1
|
Zhao LY, Wang XY, Wen ML, Pan NN, Yin XQ, An MW, Wang L, Liu Y, Song JB. Advances in injectable hydrogels for radiation-induced heart disease. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1031-1063. [PMID: 38340315 DOI: 10.1080/09205063.2024.2314364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Radiological heart damage (RIHD) is damage caused by unavoidable irradiation of the heart during chest radiotherapy, with a long latency period and a progressively increasing proportion of delayed cardiac damage due to conventional doses of chest radiotherapy. There is a risk of inducing diseases such as acute/chronic pericarditis, myocarditis, delayed myocardial fibrosis and damage to the cardiac conduction system in humans, which can lead to myocardial infarction or even death in severe cases. This paper details the pathogenesis of RIHD and gives potential targets for treatment at the molecular and cellular level, avoiding the drawbacks of high invasiveness and immune rejection due to drug therapy, medical device implantation and heart transplantation. Injectable hydrogel therapy has emerged as a minimally invasive tissue engineering therapy to provide necessary mechanical support to the infarcted myocardium and to act as a carrier for various bioactive factors and cells to improve the cellular microenvironment in the infarcted area and induce myocardial tissue regeneration. Therefore, this paper combines bioactive factors and cellular therapeutic mechanisms with injectable hydrogels, presents recent advances in the treatment of cardiac injury after RIHD with different injectable gels, and summarizes the therapeutic potential of various types of injectable hydrogels as a potential solution.
Collapse
Affiliation(s)
- Lu-Yao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xin-Yue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Ling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Ning-Ning Pan
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xing-Qi Yin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Wen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Bo Song
- Shanghai NewMed Medical Corporation, Shanghai, China
| |
Collapse
|
2
|
Guan C, Li C, Shen X, Yang C, Liu Z, Zhang N, Xu L, Zhao L, Zhou B, Man X, Luo C, Luan H, Che L, Wang Y, Xu Y. Hexarelin alleviates apoptosis on ischemic acute kidney injury via MDM2/p53 pathway. Eur J Med Res 2023; 28:344. [PMID: 37710348 PMCID: PMC10500723 DOI: 10.1186/s40001-023-01318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION Hexarelin exhibits significant protection against organ injury in models of ischemia/reperfusion (I/R)-induced injury (IRI). Nevertheless, the impact of Hexarelin on acute kidney injury (AKI) and its underlying mechanism remains unclear. In this study, we investigated the therapeutic potential of Hexarelin in I/R-induced AKI and elucidated its molecular mechanisms. METHODS We assessed the protective effects of Hexarelin through both in vivo and in vitro experiments. In the I/R-induced AKI model, rats were pretreated with Hexarelin at 100 μg/kg/d for 7 days before being sacrificed 24 h post-IRI. Subsequently, kidney function, histology, and apoptosis were assessed. In vitro, hypoxia/reoxygenation (H/R)-induced HK-2 cell model was used to investigate the impact of Hexarelin on apoptosis in HK-2 cells. Then, we employed molecular docking using a pharmmapper server and autodock software to identify potential target proteins of Hexarelin. RESULTS In this study, rats subjected to I/R developed severe kidney injury characterized by tubular necrosis, tubular dilatation, increased serum creatinine levels, and cell apoptosis. However, pretreatment with Hexarelin exhibited a protective effect by mitigating post-ischemic kidney pathological changes, improving renal function, and inhibiting apoptosis. This was achieved through the downregulation of conventional apoptosis-related genes, such as Caspase-3, Bax and Bad, and the upregulation of the anti-apoptotic protein Bcl-2. Consistent with the in vivo results, Hexarelin also reduced cell apoptosis in post-H/R HK-2 cells. Furthermore, our analysis using GSEA confirmed the essential role of the apoptosis pathway in I/R-induced AKI. Molecular docking revealed a strong binding affinity between Hexarelin and MDM2, suggesting the potential mechanism of Hexarelin's anti-apoptosis effect at least partially through its interaction with MDM2, a well-known negative regulator of apoptosis-related protein that of p53. To validate these findings, we evaluated the relative expression of MDM2 and p53 in I/R-induced AKI with or without Hexarelin pre-administration and observed a significant suppression of MDM2 and p53 by Hexarelin in both in vivo and in vitro experiments. CONCLUSION Collectively, Hexarelin was identified as a promising medication in protecting apoptosis against I/R-induced AKI.
Collapse
Affiliation(s)
- Chen Guan
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Chenyu Li
- Medizinische Klinik Und Poliklinik IV, Klinikum Der Universität, LMU München, Munich, Germany
| | - Xuefei Shen
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Chengyu Yang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Zengying Liu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Ningxin Zhang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Lingyu Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Long Zhao
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Bin Zhou
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Xiaofei Man
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Congjuan Luo
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Hong Luan
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Lin Che
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Yanfei Wang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Yan Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
3
|
Glatz JFC, Wang F, Nabben M, Luiken JJFP. CD36 as a target for metabolic modulation therapy in cardiac disease. Expert Opin Ther Targets 2021; 25:393-400. [PMID: 34128755 DOI: 10.1080/14728222.2021.1941865] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction: Disturbances in myocardial lipid metabolism are increasingly being recognized as drivers of the development and progression of heart disease. Therefore, there is a need for treatments that can directly target lipid metabolic defects in heart failure. The membrane-associated glycoprotein CD36 plays a pivotal role in governing myocardial lipid metabolism by mediating lipid signaling and facilitating the cellular uptake of long-chain fatty acids. Emerging evidence suggests that CD36 is a prominent target in the treatment of heart failure.Areas covered: This article provides an overview of the key role of CD36 for proper contractile functioning of a healthy heart, its implications in the development of cardiac disease (ischemia/reperfusion, cardiac hypertrophy, and diabetic cardiomyopathy), and its application as a target to normalize cardiac metabolism as part of so-called metabolic modulation therapy.Expert opinion: CD36 appears a promising and effective therapeutic target in the treatment of heart failure. Natural compounds and chemical agents known to alter the amount or subcellular distribution of CD36 or inhibit its functioning, should be evaluated for their potency to correct cardiac metabolism and cure heart disease.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Fang Wang
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
4
|
McDonald H, Peart J, Kurniawan ND, Galloway G, Royce SG, Samuel CS, Chen C. Hexarelin targets neuroinflammatory pathways to preserve cardiac morphology and function in a mouse model of myocardial ischemia-reperfusion. Biomed Pharmacother 2020; 127:110165. [PMID: 32403043 DOI: 10.1016/j.biopha.2020.110165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/15/2020] [Accepted: 04/13/2020] [Indexed: 11/17/2022] Open
Abstract
Acute myocardial ischemia and reperfusion injury (IRI) underly the detrimental effects of coronary heart disease on the myocardium. Despite the ongoing advances in reperfusion therapies, there remains a lack of effective therapeutic strategies for preventing IRI. Growth hormone secretagogues (GHS) have been demonstrated to improve cardiac function, attenuate inflammation and modulate the autonomic nervous system (ANS) in models of cardiovascular disease. Recently, we demonstrated a reduction in infarct size after administration of hexarelin (HEX), in a murine model of myocardial infarction. In the present study we employed a reperfused ischemic (IR) model, to determine whether HEX would continue to have a cardioprotective influence in a model of higher clinical relevance. Myocardial ischemia was induced by transient ligation of the left descending coronary artery (tLAD) in C57BL/6 J mice followed by HEX (0.3 mg/kg/day; n = 20) or vehicle (VEH) (n = 18) administration for 21 days, first administered immediately prior-to reperfusion. IR-injured and sham mice were subjected to high-field magnetic resonance imaging to assess left ventricular (LV) function, with HEX-treated mice demonstrating a significant improvement in LV function compared with VEH-treated mice. A significant decrease in interstitial collagen, TGF-β1 expression and myofibroblast differentiation was also seen in the HEX-treated mice after 21 days. HEX treatment shifted the ANS balance towards a parasympathetic predominance; combined with a significant decrease in cardiac troponin-I and TNF-α levels, these findings were suggestive of an anti-inflammatory action on the myocardium mediated via HEX. In this model of IR, HEX appeared to rebalance the deregulated ANS and activate vagal anti-inflammatory pathways to prevent adverse remodelling and LV dysfunction. There are limited interventions focusing on IRI that have been successful in improving clinical outcome in acute myocardial infarction (AMI) patients, this study provides compelling evidence towards the translational potential of HEX where all others have largely failed.
Collapse
Affiliation(s)
- H McDonald
- School of Biomedical Science, University of Queensland, Brisbane, Australia
| | - J Peart
- Menzies Health Institute of Queensland, Griffith University, Gold Coast, Australia
| | - N D Kurniawan
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - G Galloway
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - S G Royce
- Cardiovascular Disease Program, Biomedical Discovery Institute and Department of Pharmacology, Australia; Central Clinical School, Monash University, Victoria, Australia
| | - C S Samuel
- Cardiovascular Disease Program, Biomedical Discovery Institute and Department of Pharmacology, Australia
| | - C Chen
- School of Biomedical Science, University of Queensland, Brisbane, Australia.
| |
Collapse
|
5
|
Raghay K, Akki R, Bensaid D, Errami M. Ghrelin as an anti-inflammatory and protective agent in ischemia/reperfusion injury. Peptides 2020; 124:170226. [PMID: 31786283 DOI: 10.1016/j.peptides.2019.170226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
Ischemia/reperfusion (I/R) continue to be the most frequent cause of damaged tissues. Injured tissues resulted from the first ischemic insult, which is determined by the interruption in the blood supply, followed by subsequent impairment induced by reperfusion. In addition, ischemia-reperfusion injury is mediated by tumor necrosis factor (TNF) and other cytokines that activate complements and proteases responsible for free radical production. However, earlier studies have reported the protective roles of bioactive peptides during ischemia reperfusion injury. In fact, ghrelin is a peptide hormone discovered since 1999 as GH secretagogue and its production was identified in gastric X/A-like endocrine cells in rats and P/D1 type cells in humans. To date, this peptide receives growing attention due to its pleiotropic action in the organism and its role in maintaining energy homeostasis. Ghrelin is also involved in stress responses, assuming a modulatory action on immune pathways. Previous studies have identified many other functions related to an anti-inflammatory role in ischemia reperfusion injury. Under these challenging conditions, studies described acylated and unacylated ghrelin in activation and/or inhibition processes related to ischemia-reperfusion injury. The aim of this article is to provide a minireview about ghrelin mechanisms involved in the proinflammatory response of I/R injury. However, the regulatory processes of ghrelin in this pathologic event are still very limited and warrant further investigation.
Collapse
Affiliation(s)
- K Raghay
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - R Akki
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - D Bensaid
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - M Errami
- Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| |
Collapse
|
6
|
Han C, Zhou J, Liang C, Liu B, Pan X, Zhang Y, Wang Y, Yan B, Xie W, Liu F, Yu XY, Li Y. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci 2019; 7:2920-2933. [PMID: 31090763 DOI: 10.1039/c9bm00101h] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell-derived exosomes have been recognized as a potential therapy for cardiovascular disease. However, the low retention rate of exosomes after transplantation in vivo remains a major challenge in clinical applications. The aim of this study is to investigate whether human umbilical cord mesenchymal stem cell derived exosomes (UMSC-Exo) encapsulated in functional peptide hydrogels could increase the retention and stability of exosomes and improve heart function in a rat myocardial infarction model. Our results demonstrated that the PA-GHRPS peptide protected H9C2 cells from H2O2-induced oxidative stress. The gelatinization ability of PA-GHRPS can be enhanced by peptide NapFF. Therefore, these two peptides were mixed to form the PGN hydrogel, which was used to encapsulate exosomes. Our data showed that the PGN hydrogel was able to encapsulate exosomes effectively and ensured a stable and sustained release of exosomes. The exosome/PGN hydrogel mixture was injected into the infarcted border zone of rat hearts. Compared to the exosome treatment alone, the mixture improved the myocardial function by reducing inflammation, fibrosis and apoptosis, and by promoting angiogenesis. The strategy used in this study provided a practical and effective method to harness exosomes for myocardial regeneration.
Collapse
Affiliation(s)
- Chaoshan Han
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Agbo E, Liu D, Li M, Saahene RO, Chen L, Zhao L, Wang Y, Tian G. Modulation of PTEN by hexarelin attenuates coronary artery ligation-induced heart failure in rats. Turk J Med Sci 2019; 49:945-958. [PMID: 31091855 PMCID: PMC7018219 DOI: 10.3906/sag-1812-49] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background/aim Hexarelin is a synthetic growth hormone-releasing peptide that exerts cardioprotective effects. However, its cardioprotective effect against heart failure (HF) is yet to be explained. This study investigated the therapeutic role of hexarelin and the mechanisms underlying its cardioprotective effects against coronary artery ligation (CAL)-induced HF in rats. Materials and methods Rats with four weeks of permanent CAL, induced myocardial infarction, and HF were randomly separated into four groups: the control group (Ctrl), sham group (Sham), hexarelin treatment group (HF + Hx), and heart failure group (HF). The rats were treated with subcutaneous injection of hexarelin (100 µg/kg) in the treatment group or saline in the other groups twice a day for 30 days. Left ventricular (LV) function, oxidative stress, apoptosis, molecular analyses, and cardiac structural and pathological changes in rats were assessed. Results The treatment of HF rats with hexarelin significantly induced the upregulation of phosphatase and tensin homologue (PTEN) expression and inhibited the phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) to significantly improve LV function, ameliorate myocardial remodeling, and reduce oxidative stress. Conclusion These findings indicate that hexarelin attenuates CAL-induced HF in rats by ameliorating myocardial remodeling, LV dysfunction, and oxidative stress via the upmodulation of PTEN signaling and downregulation of the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Elvis Agbo
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Donhai Liu
- College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Meixiu Li
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Roland Osei Saahene
- Department of Immunology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Liqiang Chen
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Lunpeng Zhao
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Yiquan Wang
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| | - Guozhong Tian
- Department of Human Anatomy, Histology, and Embryology, College of Basic Medicine, Jiamusi University, Jiamusi, P.R. China
| |
Collapse
|
8
|
Wang C, Dong X, Wei L, Sun J, Zhao F, Meng C, Wu D, Wang T, Fu L. The Relationship of Appetite-Regulating Hormones in the Development of Cardiac Cachexia. Int Heart J 2019; 60:384-391. [DOI: 10.1536/ihj.18-131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Can Wang
- Laboratory of Cardiovascular Medicine, Department of Internal Medicine, First Affiliated Hospital, Harbin Medical University
| | - Xiaoying Dong
- Laboratory of Cardiovascular Medicine, Department of Internal Medicine, First Affiliated Hospital, Harbin Medical University
| | - Limu Wei
- Laboratory of Cardiovascular Medicine, Department of Internal Medicine, First Affiliated Hospital, Harbin Medical University
| | - Junfeng Sun
- Laboratory of Cardiovascular Medicine, Department of Internal Medicine, First Affiliated Hospital, Harbin Medical University
| | - Fali Zhao
- Laboratory of Cardiovascular Medicine, Department of Internal Medicine, First Affiliated Hospital, Harbin Medical University
| | - Choushuan Meng
- Laboratory of Cardiovascular Medicine, Department of Internal Medicine, First Affiliated Hospital, Harbin Medical University
| | - Dongdong Wu
- Laboratory of Cardiovascular Medicine, Department of Internal Medicine, First Affiliated Hospital, Harbin Medical University
| | - Ting Wang
- Laboratory of Cardiovascular Medicine, Department of Internal Medicine, First Affiliated Hospital, Harbin Medical University
| | - Lu Fu
- Laboratory of Cardiovascular Medicine, Department of Internal Medicine, First Affiliated Hospital, Harbin Medical University
| |
Collapse
|
9
|
Bartekova M, Radosinska J, Jelemensky M, Dhalla NS. Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev 2019; 23:733-758. [PMID: 29862462 DOI: 10.1007/s10741-018-9716-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By virtue of their actions on NF-κB, an inflammatory nuclear transcription factor, various cytokines have been documented to play important regulatory roles in determining cardiac function under both physiological and pathophysiological conditions. Several cytokines including TNF-α, TGF-β, and different interleukins such as IL-1 IL-4, IL-6, IL-8, and IL-18 are involved in the development of various inflammatory cardiac pathologies, namely ischemic heart disease, myocardial infarction, heart failure, and cardiomyopathies. In ischemia-related pathologies, most of the cytokines are released into the circulation and serve as biological markers of inflammation. Furthermore, there is an evidence of their direct role in the pathogenesis of ischemic injury, suggesting cytokines as potential targets for the development of some anti-ischemic therapies. On the other hand, certain cytokines such as IL-2, IL-4, IL-6, IL-8, and IL-10 are involved in the post-ischemic tissue repair and thus are considered to exert beneficial effects on cardiac function. Conflicting reports regarding the role of some cytokines in inducing cardiac dysfunction in heart failure and different types of cardiomyopathies seem to be due to differences in the nature, duration, and degree of heart disease as well as the concentrations of some cytokines in the circulation. In spite of extensive research work in this field of investigation, no satisfactory anti-cytokine therapy for improving cardiac function in any type of heart disease is available in the literature.
Collapse
Affiliation(s)
- Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Marek Jelemensky
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Center, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
10
|
Chen H, Liu Y, Gui Q, Zhu X, Zeng L, Meng J, Qing J, Gao L, Jackson AO, Feng J, Li Y, He J, Yin K. Ghrelin attenuates myocardial fibrosis after acute myocardial infarction via inhibiting endothelial-to mesenchymal transition in rat model. Peptides 2019; 111:118-126. [PMID: 30218693 DOI: 10.1016/j.peptides.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Abstract
Ghrelin, a peptide hormone produced in the gastrointestinal tract, has recently been found to be associated with the onset of myocardial fibrosis (MF). The exact mechanism, however, remains elusive. This study sought to identify the function and mechanism of ghrelin on MF after acute myocardial infarction (AMI). AMI was established in Spraque-Dawley rats by ligation of the left anterior descending (LAD). Ghrelin or saline was intraperitoneally injected two times per day for 8 weeks after ligation. The weight of heart (mg) and the weight ratio of heart to body (mg/g) as well as the fibrotic area were increased, while serum level of ghrelin was decreased after AMI. Ghrelin significantly ameliorated MF and decreased deposition of collagens in perivascular fibrosis area. In addition, ghrelin inhibited Endothelial-to-mesenchymal transition (EndMT), a crucial process for MF, in perivascular fibrosis area and TGF-β1-induced human coronary artery endothelial cells (HCAECs). Mechanistically, ghrelin persistently decreased the phosphorylation of Smad2/3 and enhanced the expression of Smad7 and p-AMPK in vivo and in vitro. After the abolition of Smad7, GHSR-1a and AMPK pathway, the effect of ghrelin on EndMT was significantly inhibited. In conclusion, these results presented a novel finding that ghrelin attenuated MF after AMI via regulation EndMT in a GHSR-1a/AMPK/Smad7- dependent manner.
Collapse
Affiliation(s)
- Hainan Chen
- Research Lab for Clinical & Translational Medicine, Medical school, University of South China, Hengyang 421001, China; Institute of Cardiovascular Research, Key Laboratory Atherosclerology of Hunan Province, University of South China, Hengyang 421001, China
| | - Yijian Liu
- The Third Hospital of Changsha, Changsha 410000, China
| | - Qingjun Gui
- Research Lab for Clinical & Translational Medicine, Medical school, University of South China, Hengyang 421001, China
| | - Xiao Zhu
- Research Lab for Clinical & Translational Medicine, Medical school, University of South China, Hengyang 421001, China; Institute of Cardiovascular Research, Key Laboratory Atherosclerology of Hunan Province, University of South China, Hengyang 421001, China
| | - Lin Zeng
- Department of Neurology, First Affiliated Hospital of University of South China, University of South China, Hengyang 421001, China
| | - Jun Meng
- Functional Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Jina Qing
- Research Lab for Clinical & Translational Medicine, Medical school, University of South China, Hengyang 421001, China
| | - Ling Gao
- Research Lab for Clinical & Translational Medicine, Medical school, University of South China, Hengyang 421001, China
| | - Ampadu O Jackson
- Research Lab for Clinical & Translational Medicine, Medical school, University of South China, Hengyang 421001, China; International College, University of South China, Hengyang 421001, China
| | - Juling Feng
- Research Lab for Clinical & Translational Medicine, Medical school, University of South China, Hengyang 421001, China
| | - Yi Li
- Research Lab for Clinical & Translational Medicine, Medical school, University of South China, Hengyang 421001, China
| | - Jin He
- Functional Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| | - Kai Yin
- Research Lab for Clinical & Translational Medicine, Medical school, University of South China, Hengyang 421001, China; Institute of Cardiovascular Research, Key Laboratory Atherosclerology of Hunan Province, University of South China, Hengyang 421001, China.
| |
Collapse
|
11
|
Yu Y, Zhang M, Hu Y, Zhao Y, Teng F, Lv X, Li J, Zhang Y, Hatch GM, Chen L. Increased Bioavailable Berberine Protects Against Myocardial Ischemia Reperfusion Injury Through Attenuation of NFκB and JNK Signaling Pathways. Int Heart J 2018; 59:1378-1388. [DOI: 10.1536/ihj.17-458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yang Yu
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Yali Hu
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Yali Zhao
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Fei Teng
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Xiaoyan Lv
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Ji Li
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| | - Ying Zhang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University
| | - Grant M. Hatch
- Department of Pharmacology & Therapeutics, University of Manitoba, Manitoba Institute of Child Health
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University
| |
Collapse
|
12
|
Zhang C, Zhu R, Wang H, Tao Q, Lin X, Ge S, Zhai Z. Nicotinamide Phosphate Transferase (NAMPT) Increases in Plasma in Patients with Acute Coronary Syndromes, and Promotes Macrophages to M2 Polarization. Int Heart J 2018; 59:1116-1122. [PMID: 30158377 DOI: 10.1536/ihj.17-363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atherosclerosis is an inflammatory disease; monocytes and macrophages play an important role in the progression of this disease. However, the mechanisms are not fully understood yet. Nicotinamide phosphate transferase (NAMPT) is the rate limiting enzyme in the synthesis of NAD, but extracellular NAMPT shows the characteristics of cytokines/adipokines, suggesting that it may be a link between metabolism and inflammation. In this study, we compared the expression levels of the NAMPT/NAD+/Sirt1 signaling pathway as well as NAMPT, CRP and IL-6 in the peripheral blood mononuclear cell (PBMC), and plasma in patients with acute coronary syndromes and healthy subjects, and analyzed their association with macrophage polarization. The relationship between eNAMPT and iNAMPT and the polarization of macrophages was analyzed by NAD+, NAMPT blocker, and neutralizing antibody treatment. The results showed that the expression of the NAMPT/NAD+/Sirt1 signaling pathway was up-regulated in the peripheral blood of patients with ACS. Inhibition of iNAMPT expression can reduce M1 polarization; however, there was no significant effect on eNAMPT secretion and M2 polarization. Neutralizing eNAMPT by neutralizing antibodies can reduce M2 polarization and decrease the expression levels of IL-10, IL-13, IL-4 and IL-1ra. The addition of NAD+ in the cell culture supernatant had no significant effect on the polarization of M1 but increased the M2 polarization and the expression levels of IL-10 and IL-1ra. Our findings suggested that NAMPT is involved in the pathogenesis of atherosclerosis; the increased expression of eNAMPT in ACS patients may play a protective role by the up regulation of the NAMPT/NAD+/Sirt1 signaling pathway.
Collapse
Affiliation(s)
- Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University.,Department of Hematology, The Second Affiliated Hospital of Anhui Medical University
| | - Rui Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University
| | - Huiping Wang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University
| | - Qianshan Tao
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University
| | - Zhimin Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University
| |
Collapse
|
13
|
Dai D, Yang J, Zhao C, Wu H, Ding J, Sun X, Hu S. Effect of Geranylgeranyl Pyrophosphate Synthase on Hypoxia/Reoxygenation-Induced Injury in Heart-Derived H9c2 Cells. Int Heart J 2018; 59:821-828. [DOI: 10.1536/ihj.17-218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Dongpu Dai
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Jian Yang
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Chenze Zhao
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Huandong Wu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Jie Ding
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Xiaotong Sun
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Shenjiang Hu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| |
Collapse
|
14
|
The CD36-PPARγ Pathway in Metabolic Disorders. Int J Mol Sci 2018; 19:ijms19051529. [PMID: 29883404 PMCID: PMC5983591 DOI: 10.3390/ijms19051529] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Uncovering the biological role of nuclear receptor peroxisome proliferator-activated receptors (PPARs) has greatly advanced our knowledge of the transcriptional control of glucose and energy metabolism. As such, pharmacological activation of PPARγ has emerged as an efficient approach for treating metabolic disorders with the current use of thiazolidinediones to improve insulin resistance in diabetic patients. The recent identification of growth hormone releasing peptides (GHRP) as potent inducers of PPARγ through activation of the scavenger receptor CD36 has defined a novel alternative to regulate essential aspects of lipid and energy metabolism. Recent advances on the emerging role of CD36 and GHRP hexarelin in regulating PPARγ downstream actions with benefits on atherosclerosis, hepatic cholesterol biosynthesis and fat mitochondrial biogenesis are summarized here. The response of PPARγ coactivator PGC-1 is also discussed in these effects. The identification of the GHRP-CD36-PPARγ pathway in controlling various tissue metabolic functions provides an interesting option for metabolic disorders.
Collapse
|
15
|
Wang Q, Lin P, Li P, Feng L, Ren Q, Xie X, Xu J. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway. Life Sci 2017; 186:50-58. [PMID: 28782532 DOI: 10.1016/j.lfs.2017.08.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
AIMS The aim of this study was to investigate the cardioprotective effects of ghrelin against myocardial ischemia/reperfusion (I/R) injury and the underlying mechanism. MAIN METHODS Sprague-Dawley rats were randomized into Sham, I/R and I/R+ghrelin groups. After 30 minutes ischemia, ghrelin (8nmol/kg) was injected intraperitoneally at the time of reperfusion in the I/R+ghrelin group. Then hemodynamic parameters were observed at 24h after reperfusion. KEY FINDINGS Ghrelin exhibited dramatic improvement in cardiac functions, as manifested by increased LVSP and ±dP/dtmax and decreased LVDP. At 24h after reperfusion, ghrelin significantly attenuated the myocardial infarction area and apoptosis, accompanied with a decrease in the levels of the myocyte injury marker enzymes. Oxidative stress injury and inflammatory response were also relieved by ghrelin. Western blot showed that the expression of TLR4, NLRP3, and caspase-1 were obviously increased in I/R group, while ghrelin significantly inhibited the I/R-induced TLR4, NLRP3, and caspase-1 expression. Ghrelin could inhibit the increased protein levels of NLRP3, caspase-1, and IL-1β induced by lipopolysacharide in primary cultured cardiomyocytes of neonatal rats. SIGNIFICANCE Ghrelin protected the heart against I/R injury by inhibiting oxidative stress and inflammation via TLR4/NLRP3 signaling pathway. Our results might provide new strategy and target for treatment of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Qin Wang
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China
| | - Ping Lin
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China.
| | - Peng Li
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China
| | - Li Feng
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China
| | - Qian Ren
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China
| | - Xiaofeng Xie
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China
| | - Jing Xu
- Department of Geriatrics, The 3rd Hospital of Hangzhou, Hangzhou, China
| |
Collapse
|