1
|
Liu S, Sun R, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Zhu L, Feng H, Zhu H. Genome-Wide Analysis of OPR Family Genes in Cotton Identified a Role for GhOPR9 in Verticillium dahliae Resistance. Genes (Basel) 2020; 11:E1134. [PMID: 32992523 PMCID: PMC7600627 DOI: 10.3390/genes11101134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/12/2023] Open
Abstract
The 12-oxo-phytodienoic acid reductases (OPRs) have been proven to play a major role in plant development and growth. Although the classification and functions of OPRs have been well understood in Arabidopsis, tomato, rice, maize, and wheat, the information of OPR genes in cotton genome and their responses to biotic and abiotic stresses have not been reported. In this study, we found 10 and 9 OPR genes in Gossypium hirsutum and Gossypium barbadense, respectively. They were classified into three groups, based on the similar gene structure and conserved protein motifs. These OPR genes just located on chromosome 01, chromosome 05, and chromosome 06. In addition, the whole genome duplication (WGD) or segmental duplication events contributed to the evolution of the OPR gene family. The analyses of cis-acting regulatory elements of GhOPRs showed that the functions of OPR genes in cotton might be related to growth, development, hormone, and stresses. Expression patterns showed that GhOPRs were upregulated under salt treatment and repressed by polyethylene glycol 6000 (PEG6000). The expression patterns of GhOPRs were different in leaf, root, and stem under V. dahliae infection. GhOPR9 showed a higher expression level than other OPR genes in cotton root. The virus-induced gene silencing (VIGS) analysis suggested that knockdown of GhOPR9 could increase the susceptibility of cotton to V. dahliae infection. Furthermore, GhOPR9 also modulated the expressions of jasmonic acid (JA) pathway-regulated genes under the V. dahliae infection. Overall, our results provided the evolution and potential functions of the OPR genes in cotton. These findings suggested that GhOPR9 might play an important role in cotton resistance to V. dahliae.
Collapse
Affiliation(s)
- Shichao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ruibin Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
| | - Xiaojian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
| | - Longfu Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
2
|
Caudy AA, Hanchard JA, Hsieh A, Shaan S, Rosebrock AP. Functional genetic discovery of enzymes using full-scan mass spectrometry metabolomics. Biochem Cell Biol 2019; 97:73-84. [DOI: 10.1139/bcb-2018-0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our understanding of metabolic networks is incomplete, and new enzymatic activities await discovery in well-studied organisms. Mass spectrometric measurement of cellular metabolites reveals compounds inside cells that are unexplained by current maps of metabolic reactions, and existing computational models are unable to account for all activities observed within cells. Additional large-scale genetic and biochemical approaches are required to elucidate metabolic gene function. We have used full-scan mass spectrometry metabolomics of polar small molecules to examine deletion mutants of candidate enzymes in the model yeast Saccharomyces cerevisiae. We report the identification of 25 genes whose deletion results in focal metabolic changes consistent with loss of enzymatic activity and describe the informatic approaches used to enrich for candidate enzymes from uncharacterized open reading frames. Triumphs and pitfalls of metabolic phenotyping screens are discussed, including estimates of the frequency of uncharacterized eukaryotic genes that affect metabolism and key issues to consider when searching for new enzymatic functions in other organisms.
Collapse
Affiliation(s)
- Amy A. Caudy
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Julia A. Hanchard
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Alan Hsieh
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Saravannan Shaan
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Adam P. Rosebrock
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
3
|
Concurrent Duplication of Drosophila Cid and Cenp-C Genes Resulted in Accelerated Evolution and Male Germline-Biased Expression of the New Copies. J Mol Evol 2018; 86:353-364. [DOI: 10.1007/s00239-018-9851-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 06/15/2018] [Indexed: 11/26/2022]
|
4
|
Mittal S, Banduni P, Mallikarjuna MG, Rao AR, Jain PA, Dash PK, Thirunavukkarasu N. Structural, Functional, and Evolutionary Characterization of Major Drought Transcription Factors Families in Maize. Front Chem 2018; 6:177. [PMID: 29876347 PMCID: PMC5974147 DOI: 10.3389/fchem.2018.00177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/03/2018] [Indexed: 01/22/2023] Open
Abstract
Drought is one of the major threats to the maize yield especially in subtropical production systems. Understanding the genes and regulatory mechanisms of drought tolerance is important to sustain the yield. Transcription factors (TFs) play a major role in gene regulation under drought stress. In the present study, a set of 15 major TF families comprising 1,436 genes was structurally and functionally characterized. The functional annotation indicated that the genes were involved in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed for individual TF and combined TF families. Phylogenetic analysis clustered the genes into specific and mixed groups. Gene structure analysis revealed that more number of genes were intron-rich as compared to intron-less. Drought-responsive cis-regulatory elements such as ABREA, ABREB, DRE1, and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. Protein-protein interaction network of 269 drought-responsive genes belonging to different TFs has been provided. The information generated on structural and functional characteristics, expression, and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to breed drought-tolerant genotypes in maize.
Collapse
Affiliation(s)
- Shikha Mittal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pooja Banduni
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Atmakuri R Rao
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Prashant A Jain
- Department of Computational Biology & Bioinformatics, J.I.B.B., Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India
| | - Prasanta K Dash
- National Research Centre on Plant Biotechnology, New Delhi, India
| | | |
Collapse
|
5
|
Muhammad I, Jing XQ, Shalmani A, Ali M, Yi S, Gan PF, Li WQ, Liu WT, Chen KM. Comparative in Silico Analysis of Ferric Reduction Oxidase (FRO) Genes Expression Patterns in Response to Abiotic Stresses, Metal and Hormone Applications. Molecules 2018; 23:molecules23051163. [PMID: 29757203 PMCID: PMC6099960 DOI: 10.3390/molecules23051163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023] Open
Abstract
The ferric reduction oxidase (FRO) gene family is involved in various biological processes widely found in plants and may play an essential role in metal homeostasis, tolerance and intricate signaling networks in response to a number of abiotic stresses. Our study describes the identification, characterization and evolutionary relationships of FRO genes families. Here, total 50 FRO genes in Plantae and 15 ‘FRO like’ genes in non-Plantae were retrieved from 16 different species. The entire FRO genes have been divided into seven clades according to close similarity in biological and functional behavior. Three conserved domains were common in FRO genes while in two FROs sub genome have an extra NADPH-Ox domain, separating the function of plant FROs. OsFRO1 and OsFRO7 genes were expressed constitutively in rice plant. Real-time RT-PCR analysis demonstrated that the expression of OsFRO1 was high in flag leaf, and OsFRO7 gene expression was maximum in leaf blade and flag leaf. Both genes showed vigorous expressions level in response to different abiotic and hormones treatments. Moreover, the expression of both genes was also substantial under heavy metal stresses. OsFRO1 gene expression was triggered following 6 h under Zn, Pb, Co and Ni treatments, whereas OsFRO7 gene expression under Fe, Pb and Ni after 12 h, Zn and Cr after 6 h, and Mn and Co after 3 h treatments. These findings suggest the possible involvement of both the genes under abiotic and metal stress and the regulation of phytohormones. Therefore, our current work may provide the foundation for further functional characterization of rice FRO genes family.
Collapse
Affiliation(s)
- Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Shi Yi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Peng-Fei Gan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
6
|
Pang X, Wei Y, Cheng Y, Pan L, Ye Q, Wang R, Ruan M, Zhou G, Yao Z, Li Z, Yang Y, Liu W, Wan H. The Tryptophan Decarboxylase in Solanum lycopersicum. Molecules 2018; 23:E998. [PMID: 29695104 PMCID: PMC6099541 DOI: 10.3390/molecules23050998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 01/25/2023] Open
Abstract
Melatonin plays an important role in plant growth, development, and environmental stress. In this study, a systematic analysis of tomato tryptophan decarboxylase (SlTrpDC), which is the first enzyme of melatonin biosynthesis, was conducted by integrating structural features, phylogenetic relationships, an exon/intron feature, and a divergent expression profile. The results determined that the tomato genome encoded five members (SlTrpDC1-SlTrpDC5). The phylogenetic relationships indicated that gene expansion was proposed as the major mode of evolution of the TrpDC genes from the different plant algae species to the higher plants species. The analyses of the exon/intron configurations revealed that the intron loss events occurred during the structural evolution of the TrpDCs in plants. Additionally, the RNA-seq and qRT-PCR analysis revealed that the expression of the SlTrpDC3 was high in all of the tested tissues, while the SlTrpDC4 and SlTrpDC5 were not expressed. The expression patterns of the remaining two (SlTrpDC1 and SlTrpDC2) were tissue-specific, which indicated that these genes may play important roles within the different tissues. No expression difference was observed in the tomato plants in response to the biotic stresses. This study will expand the current knowledge of the roles of the TrpDC genes in tomato growth and development.
Collapse
Affiliation(s)
- Xin Pang
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China.
| | - Yanping Wei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yuan Cheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Luzhao Pan
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, China.
| | - Qingjing Ye
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Rongqing Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Meiying Ruan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Guozhi Zhou
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhuping Yao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhimiao Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yuejian Yang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Weicheng Liu
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou 325005, China.
| | - Hongjian Wan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
7
|
Chang YL, Li WY, Miao H, Yang SQ, Li R, Wang X, Li WQ, Chen KM. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants. Genome Biol Evol 2016; 8:791-810. [PMID: 26907500 PMCID: PMC4824067 DOI: 10.1093/gbe/evw035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants.
Collapse
Affiliation(s)
- Yan-Li Chang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Wen-Yan Li
- Guangdong Academy of Agricultural Sciences, Argo-Biological Gene Research Center, Guangzhou, Guangdong, P. R. China
| | - Hai Miao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Shuai-Qi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Ri Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
8
|
Saminathan T, Nimmakayala P, Manohar S, Malkaram S, Almeida A, Cantrell R, Tomason Y, Abburi L, Rahman MA, Vajja VG, Khachane A, Kumar B, Rajasimha HK, Levi A, Wehner T, Reddy UK. Differential gene expression and alternative splicing between diploid and tetraploid watermelon. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1369-85. [PMID: 25520388 PMCID: PMC4438448 DOI: 10.1093/jxb/eru486] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits.
Collapse
Affiliation(s)
- Thangasamy Saminathan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Sumanth Manohar
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Sridhar Malkaram
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Aldo Almeida
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Robert Cantrell
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Yan Tomason
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Lavanya Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Mohammad A Rahman
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Venkata G Vajja
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Amit Khachane
- Genome International Corporation, 8000 Excelsior Drive, Suite 202, Madison, WI 53717, USA
| | - Brajendra Kumar
- Genome International Corporation, 8000 Excelsior Drive, Suite 202, Madison, WI 53717, USA
| | - Harsha K Rajasimha
- Genome International Corporation, 8000 Excelsior Drive, Suite 202, Madison, WI 53717, USA
| | - Amnon Levi
- US Vegetable Laboratory, USDA-ARS, 2875 Savannah Highway, Charleston, SC 29414, USA
| | - Todd Wehner
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| |
Collapse
|
9
|
Wei K, Pan S. Maize protein phosphatase gene family: identification and molecular characterization. BMC Genomics 2014; 15:773. [PMID: 25199535 PMCID: PMC4169795 DOI: 10.1186/1471-2164-15-773] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein phosphatases (PPs) play critical roles in various cellular processes through the reversible protein phosphorylation that dictates many signal transduction pathways among organisms. Recently, PPs in Arabidopsis and rice have been identified, while the whole complement of PPs in maize is yet to be reported. RESULTS In this study, we have identified 159 PP-encoding genes in the maize genome. Phylogenetic analyses categorized the ZmPP gene family into 3 classes (PP2C, PTP, and PP2A) with considerable conservation among classes. Similar intron/exon structural patterns were observed in the same classes. Moreover, detailed gene structures and duplicative events were then researched. The expression profiles of ZmPPs under different developmental stages and abiotic stresses (including salt, drought, and cold) were analyzed using microarray and RNA-seq data. A total of 152 members were detected in 18 different tissues representing distinct stages of maize plant developments. Under salt stress, one gene was significantly up-expressed in seed root (SR) and one gene was down-expressed in primary root (PR) and crown root (CR), respectively. As for drought stress condition, 13 genes were found to be differentially expressed in leaf, out of which 10 were up-regulated and 3 exhibited down-regulation. Additionally, 13 up-regulated and 3 down-regulated genes were found in cold-tolerant line ETH-DH7. Furthermore, real-time PCR was used to confirm the expression patterns of ZmPPs. CONCLUSIONS Our results provide new insights into the phylogenetic relationships and characteristic functions of maize PPs and will be useful in studies aimed at revealing the global regulatory network in maize abiotic stress responses, thereby contributing to the maize molecular breeding with enhanced quality traits.
Collapse
Affiliation(s)
- Kaifa Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
| | | |
Collapse
|
10
|
Abstract
Background NAD(H) kinase (NADK) is the key enzyme that catalyzes de novo synthesis of NADP(H) from NAD(H) for NADP(H)-based metabolic pathways. In plants, NADKs form functional subfamilies. Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; however, the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood. Principal Findings We performed a comparative genomic analysis that identified 74 NADK gene homologs from 24 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots and eudicots. Phylogenetic and structural analysis classified these NADK genes into four well-conserved subfamilies with considerable variety in the domain organization and gene structure among subfamily members. In addition to the typical NAD_kinase domain, additional domains, such as adenylate kinase, dual-specificity phosphatase, and protein tyrosine phosphatase catalytic domains, were found in subfamily II. Interestingly, NADKs in subfamily III exhibited low sequence similarity (∼30%) in the kinase domain within the subfamily and with the other subfamilies. These observations suggest that gene fusion and exon shuffling may have occurred after gene duplication, leading to specific domain organization seen in subfamilies II and III, respectively. Further analysis of the exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures, during the process of structural evolution of NADK family genes. Finally, both available global microarray data analysis and qRT-RCR experiments revealed that the NADK genes in Arabidopsis and Oryza sativa show different expression patterns in different developmental stages and under several different abiotic/biotic stresses and hormone treatments, underscoring the functional diversity and functional divergence of the NADK family in plants. Conclusions These findings will facilitate further studies of the NADK family and provide valuable information for functional validation of this family in plants.
Collapse
|
11
|
Katju V. To the beat of a different drum: determinants implicated in the asymmetric sequence divergence of Caenorhabditis elegans paralogs. BMC Evol Biol 2013; 13:73. [PMID: 23530733 PMCID: PMC3637608 DOI: 10.1186/1471-2148-13-73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/20/2013] [Indexed: 12/18/2022] Open
Abstract
Background Gene duplicates often exhibit asymmetric rates of molecular evolution in their early evolutionary existence. This asymmetry in rates is thought to signify the maintenance of the ancestral function by one copy and the removal of functional constraint on the other copy, enabling it to embark on a novel evolutionary trajectory. Here I focused on a large population of evolutionarily young gene duplicates (KS ≤ 0.14) in the Caenorhabditis elegans genome in order to conduct the first combined analysis of four predictors (evolutionary age, chromosomal location, structural resemblance between duplicates, and duplication span) which may be implicated in the asymmetric sequence divergence of paralogs at the nucleotide and amino acid level. In addition, I investigate if either paralog is equally likely to embark on a trajectory of accelerated sequence evolution or whether the derived paralog is more likely to exhibit faster sequence evolution. Results Three predictors (evolutionary age of duplicates, chromosomal location and duplication span) serve as major determinants of sequence asymmetry between C. elegans paralogs. Paralogs diverge asymmetrically in sequence with increasing evolutionary age, the relocation of one copy to a different chromosome and attenuated duplication spans that likely fail to capture the entire ancestral repertoire of coding sequence and regulatory elements. Furthermore, for paralogs residing on the same chromosome, opposite transcriptional orientation and increased genomic distance do not increase sequence asymmetry between paralogs. For a subset of duplicate pairs wherein the ancestral versus derived paralog could be distinguished, the derived paralogs are more likely to evolve at accelerated rates. Conclusions This genome-wide study of evolutionarily young duplicates stemming primarily from DNA-mediated small-scale duplication events demonstrates that genomic relocation to a new chromosome has important consequences for asymmetric divergence of paralogs, akin to paralogs arising from RNA-mediated duplication events. Additionally, the duplication span is negatively correlated with sequence rate asymmetry among paralogs, suggesting that attenuated duplication spans stemming from incomplete duplication of the ORF and/or ancestral regulatory elements further accelerate sequence divergence between paralogs. Cumulatively, derived copies exhibit accelerated rates of sequence evolution suggesting that they are primed for a divergent evolutionary trajectory by changes in structure and genomic context at inception.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
12
|
Inferring the history of interchromosomal gene transposition in Drosophila using n-dimensional parsimony. Genetics 2011; 190:813-25. [PMID: 22095076 DOI: 10.1534/genetics.111.135947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Gene transposition puts a new gene copy in a novel genomic environment. Moreover, genes moving between the autosomes and the X chromosome experience change in several evolutionary parameters. Previous studies of gene transposition have not utilized the phylogenetic framework that becomes possible with the availability of whole genomes from multiple species. Here we used parsimonious reconstruction on the genomic distribution of gene families to analyze interchromosomal gene transposition in Drosophila. We identified 782 genes that have moved chromosomes within the phylogeny of 10 Drosophila species, including 87 gene families with multiple independent movements on different branches of the phylogeny. Using this large catalog of transposed genes, we detected accelerated sequence evolution in duplicated genes that transposed when compared to the parental copy at the original locus. We also observed a more refined picture of the biased movement of genes from the X chromosome to the autosomes. The bias of X-to-autosome movement was significantly stronger for RNA-based movements than for DNA-based movements, and among DNA-based movements there was an excess of genes moving onto the X chromosome as well. Genes involved in female-specific functions moved onto the X chromosome while genes with male-specific functions moved off the X. There was a significant overrepresentation of proteins involving chromosomal function among transposed genes, suggesting that genetic conflict between sexes and among chromosomes may be a driving force behind gene transposition in Drosophila.
Collapse
|
13
|
McCole RB, Loughran NB, Chahal M, Fernandes LP, Roberts RG, Fraternali F, O'Connell MJ, Oakey RJ. A case-by-case evolutionary analysis of four imprinted retrogenes. Evolution 2011; 65:1413-27. [PMID: 21166792 PMCID: PMC3107425 DOI: 10.1111/j.1558-5646.2010.01213.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 11/30/2010] [Indexed: 11/29/2022]
Abstract
Retroposition is a widespread phenomenon resulting in the generation of new genes that are initially related to a parent gene via very high coding sequence similarity. We examine the evolutionary fate of four retrogenes generated by such an event; mouse Inpp5f_v2, Mcts2, Nap1l5, and U2af1-rs1. These genes are all subject to the epigenetic phenomenon of parental imprinting. We first provide new data on the age of these retrogene insertions. Using codon-based models of sequence evolution, we show these retrogenes have diverse evolutionary trajectories, including divergence from the parent coding sequence under positive selection pressure, purifying selection pressure maintaining parent-retrogene similarity, and neutral evolution. Examination of the expression pattern of retrogenes shows an atypical, broad pattern across multiple tissues. Protein 3D structure modeling reveals that a positively selected residue in U2af1-rs1, not shared by its parent, may influence protein conformation. Our case-by-case analysis of the evolution of four imprinted retrogenes reveals that this interesting class of imprinted genes, while similar in regulation and sequence characteristics, follow very varied evolutionary paths.
Collapse
Affiliation(s)
- Ruth B McCole
- Department of Medical and Molecular Genetics, King's College LondonLondon SE1 9RT, United Kingdom
- E-mail:
| | - Noeleen B Loughran
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Faculty of Science and Health, Dublin City UniversityGlasnevin Dublin 9, Ireland
- Centre for Scientific Computing & Complex Systems modeling (SCI-SYM), Dublin City UniversityGlasnevin Dublin 9, Ireland
- E-mail:
| | - Mandeep Chahal
- Department of Medical and Molecular Genetics, King's College LondonLondon SE1 9RT, United Kingdom
- E-mail:
| | - Luis P Fernandes
- Randall Division of Cell and Molecular Biophysics, King's College LondonLondon SE1 1UL, United Kingdom
- E-mail:
| | - Roland G Roberts
- Department of Medical and Molecular Genetics, King's College LondonLondon SE1 9RT, United Kingdom
- E-mail:
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics, King's College LondonLondon SE1 1UL, United Kingdom
- E-mail:
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Faculty of Science and Health, Dublin City UniversityGlasnevin Dublin 9, Ireland
- Centre for Scientific Computing & Complex Systems modeling (SCI-SYM), Dublin City UniversityGlasnevin Dublin 9, Ireland
- E-mail:
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College LondonLondon SE1 9RT, United Kingdom
- E-mail:
| |
Collapse
|
14
|
Li Y, Zhang L, Zhang D, Zhang X, Lu X. Faster evolution of Z-linked duplicate genes in chicken. J Genet Genomics 2011; 37:695-702. [PMID: 21035095 DOI: 10.1016/s1673-8527(09)60087-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 10/18/2022]
Abstract
It has been shown that duplicate genes on the X chromosome evolve much faster than duplicate genes on autosomes in Drosophila melanogaster. However, whether this phenomenon is general and can be applied to other species is not known. Here we examined this issue in chicken that have heterogametic females (females have ZW sex chromosome). We compared sequence divergence of duplicate genes on the Z chromosome with those on autosomes. We found that duplications on the Z chromosome indeed evolved faster than those on autosomes and show distinct patterns of molecular evolution from autosomal duplications. Examination of the expression of duplicate genes revealed an enrichment of duplications on the Z chromosome having male-biased expression and an enrichment of duplications on the autosomes having female-biased expression. These results suggest an evolutionary trend of the recruitment of duplicate genes towards reproduction-specific function. The faster evolution of duplications on Z than on the autosomes is most likely contributed by the selective forces driving the fixation of adaptive mutations on Z. Therefore, the common phenomena observed in both flies and chicken suggest that duplicate genes on sex chromosomes have distinct dynamics and are more influenced by natural selection than autosomal duplications, regardless of the kind of sex determination systems.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Biocontrol and International Center for Evolutionary and Genomic Studies, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | |
Collapse
|
15
|
Cao J, Shi F, Liu X, Huang G, Zhou M. Phylogenetic analysis and evolution of aromatic amino acid hydroxylase. FEBS Lett 2010; 584:4775-82. [PMID: 21073869 DOI: 10.1016/j.febslet.2010.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 01/26/2023]
Abstract
A study was performed to investigate the phylogenetic relationship among AAAH members and to statistically evaluate sequence conservation and functional divergence. In total, 161 genes were identified from 103 species. Phylogenetic analysis showed that well-conserved subfamilies exist. Exon-intron structure analysis showed that the gene structures of AAAH were highly conserved across some different lineage species, while some species-specific introns were also found. The dynamic distribution of ACT domain suggested one gene fusion event has occurred in eukaryota. Significant functional divergence was found between some subgroups. Analysis of the site-specific profiles revealed critical amino acid residues for functional divergence. This study highlights the molecular evolution of this family and may provide a starting point for further experimental verifications.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| | | | | | | | | |
Collapse
|
16
|
Köllner TG, Lenk C, Zhao N, Seidl-Adams I, Gershenzon J, Chen F, Degenhardt J. Herbivore-induced SABATH methyltransferases of maize that methylate anthranilic acid using s-adenosyl-L-methionine. PLANT PHYSIOLOGY 2010; 153:1795-807. [PMID: 20519632 PMCID: PMC2923889 DOI: 10.1104/pp.110.158360] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Volatile methyl esters are common constituents of plant volatiles with important functions in plant defense. To study the biosynthesis of these compounds, especially methyl anthranilate and methyl salicylate, we identified a group of methyltransferases that are members of the SABATH enzyme family in maize (Zea mays). In vitro biochemical characterization after bacterial expression revealed three S-adenosyl-L-methionine-dependent methyltransferases with high specificity for anthranilic acid as a substrate. Of these three proteins, Anthranilic Acid Methyltransferase1 (AAMT1) appears to be responsible for most of the S-adenosyl-L-methionine-dependent methyltransferase activity and methyl anthranilate formation observed in maize after herbivore damage. The enzymes may also be involved in the formation of low amounts of methyl salicylate, which are emitted from herbivore-damaged maize. Homology-based structural modeling combined with site-directed mutagenesis identified two amino acid residues, designated tyrosine-246 and glutamine-167 in AAMT1, which are responsible for the high specificity of AAMTs toward anthranilic acid. These residues are conserved in each of the three main clades of the SABATH family, indicating that the carboxyl methyltransferases are functionally separated by these clades. In maize, this gene family has diversified especially toward benzenoid carboxyl methyltransferases that accept anthranilic acid and benzoic acid.
Collapse
|
17
|
Abstract
Since genome size and the number of duplicate genes observed in genomes increase from haploid to diploid organisms, diploidy might provide more evolutionary probabilities through gene duplication. It is still unclear how diploidy promotes genomic evolution in detail. In this study, we explored the evolution of segmental gene duplication in haploid and diploid populations by analytical and simulation approaches. Results show that (1) under the double null recessive (DNR) selective model, given the same recombination rate, the evolutionary trajectories and consequences are very similar between the same-size gene-pool haploid vs. diploid populations; (2) recombination enlarges the probability of preservation of duplicate genes in either haploid or diploid large populations, and haplo-insufficiency reinforces this effect; and (3) the loss of duplicate genes at the ancestor locus is limited under recombination while under complete linkage the loss of duplicate genes is always random at the ancestor and newly duplicated loci. Therefore, we propose a model to explain the advantage of diploidy: diploidy might facilitate the increase of recombination rate, especially under sexual reproduction; more duplicate genes are preserved under more recombination by originalization (by which duplicate genes are preserved intact at a special quasi-mutation-selection balance under the DNR or haplo-insufficient selective model), so genome sizes and the number of duplicate genes in diploid organisms become larger. Additionally, it is suggested that small genomic rearrangements due to the random loss of duplicate genes might be limited under recombination.
Collapse
|
18
|
Jun J, Ryvkin P, Hemphill E, Nelson C. Duplication mechanism and disruptions in flanking regions determine the fate of Mammalian gene duplicates. J Comput Biol 2010; 16:1253-66. [PMID: 19772436 DOI: 10.1089/cmb.2009.0074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we identify duplicated genes in five mammalian genomes and classify these duplicates based on the mechanisms by which they were generated. Retrotransposition accounts for at least half of all predicted duplicate genes in these genomes, with tandem and interspersed DNA-mediated duplicates comprising the other half. Estimation of the evolutionary rates in each class revealed greater rate asymmetry between retrotransposed and interspersed DNA duplicate pairs than between tandem duplicates, suggesting that retrotransposed and interspersed DNA duplicates are diverging more quickly. In an attempt to understand the basis of this asymmetry, we identified disruption of flanking DNA as an indicator of new duplicate fate-loss of local synteny accelerates the asymmetry of divergence of interspersed DNA duplicates. We also show that intact retrogenes are enriched in intergenic regions and indel purified regions of the human genome. Moreover, intact retrogenes closest to annotated genes show the greatest levels of purifying selective pressure. Together, these findings suggest that the differential evolution of duplicate genes may be significantly influenced by changes in local genome architecture.
Collapse
Affiliation(s)
- Jin Jun
- Department of Computer Science and Engineering, University of Connecticut , Storrs, CT 06269, USA
| | | | | | | |
Collapse
|
19
|
Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW. Adaptive evolution of young gene duplicates in mammals. Genome Res 2009; 19:859-67. [PMID: 19411603 DOI: 10.1101/gr.085951.108] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Duplicate genes act as a source of genetic material from which new functions arise. They exist in large numbers in every sequenced eukaryotic genome and may be responsible for many differences in phenotypes between species. However, recent work searching for the targets of positive selection in humans has largely ignored duplicated genes due to complications in orthology assignment. Here we find that a high proportion of young gene duplicates in the human, macaque, mouse, and rat genomes have experienced adaptive natural selection. Approximately 10% of all lineage-specific duplicates show evidence for positive selection on their protein sequences, larger than any reported amount of selection among single-copy genes in these lineages using similar methods. We also find that newly duplicated genes that have been transposed to new chromosomal locations are significantly more likely to have undergone positive selection than the ancestral copy. Human-specific duplicates evolving under adaptive natural selection include a surprising number of genes involved in neuronal and cognitive functions. Our results imply that genome scans for selection that ignore duplicated loci are missing a large fraction of all adaptive substitutions. The results are also in agreement with the classical model of evolution by gene duplication, supporting a common role for neofunctionalization in the long-term maintenance of gene duplicates.
Collapse
Affiliation(s)
- Mira V Han
- School of Informatics, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
20
|
Li W, Liu B, Yu L, Feng D, Wang H, Wang J. Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC Evol Biol 2009; 9:90. [PMID: 19416520 PMCID: PMC2688005 DOI: 10.1186/1471-2148-9-90] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 05/05/2009] [Indexed: 11/30/2022] Open
Abstract
Background The 12-oxo-phytodienoic acid reductases (OPRs) are enzymes that catalyze the reduction of double-bonds in α, β-unsaturated aldehydes or ketones and are part of the octadecanoid pathway that converts linolenic acid to jasmonic acid. In plants, OPRs belong to the old yellow enzyme family and form multigene families. Although discoveries about this family in Arabidopsis and other species have been reported in some studies, the evolution and function of multiple OPRs in plants are not clearly understood. Results A comparative genomic analysis was performed to investigate the phylogenetic relationship, structural evolution and functional divergence among OPR paralogues in plants. In total, 74 OPR genes were identified from 11 species representing the 6 major green plant lineages: green algae, mosses, lycophytes, gymnosperms, monocots and dicots. Phylogenetic analysis showed that seven well-conserved subfamilies exist in plants. All OPR genes from green algae were clustered into a single subfamily, while those from land plants fell into six other subfamilies, suggesting that the events leading to the expansion of the OPR family occurred in land plants. Further analysis revealed that lineage-specific expansion, especially by tandem duplication, contributed to the current OPR subfamilies in land plants after divergence from aquatic plants. Interestingly, exon/intron structure analysis showed that the gene structures of OPR paralogues exhibits diversity in intron number and length, while the intron positions and phase were highly conserved across different lineage species. These observations together with the phylogenetic tree revealed that successive single intron loss, as well as indels within introns, occurred during the process of structural evolution of OPR paralogues. Functional divergence analysis revealed that altered functional constraints have occurred at specific amino acid positions after diversification of the paralogues. Most notably, significant functional divergence was also found in all pairs, except for the II/IV, II/V and V/VI pairs. Strikingly, analysis of the site-specific profiles established by posterior probability revealed that the positive-selection sites and/or critical amino acid residues for functional divergence are mainly distributed in α-helices and substrate binding loop (SBL), indicating the functional importance of these regions for this protein family. Conclusion This study highlights the molecular evolution of the OPR gene family in all plant lineages and indicates critical amino acid residues likely relevant for the distinct functional properties of the paralogues. Further experimental verification of these findings may provide valuable information on the OPRs' biochemical and physiological functions.
Collapse
Affiliation(s)
- Wenyan Li
- State Key Laboratory for Biocontrol and Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, PR China.
| | | | | | | | | | | |
Collapse
|
21
|
Bertrand S, Thisse B, Tavares R, Sachs L, Chaumot A, Bardet PL, Escrivà H, Duffraisse M, Marchand O, Safi R, Thisse C, Laudet V. Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression. PLoS Genet 2008; 3:e188. [PMID: 17997606 PMCID: PMC2065881 DOI: 10.1371/journal.pgen.0030188] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/11/2007] [Indexed: 11/19/2022] Open
Abstract
Nuclear receptors (NRs) are transcription factors that are implicated in several biological processes such as embryonic development, homeostasis, and metabolic diseases. To study the role of NRs in development, it is critically important to know when and where individual genes are expressed. Although systematic expression studies using reverse transcriptase PCR and/or DNA microarrays have been performed in classical model systems such as Drosophila and mouse, no systematic atlas describing NR involvement during embryonic development on a global scale has been assembled. Adopting a systems biology approach, we conducted a systematic analysis of the dynamic spatiotemporal expression of all NR genes as well as their main transcriptional coregulators during zebrafish development (101 genes) using whole-mount in situ hybridization. This extensive dataset establishes overlapping expression patterns among NRs and coregulators, indicating hierarchical transcriptional networks. This complete developmental profiling provides an unprecedented examination of expression of NRs during embryogenesis, uncovering their potential function during central nervous system and retina formation. Moreover, our study reveals that tissue specificity of hormone action is conferred more by the receptors than by their coregulators. Finally, further evolutionary analyses of this global resource led us to propose that neofunctionalization of duplicated genes occurs at the levels of both protein sequence and RNA expression patterns. Altogether, this expression database of NRs provides novel routes for leading investigation into the biological function of each individual NR as well as for the study of their combinatorial regulatory circuitry within the superfamily. NRs are key molecules controlling development, metabolism, and reproduction in metazoans. Since NRs are implicated in many human diseases such as cancer, metabolic syndrome, and hormone resistance, they are important pharmaceutical targets and are under intense scrutiny to better understand their biological functions. In the present study, we determined the expression patterns of all NR genes as well as their main transcriptional coregulators during zebrafish development. We used zebrafish because the transparency of its embryo allows us to perform whole-mount in situ hybridization from early development to late organogenesis. This complete developmental profiling offers an unprecedented view of NR expression during embryogenesis, uncovering their potential function during central nervous system and retina formation. We observed that in contrast to NR genes, only a few coregulators exhibit a restricted expression pattern, suggesting that tissue specificity of hormone action is conferred more by the receptors than by their coregulators. Lastly, by evolutionary analysis of expression pattern divergence of duplicated genes, we observed that neofunctionalization occurs at the levels of both protein sequence and mRNA expression patterns. Taken together, our data provide the starting point for functional analysis of an entire gene family during development and call for the study of the intersection between metabolism and development.
Collapse
Affiliation(s)
- Stéphanie Bertrand
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Bernard Thisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP 10142, 67404 Illkirch, CU de Strasbourg, France
| | - Raquel Tavares
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Laurent Sachs
- CNRS UMR 5166, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, CP32, Paris, France
| | | | - Pierre-Luc Bardet
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Héctor Escrivà
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Maryline Duffraisse
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Oriane Marchand
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Rachid Safi
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Christine Thisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP 10142, 67404 Illkirch, CU de Strasbourg, France
| | - Vincent Laudet
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Sjödin P, Hedman H, Kruskopf Österberg M, Gustafsson S, Lagercrantz U, Lascoux M. Polymorphism and Divergence at Three Duplicate Genes in Brassica nigra. J Mol Evol 2008; 66:581-90. [DOI: 10.1007/s00239-008-9108-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 02/29/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
|
23
|
Fischer HM, Wheat CW, Heckel DG, Vogel H. Evolutionary origins of a novel host plant detoxification gene in butterflies. Mol Biol Evol 2008; 25:809-20. [PMID: 18296701 DOI: 10.1093/molbev/msn014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemical interactions between plants and their insect herbivores provide an excellent opportunity to study the evolution of species interactions on a molecular level. Here, we investigate the molecular evolutionary events that gave rise to a novel detoxifying enzyme (nitrile-specifier protein [NSP]) in the butterfly family Pieridae, previously identified as a coevolutionary key innovation. By generating and sequencing expressed sequence tags, genomic libraries, and screening databases we found NSP to be a member of an insect-specific gene family, which we characterized and named the NSP-like gene family. Members consist of variable tandem repeats, are gut expressed, and are found across Insecta evolving in a dynamic, ongoing birth-death process. In the Lepidoptera, multiple copies of single-domain major allergen genes are present and originate via tandem duplications. Multiple domain genes are found solely within the brassicaceous-feeding Pieridae butterflies, one of them being NSP and another called major allergen (MA). Analyses suggest that NSP and its paralog MA have a unique single-domain evolutionary origin, being formed by intragenic domain duplication followed by tandem whole-gene duplication. Duplicates subsequently experienced a period of relaxed constraint followed by an increase in constraint, perhaps after neofunctionalization. NSP and its ortholog MA are still experiencing high rates of change, reflecting a dynamic evolution consistent with the known role of NSP in plant-insect interactions. Our results provide direct evidence to the hypothesis that gene duplication is one of the driving forces for speciation and adaptation, showing that both within- and whole-gene tandem duplications are a powerful force underlying evolutionary adaptation.
Collapse
Affiliation(s)
- Hanna M Fischer
- Department of Entomology, Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Jena, Germany
| | | | | | | |
Collapse
|
24
|
The use of the GDH gene for molecular identification and phylogenetic analysis of the yeast Kluyveromyces marxianus. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Clément Y, Tavares R, Marais GAB. Does lack of recombination enhance asymmetric evolution among duplicate genes? Insights from the Drosophila melanogaster genome. Gene 2006; 385:89-95. [PMID: 17049187 DOI: 10.1016/j.gene.2006.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 05/09/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
Gene duplication has different outcomes: pseudogenization (death of one of the two copies), gene amplification (both copies remain the same), sub-functionalization (both copies are required to perform the ancestral function) and neo-functionalization (one copy acquires a new function). Asymmetric evolution (one copy evolves faster than the other) is usually seen as a signature of neo-functionalization. However, it has been proposed that sub-functionalization could also generate asymmetric evolution among duplicate genes when they experience different local recombination rates. Indeed, the low recombination copy is expected to evolve faster because of Hill-Robertson effects. Here we tested this idea with about 100 pairs of young duplicates from the Drosophila melanogaster genome. Looking only at young duplicates allowed us to compare recombination rates and evolutionary rates on a similar time-scale contrary to previous work. We found that dispersed pairs tend to evolve more asymmetrically than tandem ones. Among dispersed copies, the low recombination copy tends to be the fast-evolving one. We also tested the possibility that all this was explained by a confounding factor (expression level) but found no evidence for it. In conclusion, our results do support the idea that asymmetric evolution among duplicates is enhanced by restricted recombination. However, further work is needed to clearly distinguish between sub-functionalization and neo-functionalization for the asymmetrically-evolving duplicate pairs that we found.
Collapse
Affiliation(s)
- Yves Clément
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS, Univ. Lyon 1, Villeurbanne Cedex, France
| | | | | |
Collapse
|
26
|
Kuepfer L, Sauer U, Blank LM. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 2006; 15:1421-30. [PMID: 16204195 PMCID: PMC1240085 DOI: 10.1101/gr.3992505] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The roles of duplicate genes and their contribution to the phenomenon of enzyme dispensability are a central issue in molecular and genome evolution. A comprehensive classification of the mechanisms that may have led to their preservation, however, is currently lacking. In a systems biology approach, we classify here back-up, regulatory, and gene dosage functions for the 105 duplicate gene families of Saccharomyces cerevisiae metabolism. The key tool was the reconciled genome-scale metabolic model iLL672, which was based on the older iFF708. Computational predictions of all metabolic gene knockouts were validated with the experimentally determined phenotypes of the entire singleton yeast library of 4658 mutants under five environmental conditions. iLL672 correctly identified 96%-98% and 73%-80% of the viable and lethal singleton phenotypes, respectively. Functional roles for each duplicate family were identified by integrating the iLL672-predicted in silico duplicate knockout phenotypes, genome-scale carbon-flux distributions, singleton mutant phenotypes, and network topology analysis. The results provide no evidence for a particular dominant function that maintains duplicate genes in the genome. In particular, the back-up function is not favored by evolutionary selection because duplicates do not occur more frequently in essential reactions than singleton genes. Instead of a prevailing role, multigene-encoded enzymes cover different functions. Thus, at least for metabolism, persistence of the paralog fraction in the genome can be better explained with an array of different, often overlapping functional roles.
Collapse
Affiliation(s)
- Lars Kuepfer
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
27
|
Abstract
Polyploids - organisms that have multiple sets of chromosomes - are common in certain plant and animal taxa, and can be surprisingly stable. The evidence that has emerged from genome analyses also indicates that many other eukaryotic genomes have a polyploid ancestry, suggesting that both humans and most other eukaryotes have either benefited from or endured polyploidy. Studies of polyploids soon after their formation have revealed genetic and epigenetic interactions between redundant genes. These interactions can be related to the phenotypes and evolutionary fates of polyploids. Here, I consider the advantages and challenges of polyploidy, and its evolutionary potential.
Collapse
Affiliation(s)
- Luca Comai
- Department of Biology, Box 355325, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
28
|
Abstract
Gene duplication plays an important role in evolution because it is the primary source of new genes. Many recent studies showed that gene duplicability varies considerably among genes. Several considerations led us to hypothesize that less important genes have higher rates of successful duplications, where gene importance is measured by the fitness reduction caused by the deletion of the gene. Here, we test this hypothesis by comparing the importance of two groups of singleton genes in the yeast Saccharomyces cerevisiae (Sce). Group S genes did not duplicate in four other yeast species examined, whereas group D experienced duplication in these species. Consistent with our hypothesis, we found group D genes to be less important than group S genes. Specifically, 17% of group D genes are essential in Sce, compared to 28% for group S. Furthermore, deleting a group D gene in Sce reduces the fitness by 24% on average, compared to 38% for group S. Our subsequent analysis showed that less important genes have more cis-regulatory motifs, which could lead to a higher chance of subfunctionalization of duplicate genes and result in an enhanced rate of gene retention. Less important genes may also have weaker dosage imbalance effects and cause fewer genetic perturbations when duplicated. Regardless of the cause, our observation indicates that the previous finding of a less severe fitness consequence of deleting a duplicate gene than deleting a singleton gene is at least in part due to the fact that duplicate genes are intrinsically less important than singleton genes and suggests that the contribution of duplicate genes to genetic robustness has been overestimated.
Collapse
Affiliation(s)
- Xionglei He
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
29
|
Wang H, Yu L, Lai F, Liu L, Wang J. Molecular evidence for asymmetric evolution of sister duplicated blocks after cereal polyploidy. PLANT MOLECULAR BIOLOGY 2005; 59:63-74. [PMID: 16217602 DOI: 10.1007/s11103-005-4414-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 03/22/2005] [Indexed: 05/04/2023]
Abstract
Polyploidy (genome duplication) is thought to have contributed to the evolution of the eukaryotic genome, but complex genome structures and massive gene loss during evolution has complicated detection of these ancestral duplication events. The major factors determining the fate of duplicated genes are currently unclear, as are the processes by which duplicated genes evolve after polyploidy. Fine-scale analysis between homologous regions may allow us to better understand post-polyploidy evolution. Here, using gene-by-gene and gene-by-genome strategies, we identified the S5 region and four homologous regions within the japonica genome. Additional phylogenomic analyses of the comparable duplicated blocks indicate that four successive duplication events gave rise to these five regions, allowing us to propose a model for this local chromosomal evolution. According to this model, gene loss may play a major role in post-duplication genetic evolution at the segmental level. Moreover, we found molecular evidence that one of the sister duplicated blocks experienced more gene loss and a more rapid evolution subsequent to two recent duplication events. Given that these two recent duplication events were likely involved in polyploidy, this asymmetric evolution (gene loss and gene divergence) may be one possible mechanism accounting for the diploidization at the segmental level.
Collapse
Affiliation(s)
- Hongbin Wang
- The State Key Laboratory for Biocontrol and The Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | | | | | | | | |
Collapse
|
30
|
Prigoda NL, Nassuth A, Mable BK. Phenotypic and genotypic expression of self-incompatibility haplotypes in Arabidopsis lyrata suggests unique origin of alleles in different dominance classes. Mol Biol Evol 2005; 22:1609-20. [PMID: 15858208 DOI: 10.1093/molbev/msi153] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The highly divergent alleles of the SRK gene in outcrossing Arabidopsis lyrata have provided important insights into the evolutionary history of self-incompatibility (SI) alleles and serve as an ideal model for studies of the evolutionary and molecular interactions between alleles in cell-cell recognition systems in general. One tantalizing question is how new specificities arise in systems that require coordination between male and female components. Allelic recruitment via gene conversion has been proposed as one possibility, based on the division of DNA sequences at the SRK locus into two distinctive groups: (1) sequences whose relationships are not well resolved and display the long branch lengths expected for a gene under balancing selection (Class A); and (2) sequences falling into a well-supported group with shorter branch lengths (Class B) that are closely related to an unlinked paralogous locus. The purpose of this study was to determine if differences in phenotype (site of expression assayed using allele-specific reverse transcription-polymerase chain reaction) or function (dominance relationships assayed through controlled pollinations) accompany the sequence-based classification. Expression of Class A alleles was restricted to floral tissues, as predicted for genes involved in the SI response. In contrast, Class B alleles, despite being tightly linked to the SI phenotype, were unexpectedly expressed in both leaves and floral tissues; the same pattern found for a related unlinked paralogous sequence. Whereas Class A included haplotypes in three different dominance classes, all Class B haplotypes were found to be recessive to all except one Class A haplotype. In addition, mapping of expression and dominance patterns onto an S-domain-based genealogy suggested that allelic dominance may be determined more by evolutionary history than by frequency-dependent selection for lowered dominance as some theories suggest. The possibility that interlocus gene conversion might have contributed to allelic diversity is discussed.
Collapse
Affiliation(s)
- Nadia L Prigoda
- Department of Botany, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
31
|
Bolotin-Fukuhara M, Casaregola S, Aigle M. Genome evolution: Lessons from Genolevures. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/b136677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
32
|
Shah PH, MacFarlane RC, Bhattacharya D, Matese JC, Demeter J, Stroup SE, Singh U. Comparative genomic hybridizations of Entamoeba strains reveal unique genetic fingerprints that correlate with virulence. EUKARYOTIC CELL 2005; 4:504-15. [PMID: 15755913 PMCID: PMC1087797 DOI: 10.1128/ec.4.3.504-515.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Accepted: 12/21/2004] [Indexed: 11/20/2022]
Abstract
Variable phenotypes have been identified for Entamoeba species. Entamoeba histolytica is invasive and causes colitis and liver abscesses but only in approximately 10% of infected individuals; 90% remain asymptomatically colonized. Entamoeba dispar, a closely related species, is avirulent. To determine the extent of genetic diversity among Entamoeba isolates and potential genotype-phenotype correlations, we have developed an E. histolytica genomic DNA microarray and used it to genotype strains of E. histolytica and E. dispar. On the basis of the identification of divergent genetic loci, all strains had unique genetic fingerprints. Comparison of divergent genetic regions allowed us to distinguish between E. histolytica and E. dispar, identify novel genetic regions usable for strain and species typing, and identify a number of genes restricted to virulent strains. Among the four E. histolytica strains, a strain with attenuated virulence was the most divergent and phylogenetically distinct strain, raising the intriguing possibility that genetic subtypes of E. histolytica may be partially responsible for the observed variability in clinical outcomes. This microarray-based genotyping assay can readily be applied to the study of E. histolytica clinical isolates to determine genetic diversity and potential genotypic-phenotypic associations.
Collapse
Affiliation(s)
- Preetam H Shah
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Current awareness on yeast. Yeast 2004; 21:1233-40. [PMID: 15580707 DOI: 10.1002/yea.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|