diagnosed by PGT-SR. The percentage of unbalanced blastocysts was significantly higher in REC than in INV and ROB carriers (64.31% vs. 28.05% vs. 37.02%). Stratification analysis of female carrier age and gonadotropin doses showed no significant increase in unbalanced chromosomal abnormalities in the three groups. Also, the different breakpoints in chromosomal arms did not affect the rate of unbalanced chromosomes in the embryos. Logistic regression indicated blastocyst quality as a statistically significant risk factor associated with unbalanced chromosomal abnormalities from translocation carriers (P < 0.001). The source of abnormalities in the three groups showed significant differences such that the abnormalities in REC mostly originated from parental translocation but the abnormalities in INV were mainly de novo variations. 164 blastocysts were transferred, and there were no significant differences in the clinical pregnancy rate and miscarriage rate. A total of 59 healthy babies were born, and there were no significant differences in the gender ratio and birth height, except the birth weight of boys between INV and ROB groups (P = 0.02). The results of amniocentesis revealed that more fetuses have normal chromosomal karyotypes than balanced carriers, particularly in the REC group. CONCLUSIONS Reciprocal translocation carriers have more risk of unbalanced rearrangement, but embryonic chromosome abnormalities of inversion carriers come mainly from de novo variations. This is the first study specifically comparing three different PGT-SRs using the NGS method and evaluating their reproductive outcomes. Our findings will provide the reciprocal translocation, inversion, and Robertsonian translocation carrier couples with more accurate genetic counseling on the reproductive risk of chromosomal imbalance.
Collapse
Affiliation(s)
- Ping Yuan
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Lingyan Zheng
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Songbang Ou
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Haijing Zhao
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Ruiqi Li
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - HongJiao Luo
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Xin Tan
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Qingxue Zhang
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Wenjun Wang
- IVF Center, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|