1
|
Randell RL, Balevic SJ, Greenberg RG, Cohen-Wolkowiez M, Thompson EJ, Venkatachalam S, Smith MJ, Bendel C, Bliss JM, Chaaban H, Chhabra R, Dammann CEL, Downey LC, Hornik C, Hussain N, Laughon MM, Lavery A, Moya F, Saxonhouse M, Sokol GM, Trembath A, Weitkamp JH, Hornik CP. Opportunistic dried blood spot sampling validates and optimizes a pediatric population pharmacokinetic model of metronidazole. Antimicrob Agents Chemother 2024; 68:e0153323. [PMID: 38477706 PMCID: PMC10994817 DOI: 10.1128/aac.01533-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Pharmacokinetic models rarely undergo external validation in vulnerable populations such as critically ill infants, thereby limiting the accuracy, efficacy, and safety of model-informed dosing in real-world settings. Here, we describe an opportunistic approach using dried blood spots (DBS) to evaluate a population pharmacokinetic model of metronidazole in critically ill preterm infants of gestational age (GA) ≤31 weeks from the Metronidazole Pharmacokinetics in Premature Infants (PTN_METRO, NCT01222585) study. First, we used linear correlation to compare 42 paired DBS and plasma metronidazole concentrations from 21 preterm infants [mean (SD): post natal age 28.0 (21.7) days, GA 26.3 (2.4) weeks]. Using the resulting predictive equation, we estimated plasma metronidazole concentrations (ePlasma) from 399 DBS collected from 122 preterm and term infants [mean (SD): post natal age 16.7 (15.8) days, GA 31.4 (5.1) weeks] from the Antibiotic Safety in Infants with Complicated Intra-Abdominal Infections (SCAMP, NCT01994993) trial. When evaluating the PTN_METRO model using ePlasma from the SCAMP trial, we found that the model generally predicted ePlasma well in preterm infants with GA ≤31 weeks. When including ePlasma from term and preterm infants with GA >31 weeks, the model was optimized using a sigmoidal Emax maturation function of postmenstrual age on clearance and estimated the exponent of weight on volume of distribution. The optimized model supports existing dosing guidelines and adds new data to support a 6-hour dosing interval for infants with postmenstrual age >40 weeks. Using an opportunistic DBS to externally validate and optimize a metronidazole population pharmacokinetic model was feasible and useful in this vulnerable population.
Collapse
Affiliation(s)
- Rachel L. Randell
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Stephen J. Balevic
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Rachel G. Greenberg
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Michael Cohen-Wolkowiez
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Elizabeth J. Thompson
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | | | - Michael J. Smith
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Catherine Bendel
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Joseph M. Bliss
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Hala Chaaban
- Division of Neonatology, Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Rakesh Chhabra
- Division of Neonatology, Department of Pediatrics, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | | | - L. Corbin Downey
- Department of Pediatrics, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Chi Hornik
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Naveed Hussain
- Division of Neonatology, Department of Pediatrics, Connecticut Children’s, Hartford, Connecticut, USA
| | - Matthew M. Laughon
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Fernando Moya
- Division of Wilmington Pediatric Specialties, Department of Pediatrics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Matthew Saxonhouse
- Division of Neonatology, Department of Pediatrics, Levine Children’s Hospital, Wake Forest School of Medicine, Charlotte campus, Atrium Healthcare, Charlotte, North Carolina, USA
| | - Gregory M. Sokol
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrea Trembath
- Division of Neonatal-Perinatal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joern-Hendrik Weitkamp
- Mildred Stahlman Division of Neonatology, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christoph P. Hornik
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Best Pharmaceuticals for Children Act – Pediatric Trials Network Steering Committee
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
- Division of Neonatology, Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
- Division of Neonatology, Department of Pediatrics, Hackensack University Medical Center, Hackensack, New Jersey, USA
- Department of Pediatrics, Tufts Medical Center, Tufts University, Boston, Massachusetts, USA
- Department of Pediatrics, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
- Division of Neonatology, Department of Pediatrics, Connecticut Children’s, Hartford, Connecticut, USA
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Loma Linda University, Loma Linda, California, USA
- Division of Wilmington Pediatric Specialties, Department of Pediatrics, UNC School of Medicine, Chapel Hill, North Carolina, USA
- Division of Neonatology, Department of Pediatrics, Levine Children’s Hospital, Wake Forest School of Medicine, Charlotte campus, Atrium Healthcare, Charlotte, North Carolina, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Neonatal-Perinatal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Mildred Stahlman Division of Neonatology, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Daousani C, Karalis V, Loukas YL, Schulpis KH, Alexiou K, Dotsikas Y. Dried Blood Spots in Neonatal Studies: A Computational Analysis for the Role of the Hematocrit Effect. Pharmaceuticals (Basel) 2023; 16:1126. [PMID: 37631041 PMCID: PMC10459320 DOI: 10.3390/ph16081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Dried blood spot (DBS) microsampling is extensively employed in newborn screening (NBS) and neonatal studies. However, the impact of variable neonatal hematocrit (Ht) values on the results can be a source of analytical error, and the use of fixed Ht for calibration (Htcal) is not representative of all neonatal subpopulations. A computational approach based on neonatal demographics was developed and implemented in R® language to propose a strategy using correction factors to address the Ht effect in neonatal DBS partial-spot assays. A rational "tolerance level" was proposed for the Ht effect contribution to the total analytical error and a safe Ht range for neonatal samples, where the correction of concentrations can be omitted. Furthermore, an "alert zone" for a false positive or negative result in NBS was proposed, where the Ht effect has to be considered. Results point toward the use of Htcal values closely representative of populations under analysis and an acceptable level of percentage relative error can be attributed to the Ht effect, diminishing the probability of correction. Overall, the impact of the Ht effect on neonatal studies is important and future work may further investigate this parameter, correlated to other clinical variables potentially affecting results.
Collapse
Affiliation(s)
- Chrysa Daousani
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Athens, Greece
| | - Vangelis Karalis
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Athens, Greece
| | - Yannis L. Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Athens, Greece
| | | | | | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Athens, Greece
| |
Collapse
|
3
|
Commander SJ, Benjamin DK, Wu H, Thompson EJ, Lane M, Clark RH, Greenberg RG, Hornik CP. Exposure-response Relationships of Metronidazole in Infants: Integration of Electronic Health Record Data With Population Pharmacokinetic Modeling-derived Exposure Simulation. Pediatr Infect Dis J 2023; 42:27-31. [PMID: 36201670 PMCID: PMC9742159 DOI: 10.1097/inf.0000000000003726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Infants frequently receive metronidazole at variable doses and duration for surgical site infection prophylaxis and treatment of intra-abdominal infections. Seizures are a rare (but potentially devastating) side effect of metronidazole, yet the prevalence of seizures in infants, as well as the relationship with metronidazole dose and exposure, are unknown. METHODS We examined the Pediatrix Clinical Data Warehouse for infants in neonatal intensive care units from 1997 to 2018 who received at least 1 dose of metronidazole during their first 120 days of life. We used an existing population pharmacokinetic model to simulate exposure parameters, estimating multivariable associations between metronidazole dosing and exposure parameters, and the occurrence of seizure. RESULTS There were 19,367 intravenous doses of metronidazole given to 1546 infants, and 31 experienced a seizure. Infants with a seizure had a longer median (interquartile values) duration of metronidazole exposure than those without (11 days [6, 15] vs. 7 [4, 11], P = 0.01). Each added day of metronidazole (OR = 1.06, 95% CI: 1.02-1.10), and each standard deviation increase in cumulative area under the plasma concentration-time curve (OR = 1.27, 95% CI: 1.11-1.45) were associated with increased odds of seizure. Higher simulated maximum plasma concentration was associated with lower odds of seizure (OR = 0.88, 95% CI: 0.81-0.96). CONCLUSIONS Longer metronidazole exposure and higher cumulative exposure could be associated with increased odds of infant seizures. Using a large observational dataset allowed us to identify a rare adverse event, but prospective studies are needed to validate this finding and further characterize metronidazole dose- and exposure-safety relationships.
Collapse
Affiliation(s)
- Sarah Jane Commander
- Duke Clinical Research Institute, Durham, North Carolina
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Daniel K. Benjamin
- Duke Clinical Research Institute, Durham, North Carolina
- Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Huali Wu
- Duke Clinical Research Institute, Durham, North Carolina
| | - Elizabeth J. Thompson
- Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Morgan Lane
- Duke Clinical Research Institute, Durham, North Carolina
| | - Reese H. Clark
- The MEDNAX Center for Research, Education, Quality and Safety, Sunrise, Florida
| | - Rachel G. Greenberg
- Duke Clinical Research Institute, Durham, North Carolina
- Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Christoph P. Hornik
- Duke Clinical Research Institute, Durham, North Carolina
- Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
4
|
Syafhan NF, Donnelly R, Harper R, Harding J, Mulligan C, Hogg A, Scott M, Fleming G, Scullin C, Hawwa AF, Chen G, Parsons C, McElnay JC. Adherence to metformin in adults with type 2 diabetes: a combined method approach. J Pharm Policy Pract 2022; 15:61. [PMID: 36224634 PMCID: PMC9554867 DOI: 10.1186/s40545-022-00457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Medication adherence, one of the most important aspects in the process of optimal medicines use, is unfortunately still a major challenge in modern healthcare, and further research is required into how adherence can be assessed and optimised. The aim of this study was to use a combined method approach of self-report and dried blood spot (DBS) sampling coupled with population pharmacokinetic (PopPK) modelling, to assess adherence to metformin in adult patients with type 2 diabetes. Further aims were to assess metformin exposure levels in patients, determine factors associated with non-adherence with prescribed metformin, and to explore the relationship between adherence and therapeutic outcomes. Methods A combined method approach was used to evaluate metformin adherence in patients with type 2 diabetes who had been prescribed metformin for a minimum period of 6 months. Patients were recruited from consultant-led diabetic outpatient clinics at three hospitals in Northern Ireland, UK. Data collection involved self-reported questionnaires [Medication Adherence Report Scale (MARS), Beliefs about Medicines Questionnaire and Centre for Epidemiologic Studies Depression Scale], direct measurement of metformin concentration in DBS samples, and researcher-led patient interviews. The DBS sampling approach was coupled with population pharmacokinetic (PopPK) modelling, which took account of patient characteristics, metformin dosage and type of formulation prescribed (immediate or sustained release). Results The proportion of patients considered to be adherent to their prescribed metformin, derived from self-reported MARS scores and metformin concentration in DBS samples, was 61.2% (74 out of 121 patients). The majority (n = 103, 85.1%) of recruited patients had metformin exposure levels that fell within the therapeutic range. However, 17 patients (14.1%) had low exposure to metformin and one patient (0.8%) had undetectable metformin level in their blood sample (non-exposure). Metformin self-administration and use of a purchased adherence pill box significantly increased the probability of a patient being classified as adherent based on logistic regression analysis. Both HbA1c and random glucose levels (representing poor glycaemic control) in the present research were, however, not statistically linked to non-adherence to metformin (P > 0.05). Conclusions A significant proportion of participating patients were not fully adherent with their therapy. DBS sampling together with the use of a published PopPK model was a useful, novel, direct, objective approach to estimate levels of adherence in adult patients with type 2 diabetes (61.2%). Supplementary Information The online version contains supplementary material available at 10.1186/s40545-022-00457-5.
Collapse
Affiliation(s)
- Nadia Farhanah Syafhan
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK.,Department of Clinical Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Rosemary Donnelly
- Ulster Hospital, South Eastern Health and Social Care Trust, Belfast, UK
| | - Roy Harper
- Ulster Hospital, South Eastern Health and Social Care Trust, Belfast, UK
| | - Janet Harding
- Ulster Hospital, South Eastern Health and Social Care Trust, Belfast, UK
| | - Ciara Mulligan
- Ulster Hospital, South Eastern Health and Social Care Trust, Belfast, UK
| | - Anita Hogg
- Medicines Optimisation Innovation Centre, Northern Health Social Care Trust, Antrim, Northern Ireland, UK
| | - Michael Scott
- Medicines Optimisation Innovation Centre, Northern Health Social Care Trust, Antrim, Northern Ireland, UK
| | - Glenda Fleming
- Medicines Optimisation Innovation Centre, Northern Health Social Care Trust, Antrim, Northern Ireland, UK
| | - Claire Scullin
- Medicines Optimisation Innovation Centre, Northern Health Social Care Trust, Antrim, Northern Ireland, UK
| | - Ahmed F Hawwa
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK.,School of Biological Sciences. Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gaoyun Chen
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Carole Parsons
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - James C McElnay
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
5
|
Alsous MM, Hawwa AF, McElnay JC. Hematocrit, blood volume, and surface area of dried blood spots - a quantitative model. Drug Test Anal 2020; 12:555-560. [PMID: 32061031 DOI: 10.1002/dta.2776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
The use of the dried blood spot (DBS) sampling technique has extended the scope of clinical research, particularly in children. The effects of different hematocrit levels (25-55%) and different blood volumes (7.5-30 μL) on the surface area of the blood spots were investigated using ImageJ® software. Variation in hematocrit levels between patients and inaccuracies in blood volumes applied to Guthrie cards can have a marked effect on analyte concentrations measured in DBS samples. The current study presents a validated model that links blood volume and hematocrit to the surface area of the blood spot. The final model showed that both factors affect the blood spot surface area, however, the positive effect of blood volume is higher than the negative effect of hematocrit. The measurement of surface area could be added as an additional quality control step in clinical studies that have adopted fixed volume DBS sampling for the quantification of the analytes. This approach can be used in estimating the hematocrit if this is not known for a patient or estimating the volume in spots that are visually different in size from the norm, i.e. technical error.
Collapse
Affiliation(s)
- Mervat M Alsous
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, UK.,Faculty of Pharmacy, Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan.,Faculty of Pharmacy, Department of Pharmacy Practice, Yarmouk University, Irbid, Jordan
| | - Ahmed F Hawwa
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, UK.,University Hospital Southampton NHS Foundation Trust, Tremona Rd, Southampton SO16 6YD, UK
| | - James C McElnay
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, UK
| |
Collapse
|
6
|
Determination of azathioprine/6-mercaptopurine metabolites in dried blood spots: Correlation with RBC concentrations. J Pharm Biomed Anal 2020; 178:112870. [DOI: 10.1016/j.jpba.2019.112870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022]
|
7
|
Le J, Bradley JS. Optimizing Antibiotic Drug Therapy in Pediatrics: Current State and Future Needs. J Clin Pharmacol 2019; 58 Suppl 10:S108-S122. [PMID: 30248202 DOI: 10.1002/jcph.1128] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022]
Abstract
The selection of the right antibiotic and right dose necessitates clinicians understand the contribution of pharmacokinetic variability stemming from age-related physiologic maturation and the pharmacodynamics to optimize drug exposure for clinical response. The complexity of selecting the right dose arises from the multiplicity of pediatric age groups, from premature neonates to adolescents. Body size and age (which relate to organ function) must be incorporated to optimize antibiotic dosing in this vulnerable population. In the effort to optimize and individualize drug dosing regimens, clinical pharmacometrics that incorporate population-based pharmacokinetic modeling, Bayesian estimation, and Monte Carlo simulations are utilized as a quantitative approach to understanding and predicting the pharmacology and clinical and microbiologic efficacy of antibiotics. In addition, opportunistic study designs and alternative blood sampling strategies can serve as practical approaches to ensure successful conduct of pediatric studies. This review article examines relevant literature on optimization of antibiotic pharmacotherapy in pediatric populations published within the last decade. Specific pediatric antibiotic data, including beta-lactam antibiotics, aminoglycosides, and vancomycin, are critically evaluated.
Collapse
Affiliation(s)
- Jennifer Le
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - John S Bradley
- Department of Pediatrics, Division of Infectious Diseases, University of California at San Diego, La Jolla, CA, USA.,Rady Children's Hospital San Diego, San Diego, CA, USA
| |
Collapse
|
8
|
Child J, Chen X, Mistry RD, Somme S, MacBrayne C, Anderson PL, Jones RN, Parker SK. Pharmacokinetic and Pharmacodynamic Properties of Metronidazole in Pediatric Patients With Acute Appendicitis: A Prospective Study. J Pediatric Infect Dis Soc 2019; 8:297-302. [PMID: 29788329 DOI: 10.1093/jpids/piy040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/24/2018] [Indexed: 11/14/2022]
Abstract
BACKGROUND Metronidazole is traditionally dosed every 6-8 hours even though in adults it has a long half-life, concentration-dependent killing, and 3-hour postantibiotic effect. Based on this logic, some pediatric hospitals adopted once-daily dosing for appendicitis, despite limited pharmacokinetics-pharmacodynamics (PK/PD) in children. We studied pediatric patients with appendicitis given metronidazole once daily to determine whether this dosing would meet target area under the curve (AUC)/minimum inhibitory concentration (MIC) ratio of ≥70 for Bacteroides fragilis. METHODS One hundred pediatric patients aged 4-17 years had an average of 3 blood draws per patient during the first 24 hours after a 30 mg/kg per dose of intravenous metronidazole. Concentrations of drug were determined using validated liquid chromatography and tandem mass spectrometry. A NONMEM model was constructed for determining PK, followed by Monte Carlo simulations to generate a population of plasma concentration-time AUC of metronidazole and hydroxy-metronidazole. RESULTS Simulated AUC values met target attainment (AUC/MIC ratio of ≥70 to B fragilis MICs) for 96%-100% of all patients for an MIC of 2 mcg/mL. For MICs of 4 and 8 mcg/mL, target attainment ranged from 61% to 97% and 9% to 71%, respectively. Areas under the curve were similar to that of adults receiving 1000 mg and 1500 mg q24, or 500 mg q8 hours. CONCLUSIONS Metronidazole, 30 mg/kg per dose, once daily achieved AUC target attainment for B fragilis with an MIC of 2 mcg/mL or less in pediatric appendicitis patients. Based on this and studies in adults, there does not seem to be any PK/PD advantage of more frequent dosing in this population.
Collapse
Affiliation(s)
- Jason Child
- Department of Pharmacy, Children's Hospital Colorado, Aurora
| | - Xinhui Chen
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora
| | - Rakesh D Mistry
- Section of Emergency Medicine, Department of Pediatrics, Children's Hospital Colorado, Aurora
| | - Stig Somme
- Division of General, Thoracic, and Fetal Pediatric Surgery, Department of Pediatrics, Children's Hospital Colorado, Aurora
| | - Christine MacBrayne
- Department of Pharmacy, Children's Hospital Colorado, Aurora.,University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora
| | - Peter L Anderson
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora
| | | | - Sarah K Parker
- Section of Infectious Diseases, Department of Pediatrics, Children's Hospital Colorado, Aurora
| |
Collapse
|
9
|
Shebley M, Menon RM, Gibbs JP, Dave N, Kim SY, Marroum PJ. Accelerating Drug Development in Pediatric Oncology With the Clinical Pharmacology Storehouse. J Clin Pharmacol 2018; 59:625-637. [PMID: 30562405 PMCID: PMC6590144 DOI: 10.1002/jcph.1359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Abstract
Pediatric drug development is a challenging process due to the rarity of the population, the need to meet regulatory requirements across the globe, the associated uncertainty in extrapolating data from adults, the paucity of validated biomarkers, and the lack of systematic testing of drugs in pediatric patients. In oncology, pediatric drug development has additional challenges that have historically delayed availability of safe and effective medicines for children. In particular, the traditional approach to pediatric oncology drug development involves conducting phase 1 studies in children once the drug has been characterized and in some cases approved for use in adults. The objective of this article is to describe clinical pharmacology factors that influence pediatric oncology trial design and execution and to highlight efficient approaches for designing and expediting oncology drug development in children. The topics highlighted in this article include (1) study design considerations, (2) updated dosing approaches, (3) ways to overcome the significant biopharmaceutical challenges unique to the oncology pediatric population, and (4) use of data analysis strategies for extrapolating data from adults, with case studies. Finally, suggestions for ways to use clinical pharmacology approaches to accelerate pediatric oncology drug development are provided.
Collapse
Affiliation(s)
- Mohamad Shebley
- Clinical Pharmacology and PharmacometricsAbbVie Inc.North ChicagoILUSA
| | - Rajeev M. Menon
- Clinical Pharmacology and PharmacometricsAbbVie Inc.North ChicagoILUSA
| | - John P. Gibbs
- Clinical Pharmacology and PharmacometricsAbbVie Inc.North ChicagoILUSA
| | - Nimita Dave
- Clinical Pharmacology and PharmacometricsAbbVie Inc.North ChicagoILUSA
| | - Su Y. Kim
- Oncology DevelopmentAbbVie Inc.North ChicagoILUSA
| | | |
Collapse
|
10
|
Validation of a Dried Blood Spot Ceftriaxone Assay in Papua New Guinean Children with Severe Bacterial Infections. Antimicrob Agents Chemother 2018; 62:AAC.00940-18. [PMID: 30012775 DOI: 10.1128/aac.00940-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/11/2018] [Indexed: 01/04/2023] Open
Abstract
Dried blood spot (DBS) antibiotic assays can facilitate pharmacokinetic (PK) studies in situations where venous blood sampling is logistically and/or ethically challenging. In this study, we aimed to demonstrate the validity of a DBS ceftriaxone assay in a PK study of children with severe illness from Papua New Guinea (PNG), a setting in which health care resources are limited and anemia is common. Using a previously validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay, serial plasma and DBS ceftriaxone concentrations were measured in PNG children aged 5 to 10 years with acute bacterial meningitis or severe pneumonia. The concentration-time data were incorporated into population PK models. Ten children were recruited with an admission hematocrit of 0.22 to 0.52. Raw data demonstrated good correlation between plasma and DBS concentrations (Spearman's rank correlation coefficient [rs] = 0.94 [95% confidence interval, 0.91 to 0.97], P < 0.0001). A marked systematic hematocrit bias was observed, with lower hematocrits resulting in underestimation of DBS-predicted plasma concentration. After adjustment for red cell partitioning and hematocrit bias, a population PK model comparing plasma and DBS-predicted plasma concentrations did not differ in terms of key PK parameters, including clearance, volume of distribution, and residual variability. The performance of the ceftriaxone DBS assay is robust and provides reassurance that this platform can be used as a surrogate for plasma concentrations to provide valid PK and PK/pharmacodynamic studies of severely unwell children hospitalized in a resource-limited setting. It highlights the importance of hematocrit bias in validation studies of DBS assays.
Collapse
|
11
|
Stancil SL, van Haandel L, Abdel-Rahman S, Pearce RE. Development of a UPLC-MS/MS method for quantitation of metronidazole and 2-hydroxy metronidazole in human plasma and its application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:272-278. [DOI: 10.1016/j.jchromb.2018.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
|
12
|
Clinical application of microsampling versus conventional sampling techniques in the quantitative bioanalysis of antibiotics: a systematic review. Bioanalysis 2018; 10:407-423. [DOI: 10.4155/bio-2017-0269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Conventional sampling techniques for clinical pharmacokinetic studies often require the removal of large blood volumes from patients. This can result in a physiological or emotional burden, particularly for neonates or pediatric patients. Antibiotic pharmacokinetic studies are typically performed on healthy adults or general ward patients. These may not account for alterations to a patient’s pathophysiology and can lead to suboptimal treatment. Microsampling offers an important opportunity for clinical pharmacokinetic studies in vulnerable patient populations, where smaller sample volumes can be collected. This systematic review provides a description of currently available microsampling techniques and an overview of studies reporting the quantitation and validation of antibiotics using microsampling. A comparison of microsampling to conventional sampling in clinical studies is included.
Collapse
|
13
|
Le J, Poindexter B, Sullivan JE, Laughon M, Delmore P, Blackford M, Yogev R, James LP, Melloni C, Harper B, Mitchell J, Benjamin DK, Boakye-Agyeman F, Cohen-Wolkowiez M. Comparative Analysis of Ampicillin Plasma and Dried Blood Spot Pharmacokinetics in Neonates. Ther Drug Monit 2018; 40:103-108. [PMID: 29271816 PMCID: PMC5764797 DOI: 10.1097/ftd.0000000000000466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Dried blood spot (DBS) is a practical sampling strategy for pharmacokinetic studies in neonates. The utility of DBS to determine the population pharmacokinetics (pop-PK) of ampicillin, as well as accuracy versus plasma samples, was evaluated. METHODS An open-label, multicenter, opportunistic, prospective study was conducted in neonates. Ampicillin concentrations from plasma and DBS (CONCPlasma and CONCDBS) were measured by liquid chromatographic tandem mass spectrometry and analyzed using pop-PK and statistical (including transformation) approaches. RESULTS A total of 29 paired plasma and DBS samples from 18 neonates were analyzed. The median (range) gestational age and postnatal age were 37 (27-41) weeks and 8 (1-26) days, respectively. The geometric mean of CONCDBS to CONCPlasma ratio was 0.56. Correlation analysis demonstrated strong association between CONCPlasma and CONCDBS (r = 0.902, analysis of variance P < 0.001). Using linear regression transformation, the estimated CONCPlasma (eCONCPlasma) was derived using (CONCDBS - 3.223)/0.51. The median bias and geometric mean ratio improved to -11% and 0.88 (Wilcoxon signed-rank test, P < 0.001), respectively, when comparing eCONCPlasma to CONCPlasma. Furthermore, using pop-PK modeling, the median bias (interquartile range) for clearance and individual predicted concentrations improved to 8% (-11 to 50) and -8% (-34 to 11), respectively, when eCONCPlasma was used. CONCLUSIONS After transformation, DBS sampling accurately predicted ampicillin exposure in neonates.
Collapse
Affiliation(s)
- Jennifer Le
- University of California, San Diego, Skaggs School of Pharmacy, CA
| | - Brenda Poindexter
- Indiana University School of Medicine, Indianapolis, IN, and Cincinnati Children's, Cincinnati, OH
| | - Janice E. Sullivan
- University of Louisville, Norton Children's Hospital and Kosair Charities Pediatric Clinical Research Unit, Louisville, KY
| | - Matthew Laughon
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | - Ram Yogev
- Ann and Robert H. Lurie Children's Hospital of Chicago, IL
| | - Laura P. James
- University of Arkansas for Medical Sciences and Arkansas Children's Hospital at Little Rock, Little Rock, AR
| | - Chiara Melloni
- Duke University Medical Center, Durham, NC
- Duke Clinical Research Institute, Durham, NC
| | | | | | - Daniel K. Benjamin
- Duke University Medical Center, Durham, NC
- Duke Clinical Research Institute, Durham, NC
| | - Felix Boakye-Agyeman
- Duke University Medical Center, Durham, NC
- Duke Clinical Research Institute, Durham, NC
| | | |
Collapse
|
14
|
Chen G, Jirjees F, Al Bawab A, McElnay JC. Quantification of amlodipine in dried blood spot samples by high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1072:252-258. [PMID: 29195144 DOI: 10.1016/j.jchromb.2017.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/20/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
A sensitive and specific method, utilising high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) was developed for the quantitative determination of amlodipine in dried blood spot (DBS) samples. Chromatographic separation was achieved using a Waters XBridge C18 column with gradient elution of a mixture of water and acetonitrile containing 0.1% formic acid (v/v). Amlodipine was quantified using a Waters Quattro Premier mass spectrometer coupled with an electro-spray ionization (ESI) source in positive ion mode. The MRM transitions of 408.9 m/z→238.1m/z and 408.9→294.0 m/z were used to quantify and qualify amlodipine, respectively. The method was validated across the concentration range of 0.5-30ng/mL by assessing specificity, sensitivity, linearity, precision, accuracy, recovery and matrix effect according to the Food and Drug Administration (FDA) guidelines. This method was also validated clinically within a large pharmacoepidemiological study in which amlodipine blood concentration was determined in patients who had been prescribed this medication.
Collapse
Affiliation(s)
- Gaoyun Chen
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Feras Jirjees
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Abdel Al Bawab
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman, Jordan
| | - James C McElnay
- Clinical and Practice Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
15
|
Rivera-Chaparro ND, Cohen-Wolkowiez M, Greenberg RG. Dosing antibiotics in neonates: review of the pharmacokinetic data. Future Microbiol 2017; 12:1001-1016. [PMID: 28758800 PMCID: PMC5627030 DOI: 10.2217/fmb-2017-0058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
Antibiotics are often used in neonates despite the absence of relevant dosing information in drug labels. For neonatal dosing, clinicians must extrapolate data from studies for adults and older children, who have strikingly different physiologies. As a result, dosing extrapolation can lead to increased toxicity or efficacy failures in neonates. Driven by these differences and recent legislation mandating the study of drugs in children and neonates, an increasing number of pharmacokinetic studies of antibiotics are being performed in neonates. These studies have led to new dosing recommendations with particular consideration for neonate body size and maturation. Herein, we highlight the available pharmacokinetic data for commonly used systemic antibiotics in neonates.
Collapse
Affiliation(s)
- Nazario D Rivera-Chaparro
- Duke Clinical Research Institute, 2400 Pratt Street, Durham, NC 27705, USA
- Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Michael Cohen-Wolkowiez
- Duke Clinical Research Institute, 2400 Pratt Street, Durham, NC 27705, USA
- Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Rachel G Greenberg
- Duke Clinical Research Institute, 2400 Pratt Street, Durham, NC 27705, USA
- Department of Pediatrics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
16
|
Antimicrobial Agent Dosing in Infants. Clin Ther 2016; 38:1948-60. [DOI: 10.1016/j.clinthera.2016.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022]
|
17
|
Dorofaeff T, Bandini RM, Lipman J, Ballot DE, Roberts JA, Parker SL. Uncertainty in Antibiotic Dosing in Critically Ill Neonate and Pediatric Patients: Can Microsampling Provide the Answers? Clin Ther 2016; 38:1961-75. [PMID: 27544661 DOI: 10.1016/j.clinthera.2016.07.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE With a decreasing supply of antibiotics that are effective against the pathogens that cause sepsis, it is critical that we learn to use currently available antibiotics optimally. Pharmacokinetic studies provide an evidence base from which we can optimize antibiotic dosing. However, these studies are challenging in critically ill neonate and pediatric patients due to the small blood volumes and associated risks and burden to the patient from taking blood. We investigate whether microsampling, that is, obtaining a biologic sample of low volume (<50 μL), can improve opportunities to conduct pharmacokinetic studies. METHODS We performed a literature search to find relevant articles using the following search terms: sepsis, critically ill, severe infection, intensive care AND antibiotic, pharmacokinetic, p(a)ediatric, neonate. For microsampling, we performed a search using antibiotics AND dried blood spots OR dried plasma spots OR volumetric absorptive microsampling OR solid-phase microextraction OR capillary microsampling OR microsampling. Databases searched include Web of Knowledge, PubMed, and EMbase. FINDINGS Of the 32 antibiotic pharmacokinetic studies performed on critically ill neonate or pediatric patients in this review, most of the authors identified changes to the pharmacokinetic properties in their patient group and recommended either further investigations into this patient population or therapeutic drug monitoring to ensure antibiotic doses are suitable. There remain considerable gaps in knowledge regarding the pharmacokinetic properties of antibiotics in critically ill pediatric patients. Implementing microsampling in an antibiotic pharmacokinetic study is contingent on the properties of the antibiotic, the pathophysiology of the patient (and how this can affect the microsample), and the location of the patient. A validation of the sampling technique is required before implementation. IMPLICATIONS Current antibiotic regimens for critically ill neonate and pediatric patients are frequently suboptimal due to a poor understanding of altered pharmacokinetic properties. An assessment of the suitability of microsampling for pharmacokinetic studies in neonate and pediatric patients is recommended before wider use. The method of sampling, as well as the method of bioanalysis, also requires validation to ensure the data obtained reflect the true result.
Collapse
Affiliation(s)
- Tavey Dorofaeff
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia; Paediatric Intensive Care, Lady Cilento Children's Hospital, Brisbane, Australia
| | - Rossella M Bandini
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa; Wits UQ Critical Care Infection Collaboration, Johannesburg, South Africa
| | - Jeffrey Lipman
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia; Wits UQ Critical Care Infection Collaboration, Johannesburg, South Africa; Department of Intensive Care Medicine, Royal Brisbane Hospital, Brisbane, Australia; Faculty of Health, Brisbane, Queensland University of Technology, Brisbane, Australia
| | - Daynia E Ballot
- Wits UQ Critical Care Infection Collaboration, Johannesburg, South Africa; Department of Paediatrics and Child Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane Hospital, Brisbane, Australia; Department of Pharmacy, Royal Brisbane Hospital, Brisbane, Australia; School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Suzanne L Parker
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
18
|
Validation and Application of a Dried Blood Spot Assay for Biofilm-Active Antibiotics Commonly Used for Treatment of Prosthetic Implant Infections. Antimicrob Agents Chemother 2016; 60:4940-55. [PMID: 27270283 DOI: 10.1128/aac.00756-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 11/20/2022] Open
Abstract
Dried blood spot (DBS) antibiotic assays can facilitate pharmacokinetic (PK)/pharmacodynamic (PD) studies in situations where venous blood sampling is logistically difficult. We sought to develop, validate, and apply a DBS assay for rifampin (RIF), fusidic acid (FUS), and ciprofloxacin (CIP). These antibiotics are considered active against organisms in biofilms and are therefore commonly used for the treatment of infections associated with prosthetic implants. A liquid chromatography-mass spectroscopy DBS assay was developed and validated, including red cell partitioning and thermal stability for each drug and the rifampin metabolite desacetyl rifampin (Des-RIF). Plasma and DBS concentrations in 10 healthy adults were compared, and the concentration-time profiles were incorporated into population PK models. The limits of quantification for RIF, Des-RIF, CIP, and FUS in DBS were 15 μg/liter, 14 μg/liter, 25 μg/liter, and 153 μg/liter, respectively. Adjusting for hematocrit, red cell partitioning, and relative recovery, DBS-predicted plasma concentrations were comparable to measured plasma concentrations for each antibiotic (r > 0.95; P < 0.0001), and Bland-Altman plots showed no significant bias. The final population PK estimates of clearance, volume of distribution, and time above threshold MICs for measured and DBS-predicted plasma concentrations were comparable. These drugs were stable in DBSs for at least 10 days at room temperature and 1 month at 4°C. The present DBS antibiotic assays are robust and can be used as surrogates for plasma concentrations to provide valid PK and PK/PD data in a variety of clinical situations, including therapeutic drug monitoring or studies of implant infections.
Collapse
|
19
|
Abstract
Pharmacokinetic studies are essential for the development of safe and effective antimalarial treatment regimens, but there are clinical situations in which there are limited data on drug disposition. These include very young children, pregnant women, and where drug interactions may alter treatment response. New approaches such as sampling methods involving low volumes and minimal preparation such as dried blood spots, highly sensitive and specific multidrug assays, and population PK analyses which can evaluate the influence of covariates such as age, pregnancy and coadministered therapies, can generate robust data that inform treatment in the most challenging situations in the tropics.
Collapse
Affiliation(s)
- Timothy M E Davis
- a School of Medicine and Pharmacology, Fremantle Hospital , University of Western Australia , Fremantle , Western Australia , Australia
| |
Collapse
|
20
|
Abstract
Neonatal sepsis is one of the most fulminating conditions in neonatal intensive care units. Antipathogen and supportive care are administered routinely, but do not deliver satisfactory results. In addition, the efforts to treat neonatal sepsis with anti-inflammatory agents have generally shown to be futile. The accumulating data imply that intracellular redox changes intertwined into neonatal sepsis redox cycle represent the main cause of dysfunction of mitochondria and cells in neonatal sepsis. Our aim here is to support the new philosophy in neonatal sepsis treatment, which involves the integration of mechanisms that are responsible for cellular dysfunction and organ failure, the recognition of the most important targets, and the selection of safe agents that can stop the neonatal sepsis redox cycle by hitting the hot spots. Redox-active agents that could be beneficial for neonatal sepsis treatment according to these criteria include lactoferrin, interleukin 10, zinc and selenium supplements, ibuprofen, edaravone, and pentoxifylline.
Collapse
|
21
|
Validation and Application of a Dried Blood Spot Ceftriaxone Assay. Antimicrob Agents Chemother 2015; 60:14-23. [PMID: 26438505 DOI: 10.1128/aac.01740-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022] Open
Abstract
Dried blood spot (DBS) antibiotic assays can facilitate pharmacokinetic/pharmacodynamic (PK/PD) studies in situations where venous blood sampling is logistically and/or ethically problematic. In this study, we aimed to develop, validate, and apply a DBS ceftriaxone assay. A liquid chromatography-tandem mass spectroscopy (LC-MS/MS) DBS ceftriaxone assay was assessed for matrix effects, process efficiency, recovery, variability, and limits of quantification (LOQ) and detection (LOD). The effects of hematocrit, protein binding, red cell partitioning, and chad positioning were evaluated, and thermal stability was assessed. Plasma, DBS, and cell pellet ceftriaxone concentrations in 10 healthy adults were compared, and plasma concentration-time profiles of DBS and plasma ceftriaxone were incorporated into population PK models. The LOQ and LOD for ceftriaxone in DBS were 0.14 mg/liter and 0.05 mg/liter, respectively. Adjusting for hematocrit, red cell partitioning, and relative recovery, DBS-predicted plasma concentrations were comparable to measured plasma concentrations (r > 0.95, P < 0.0001), and Bland-Altman plots showed no significant bias. The final population PK estimates of clearance, volume of distribution, and time above threshold MICs for measured and DBS-predicted plasma concentrations were similar. At 35°C, 21°C, 4°C, -20°C, and -80°C, ceftriaxone retained >95% initial concentrations in DBS for 14 h, 35 h, 30 days, 21 weeks, and >11 months, respectively. The present DBS ceftriaxone assay is robust and can be used as a surrogate for plasma concentrations to provide valid PK and PK/PD data in a variety of clinical situations, including in studies of young children and of those in remote or resource-poor settings.
Collapse
|
22
|
DBS sampling: a journey. Bioanalysis 2015; 7:1967-70. [PMID: 26327177 DOI: 10.4155/bio.15.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Wang J, Edginton AN, Avant D, Burckart GJ. Predicting neonatal pharmacokinetics from prior data using population pharmacokinetic modeling. J Clin Pharmacol 2015; 55:1175-83. [PMID: 25907280 DOI: 10.1002/jcph.524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/19/2015] [Indexed: 11/08/2022]
Abstract
Selection of the first dose for neonates in clinical trials is very challenging. The objective of this analysis was to assess if a population pharmacokinetic (PK) model developed with data from infants to adults is predictive of neonatal clearance and to evaluate what age range of prior PK data is needed for informative modeling to predict neonate exposure. Two sources of pharmacokinetic data from 8 drugs were used to develop population models: (1) data from all patients > 2 years of age, and (2) data from all nonneonatal patients aged > 28 days. The prediction error based on the models using data from subjects > 2 years of age showed bias toward overprediction, with median average fold error (AFE) for CL predicted/CLobserved greater than 1.5. The bias for predicting neonatal PK was improved when using all prior PK data including infants as opposed to an assessment without infant PK data, with the median AFE 0.91. As an increased number of pediatric trials are conducted in neonates under the Food and Drug Administration Safety and Innovation Act, dose selection should be based on the best estimates of neonatal pharmacokinetics and pharmacodynamics prior to conducting efficacy and safety studies in neonates.
Collapse
Affiliation(s)
- Jian Wang
- Pediatric Clinical Pharmacology Staff, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Debbie Avant
- Office of Pediatric Therapeutics, Commissioner's Office, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Gilbert J Burckart
- Pediatric Clinical Pharmacology Staff, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
24
|
Samardzic J, Turner MA, Bax R, Allegaert K. Neonatal medicines research: challenges and opportunities. Expert Opin Drug Metab Toxicol 2015; 11:1041-52. [PMID: 25958820 DOI: 10.1517/17425255.2015.1046433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The key feature of the newborn is its fast age-dependent maturation, resulting in extensive variability in pharmacokinetics and -dynamics, further aggravated by newly emerging covariates like treatment modalities, environmental issues or pharmacogenetics. This makes clinical research in neonates relevant and needed, but also challenging. AREAS COVERED To improve this knowledge, tailoring research tools as well as building research networks and clinical research skills for neonates are urgently needed. Tailoring of research tools is illustrated using the development of dried blood spot techniques and the introduction of micro-dosing and -tracer methodology in neonatal drug studies. Both techniques can be combined with sparse sampling techniques through population modeling. Building research networks and clinical research skills is illustrated by the initiatives of agencies to build and integrate knowledge on neonatal pharmacotherapy through dedicated working groups. EXPERT OPINION Challenges relating to neonatal medicine research can largely be overcome. Tailored tools and legal initiatives, combined with clever trial design will result in more robust information on neonatal pharmacotherapy. This necessitates collaborative efforts between clinical researchers, sponsors, regulatory authorities, and last but not least patient representatives and society.
Collapse
Affiliation(s)
- Janko Samardzic
- University of Belgrade, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, Belgrade, Serbia
| | | | | | | |
Collapse
|
25
|
Leroux S, Zhao W, Bétrémieux P, Pladys P, Saliba E, Jacqz-Aigrain E. Therapeutic guidelines for prescribing antibiotics in neonates should be evidence-based: a French national survey. Arch Dis Child 2015; 100:394-8. [PMID: 25628457 DOI: 10.1136/archdischild-2014-306873] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This survey aims to describe and analyse the dosage regimens of antibiotics in French neonatal intensive care units (NICUs). METHODS Senior doctors from 56 French NICUs were contacted by telephone and/or email to provide their local guidelines for antibiotic therapy. RESULTS 44 (79%) NICUs agreed to participate in this survey. In total, 444 dosage regimens were identified in French NICUs for 41 antibiotics. The number of different dosage regimens varied from 1 to 32 per drug (mean 9, SD 7.8). 37% of intravenous dosage regimens used a unique mg/kg dose from preterm to full-term neonates. Doses and/or dosing intervals varied significantly for 12 antibiotics (amikacin, gentamicin, netilmicin, tobramycin, vancomycin administered as continuous infusion, ceftazidime, cloxacillin, oxacillin, penicillin G, imipenem/cilastatin, clindamycin and metronidazole). Among these antibiotics, 6 were used in more than 70% of local guidelines and had significant variations in (1) maintenance daily doses for amikacin, imipenem/cilastatin, ceftazidime and metronidazole; (2) loading doses for continuous infusion of vancomycin; and (3) dosing intervals for gentamicin and amikacin. CONCLUSIONS A considerable inter-centre variability of dosage regimens of antibiotics exists in French NICUs. Developmental pharmacokinetic-pharmacodynamic studies are essential for the evaluation of antibiotics in order to establish evidence-based dosage regimens for effective and safe administration in neonates.
Collapse
Affiliation(s)
- Stéphanie Leroux
- Department of Paediatric Pharmacology and Pharmacogenetics, Hôpital Robert Debré, APHP, Paris, France EA7323, Université Paris Diderot-Université Paris Descartes, Paris, France Division of Neonatology, Department of Child and Adolescent Medicine, CHU de Rennes, Rennes, France
| | - Wei Zhao
- Department of Paediatric Pharmacology and Pharmacogenetics, Hôpital Robert Debré, APHP, Paris, France EA7323, Université Paris Diderot-Université Paris Descartes, Paris, France Clinical Investigation Center CIC1426, INSERM, Paris, France Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Pierre Bétrémieux
- Division of Neonatology, Department of Child and Adolescent Medicine, CHU de Rennes, Rennes, France
| | - Patrick Pladys
- Division of Neonatology, Department of Child and Adolescent Medicine, CHU de Rennes, Rennes, France INSERM U1099, Institut des Neurosciences Cliniques de Rennes, Rennes, France
| | - Elie Saliba
- Paediatric and Neonatal Intensive Care Unit, CHRU Tours, Tours, France
| | - Evelyne Jacqz-Aigrain
- Department of Paediatric Pharmacology and Pharmacogenetics, Hôpital Robert Debré, APHP, Paris, France EA7323, Université Paris Diderot-Université Paris Descartes, Paris, France Clinical Investigation Center CIC1426, INSERM, Paris, France
| | | |
Collapse
|
26
|
Abstract
To prevent the devastating consequences of infection, most infants admitted to the neonatal intensive care unit are exposed to antibiotics. However, dosing regimens are often extrapolated from data in adults and older children, increasing the risk for drug toxicity and lack of clinical efficacy because they fail to account for developmental changes in infant physiology. However, newer technologies are emerging with minimal-risk study designs, including ultra-low-volume assays, pharmacokinetic modeling and simulation, and opportunistic drug protocols. With minimal-risk study designs, pharmacokinetic data and dosing regimens for infants are now available for ampicillin, clindamycin, meropenem, metronidazole, and piperacillin/tazobactam.
Collapse
Affiliation(s)
| | - Kevin M. Watt
- Department of Pediatrics, Duke University, Durham, NC,Duke Clinical Research Institute, Durham, NC
| |
Collapse
|
27
|
Ku LC, Smith PB. Dosing in neonates: special considerations in physiology and trial design. Pediatr Res 2015; 77:2-9. [PMID: 25268145 PMCID: PMC4268272 DOI: 10.1038/pr.2014.143] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 06/13/2014] [Indexed: 01/11/2023]
Abstract
Determining the right dose for drugs used to treat neonates is critically important. Neonates have significant differences in physiology affecting drug absorption, distribution, metabolism, and elimination that make extrapolating dosages from adults and older children inappropriate. In spite of recent legislative efforts requiring drug studies in this population, most drugs given to neonates remain insufficiently studied. Many ethical and logistical concerns make designing studies in this age group difficult. Fortunately, specialized analytical techniques, such as the use of dried blood spots, scavenged sampling, population pharmacokinetics analyses, and sparse sampling, have helped investigators better define doses that maximize efficacy and safety. Through the use of these methods, successful clinical trials have resulted in recent changes to drug dosing in this population.
Collapse
Affiliation(s)
- Lawrence C. Ku
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - P. Brian Smith
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
28
|
Wilhelm AJ, den Burger JCG, Swart EL. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin Pharmacokinet 2014; 53:961-73. [PMID: 25204403 PMCID: PMC4213377 DOI: 10.1007/s40262-014-0177-7] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article discusses dried blood spot (DBS) sampling in therapeutic drug monitoring (TDM). The most important advantages of DBS sampling in TDM are the minimally invasive procedure of a finger prick (home sampling), the small volume (children), and the stability of the analyte. Many assays in DBS have been reported in the literature over the previous 5 years. These assays and their analytical techniques are reviewed here. Factors that may influence the accuracy and reproducibility of DBS methods are also discussed. Important issues are the correlation with plasma/serum concentrations and the influence of hematocrit on spot size and recovery. The different substrate materials are considered. DBS sampling can be a valid alternative to conventional venous sampling. However, patient correlation studies are indispensable to prove this. Promising developments are dried plasma spots using membrane and hematocrit correction using the potassium concentration.
Collapse
Affiliation(s)
- Abraham J Wilhelm
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
29
|
Barker CIS, Germovsek E, Hoare RL, Lestner JM, Lewis J, Standing JF. Pharmacokinetic/pharmacodynamic modelling approaches in paediatric infectious diseases and immunology. Adv Drug Deliv Rev 2014; 73:127-39. [PMID: 24440429 PMCID: PMC4076844 DOI: 10.1016/j.addr.2014.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/09/2013] [Accepted: 01/11/2014] [Indexed: 02/02/2023]
Abstract
Pharmacokinetic/pharmacodynamic (PKPD) modelling is used to describe and quantify dose-concentration-effect relationships. Within paediatric studies in infectious diseases and immunology these methods are often applied to developing guidance on appropriate dosing. In this paper, an introduction to the field of PKPD modelling is given, followed by a review of the PKPD studies that have been undertaken in paediatric infectious diseases and immunology. The main focus is on identifying the methodological approaches used to define the PKPD relationship in these studies. The major findings were that most studies of infectious diseases have developed a PK model and then used simulations to define a dose recommendation based on a pre-defined PD target, which may have been defined in adults or in vitro. For immunological studies much of the modelling has focused on either PK or PD, and since multiple drugs are usually used, delineating the relative contributions of each is challenging. The use of dynamical modelling of in vitro antibacterial studies, and paediatric HIV mechanistic PD models linked with the PK of all drugs, are emerging methods that should enhance PKPD-based recommendations in the future.
Collapse
Affiliation(s)
- Charlotte I S Barker
- Paediatric Infectious Diseases Research Group, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK
| | - Eva Germovsek
- Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK
| | - Rollo L Hoare
- Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK; CoMPLEX, University College London, Physics Building, Gower Street, London WC1E 6BT, UK
| | - Jodi M Lestner
- Paediatric Infectious Diseases Research Group, Division of Clinical Sciences, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Faculty of Medicine, Imperial College London, London, UK
| | - Joanna Lewis
- Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK; CoMPLEX, University College London, Physics Building, Gower Street, London WC1E 6BT, UK
| | - Joseph F Standing
- Infectious Diseases and Microbiology Unit, University College London, Institute of Child Health, London WC1N 1EH, UK; CoMPLEX, University College London, Physics Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
30
|
Himebauch AS, Zuppa A. Methods for pharmacokinetic analysis in young children. Expert Opin Drug Metab Toxicol 2014; 10:497-509. [DOI: 10.1517/17425255.2014.885502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Determining population and developmental pharmacokinetics of metronidazole using plasma and dried blood spot samples from premature infants. Pediatr Infect Dis J 2013; 32:956-61. [PMID: 23587979 PMCID: PMC3769518 DOI: 10.1097/inf.0b013e3182947cf8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Limited pharmacokinetic (PK) data of metronidazole in premature infants have led to various dosing recommendations. Surrogate efficacy targets for metronidazole are ill-defined and therefore aimed to exceed minimum inhibitory concentration of organisms responsible for intra-abdominal infections. METHODS We evaluated the PK of metronidazole using plasma and dried blood spot samples from infants ≤32 weeks gestational age in an open-label, PK, multicenter (N = 3) study using population PK modeling (NONMEM). Monte Carlo simulations (N = 1000 virtual subjects) were used to evaluate the surrogate efficacy target. Metabolic ratios of parent and metabolite were calculated. RESULTS Twenty-four premature infants (111 plasma and 51 dried blood spot samples) were enrolled: median (range) gestational age at birth 25 (23-31) weeks, postnatal age 27 (1-82) days, postmenstrual age 31 (24-39) weeks and weight 740 (431-1466) g. Population clearance (L/h/kg) was 0.038 × (postmenstrual age/30) and volume of distribution (L/kg) of 0.93. PK parameter estimates and precision were similar between plasma and dried blood spot samples. Metabolic ratios correlated with clearance. CONCLUSION Simulations suggested the majority of infants in the neonatal intensive care unit (>80%) would meet the surrogate efficacy target using postmenstrual age-based dosing.
Collapse
|
32
|
Abstract
The use of genetic information to guide medication decisions holds great promise to improve therapeutic outcomes through increased efficacy and reduced adverse events. As in many areas of medicine, pediatric research and clinical implementation in pharmacogenetics lag behind corresponding adult discovery and clinical applications. In adults, genotype-guided clinical decision support for medications such as clopidogrel, warfarin and simvastatin are in use in some medical centers. However, research conducted in pediatric populations demonstrates that the models and practices developed in adults may be inaccurate in children, and some applications lack any pediatric research to guide clinical decisions. To account for additional factors introduced by developmental considerations in pediatric populations and provide pediatric patients with maximal benefit from genotype-guided therapy, the field will need to develop and employ creative solutions. In this article, we detail some concerns about research and clinical implementation of pharmacogenetics in pediatrics, and present potential mechanisms for addressing them.
Collapse
Affiliation(s)
- Sara L Van Driest
- Department of Pediatrics, Vanderbilt University, 2200 Children's Way, Nashville, TN 37232, USA ; The Monroe Carell Jr Children's Hospital at Vanderbilt, 8232 DOT, 2200 Children's Way, Nashville, TN 37232, USA
| | - Tracy L McGregor
- Department of Pediatrics, Vanderbilt University, 2200 Children's Way, Nashville, TN 37232, USA ; The Monroe Carell Jr Children's Hospital at Vanderbilt, 8232 DOT, 2200 Children's Way, Nashville, TN 37232, USA ; The Center for Human Genetics Research, 519 Light Hall, 2215 Garland Avenue, Nashville, TN 37232-0700, USA
| |
Collapse
|
33
|
Abstract
The use of genetic information to guide medication decisions holds great promise to improve therapeutic outcomes through increased efficacy and reduced adverse events. As in many areas of medicine, pediatric research and clinical implementation in pharmacogenetics lag behind corresponding adult discovery and clinical applications. In adults, genotype-guided clinical decision support for medications such as clopidogrel, warfarin and simvastatin are in use in some medical centers. However, research conducted in pediatric populations demonstrates that the models and practices developed in adults may be inaccurate in children, and some applications lack any pediatric research to guide clinical decisions. To account for additional factors introduced by developmental considerations in pediatric populations and provide pediatric patients with maximal benefit from genotype-guided therapy, the field will need to develop and employ creative solutions. In this article, we detail some concerns about research and clinical implementation of pharmacogenetics in pediatrics, and present potential mechanisms for addressing them.
Collapse
Affiliation(s)
- Sara L Van Driest
- Department of Pediatrics, Vanderbilt University, 2200 Children’s Way, Nashville, TN 37232, USA
- The Monroe Carell Jr Children’s Hospital at Vanderbilt, 8232 DOT, 2200 Children’s Way, Nashville, TN 37232, USA
| | - Tracy L McGregor
- Department of Pediatrics, Vanderbilt University, 2200 Children’s Way, Nashville, TN 37232, USA
- The Monroe Carell Jr Children’s Hospital at Vanderbilt, 8232 DOT, 2200 Children’s Way, Nashville, TN 37232, USA
- The Center for Human Genetics Research, 519 Light Hall, 2215 Garland Avenue, Nashville, TN 37232-0700, USA
| |
Collapse
|
34
|
Patel P, Mulla H, Kairamkonda V, Spooner N, Gade S, Della Pasqua O, Field DJ, Pandya HC. Dried blood spots and sparse sampling: a practical approach to estimating pharmacokinetic parameters of caffeine in preterm infants. Br J Clin Pharmacol 2013; 75:805-13. [PMID: 22822712 DOI: 10.1111/j.1365-2125.2012.04392.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/13/2012] [Indexed: 01/15/2023] Open
Abstract
AIMS Dried blood spots (DBS) alongside micro-analytical techniques are a potential solution to the challenges of performing pharmacokinetic (PK) studies in children. However, DBS methods have received little formal evaluation in clinical settings relevant to children. The aim of the present study was to determine a PK model for caffeine using a 'DBS/microvolume platform' in preterm infants. METHODS DBS samples were collected prospectively from premature babies receiving caffeine for treatment of apnoea of prematurity. A non-linear mixed effects approach was used to develop a population PK model from measured DBS caffeine concentrations. Caffeine PK parameter estimates based on DBS data were then compared with plasma estimates for agreement. RESULTS Three hundred and thirty-eight DBS cards for caffeine measurement were collected from 67 preterm infants (birth weight 0.6-2.11 kg). 88% of cards obtained were of acceptable quality and no child had more than 10 DBS samples or more than 0.5 ml of blood taken over the study period. There was good agreement between PK parameters estimated using caffeine concentrations from DBS samples (CL = 7.3 ml h⁻¹ kg⁻¹; V = 593 ml kg⁻¹; t(½) = 57 h) and historical caffeine PK parameter estimates based on plasma samples (CL = 4.9-7.9 ml h⁻¹ kg⁻¹; V = 640-970 ml kg⁻¹; t(½) = 101-144 h). We also found that changes in blood haematocrit may significantly confound estimates of caffeine PK parameters based on DBS data. CONCLUSIONS This study demonstrates that DBS methods can be applied to PK studies in a vulnerable population group and are a practical alternative to wet matrix sampling techniques.
Collapse
Affiliation(s)
- Parul Patel
- School of Pharmacy, De Montfort University, Leicester, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Pearce RE, Cohen-Wolkowiez M, Sampson MR, Kearns GL. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab Dispos 2013; 41:1686-94. [PMID: 23813797 DOI: 10.1124/dmd.113.052548] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite metronidazole's widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a "therapeutic concentration" of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P < 0.001) at substrate concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Robin E Pearce
- Section of Developmental Pharmacology and Experimental Therapeutics, Division of Pediatric Clinical Pharmacology and Therapeutic Innovation, The Children's Mercy Hospitals, Kansas City, MO 64108, USA.
| | | | | | | |
Collapse
|
36
|
Population pharmacokinetics of piperacillin using scavenged samples from preterm infants. Ther Drug Monit 2013; 34:312-9. [PMID: 22569355 DOI: 10.1097/ftd.0b013e3182587665] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Piperacillin is often used in preterm infants for intra-abdominal infections; however, dosing has been derived from small single-center studies excluding extremely preterm infants at a highest risk for these infections. We evaluated the population pharmacokinetics (PK) of piperacillin using targeted sparse sampling and scavenged samples obtained from preterm infants ≤ 32 weeks of gestational age at birth and <120 postnatal days. MATERIALS AND METHODS A 5-center study was performed. A population PK model using nonlinear mixed effect modeling was developed. Covariate effects were evaluated based on the estimated precision and clinical significance. RESULTS Fifty-six preterm infants were evaluated and had a median (range) gestational age at birth of 25 (22-32) weeks, a postnatal age of 17 (1-77) days, a postmenstrual age of 29 (23-40) weeks, and a weight of 867 (400-2580) g. The final PK data set contained 211 samples; 202/211 (96%) were scavenged from the discarded clinical specimens. Piperacillin population PK was best described by a 1-compartment model. The population mean clearance (CL) was derived by the equation CL (L/h) = 0.479 × (weight)(0.75) × 0.5/serum creatinine and using a volume of distribution (V) (L) of 2.91 × (weight). The relative standard errors around parameter estimates ranged from 13.7% to 32.2%. A trend toward increased CL was observed with increasing gestational age at birth; infants with serum creatinine ≥ 1.2 mg/dL had a 60% reduction in piperacillin CL. The majority (>70%) of infants did not meet predefined pharmacodynamic efficacy targets. CONCLUSIONS Scavenged PK sampling is a minimal-risk approach that can provide meaningful information related to the development of PK models but not dosing recommendations for piperacillin. The utility of scavenged sampling in providing definitive dosing recommendations may be drug dependent and needs to be further explored.
Collapse
|
37
|
Shah NM, Hawwa AF, Millership JS, Collier PS, Ho P, Tan ML, Peake D, Tirupathi S, Bothwell J, Bailie N, Shepherd C, Craig J, McElnay JC. Adherence to antiepileptic medicines in children: A multiple-methods assessment involving dried blood spot sampling. Epilepsia 2013; 54:1020-7. [DOI: 10.1111/epi.12126] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Noraida Mohamed Shah
- Clinical and Practice Research Group; School of Pharmacy; Medical Biology Centre; Queen's University Belfast; Belfast United Kingdom
- Faculty of Pharmacy; University Kebangsaan Malaysia; Kuala Lumpur Malaysia
| | - Ahmed F. Hawwa
- Clinical and Practice Research Group; School of Pharmacy; Medical Biology Centre; Queen's University Belfast; Belfast United Kingdom
| | - Jeff S. Millership
- Clinical and Practice Research Group; School of Pharmacy; Medical Biology Centre; Queen's University Belfast; Belfast United Kingdom
| | - Paul S. Collier
- Clinical and Practice Research Group; School of Pharmacy; Medical Biology Centre; Queen's University Belfast; Belfast United Kingdom
| | - Paul Ho
- Department of Pharmacy; National University of Singapore; Singapore Singapore
| | - Mui Ling Tan
- Department of Pharmacy; National University of Singapore; Singapore Singapore
| | - Deirdre Peake
- Department of Neurology; The Royal Belfast Hospital for Sick Children (RBHSC); Belfast Health and Social Care Trust; Belfast United Kingdom
| | - Sandya Tirupathi
- Department of Neurology; The Royal Belfast Hospital for Sick Children (RBHSC); Belfast Health and Social Care Trust; Belfast United Kingdom
| | - Janice Bothwell
- Epilepsy Clinic; Carlisle Health and Wellbeing Centre; Belfast Health and Social Care Trust; Belfast United Kingdom
| | - Nicola Bailie
- Department of Neurology; Antrim Area Hospital; Northern Health and Social Care Trust; County Antrim; Northern Ireland United Kingdom
| | - Charles Shepherd
- Craigavon Area Hospital; Southern Health and Social Care Trust; Northern Ireland United Kingdom
| | - John Craig
- Department of Neurology; Royal Victoria Hospital; Belfast Health and Social Care Trust; Belfast United Kingdom
| | - James C. McElnay
- Clinical and Practice Research Group; School of Pharmacy; Medical Biology Centre; Queen's University Belfast; Belfast United Kingdom
| |
Collapse
|
38
|
Antibiotic dosing in children in Europe: can we grade the evidence from pharmacokinetic/pharmacodynamic studies - and when is enough data enough? Curr Opin Infect Dis 2012; 25:235-42. [PMID: 22517604 DOI: 10.1097/qco.0b013e328353105c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Antibiotics are prescribed more frequently to children than any other class of medication. Analysis of the evidence behind antimicrobial dosing regimes is imperative to improve clinical outcomes, minimize antimicrobial resistance development, and to identify priority research areas for the future. This review aims to promote debate amongst paediatricians, pharmacologists, and pharmacists about how to improve antimicrobial prescribing by considering methods to develop and disseminate optimal dosage information. RECENT FINDINGS There has been increasing use of population analyses to understand pharmacokinetic/pharmacodynamic (PK/PD) parameters in children. Nonlinear mixed effects modelling is widely accepted to be the method of choice for analyses of PK/PD data. However, communicating the quality of PK/PD studies is an equally important factor to allow clinicians to gauge the robustness of the evidence. The possibility of grading PK/PD studies is discussed, along with using systematic reviews and PK/PD meta-analysis for generating high-quality evidence.Many doses in existing formularies (including the British National Formulary for Children) are based on outdated evidence. The need to update formularies to account for new evidence, population changes (e.g. obesity), and changing patterns of resistance requires a more systematic evaluation of antimicrobial PK/PD relationships in children. The possibility of e-formularies with links directly to the evidence should be considered and regulators must also play a role in supporting the re-evaluation of off-patent dosing guidelines. SUMMARY Advancing our understanding of the evidence behind paediatric antimicrobial therapeutic regimens is essential to improve both clinical outcomes and patient safety. Using a combination of international collaboration, electronic communication, and PK/PD modelling techniques, we can now define the gaps in our knowledge base and develop the techniques to answer them.
Collapse
|
39
|
Population pharmacokinetics of metronidazole evaluated using scavenged samples from preterm infants. Antimicrob Agents Chemother 2012; 56:1828-37. [PMID: 22252819 DOI: 10.1128/aac.06071-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pharmacokinetic (PK) studies in preterm infants are rarely conducted due to the research challenges posed by this population. To overcome these challenges, minimal-risk methods such as scavenged sampling can be used to evaluate the PK of commonly used drugs in this population. We evaluated the population PK of metronidazole using targeted sparse sampling and scavenged samples from infants that were ≤ 32 weeks of gestational age at birth and <120 postnatal days. A 5-center study was performed. A population PK model using nonlinear mixed-effect modeling (NONMEM) was developed. Covariate effects were evaluated based on estimated precision and clinical significance. Using the individual Bayesian PK estimates from the final population PK model and the dosing regimen used for each subject, the proportion of subjects achieving the therapeutic target of trough concentrations >8 mg/liter was calculated. Monte Carlo simulations were performed to evaluate the adequacy of different dosing recommendations per gestational age group. Thirty-two preterm infants were enrolled: the median (range) gestational age at birth was 27 (22 to 32) weeks, postnatal age was 41 (0 to 97) days, postmenstrual age (PMA) was 32 (24 to 43) weeks, and weight was 1,495 (678 to 3,850) g. The final PK data set contained 116 samples; 104/116 (90%) were scavenged from discarded clinical specimens. Metronidazole population PK was best described by a 1-compartment model. The population mean clearance (CL; liter/h) was determined as 0.0397 × (weight/1.5) × (PMA/32)²·⁴⁹ using a volume of distribution (V) (liter) of 1.07 × (weight/1.5). The relative standard errors around parameter estimates ranged between 11% and 30%. On average, metronidazole concentrations in scavenged samples were 30% lower than those measured in scheduled blood draws. The majority of infants (>70%) met predefined pharmacodynamic efficacy targets. A new, simplified, postmenstrual-age-based dosing regimen is recommended for this population. Minimal-risk methods such as scavenged PK sampling provided meaningful information related to development of metronidazole PK models and dosing recommendations.
Collapse
|
40
|
|
41
|
Abstract
Drug development is crucial to improving the care given to neonates through new and existing medicines. Pressure from regulatory agencies has improved the way in which pharmaceutical companies work with neonates. This provides new opportunities for the neonatal community. This paper describes the issues that arise during the development of new drugs and considers how the contemporary approach to new drugs can inform research on existing drugs.
Collapse
Affiliation(s)
- Mark A Turner
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, United Kingdom.
| |
Collapse
|
42
|
Abu-Rabie P, Denniff P, Spooner N, Brynjolffssen J, Galluzzo P, Sanders G. Method of applying internal standard to dried matrix spot samples for use in quantitative bioanalysis. Anal Chem 2011; 83:8779-86. [PMID: 21972889 DOI: 10.1021/ac202321q] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel technique is presented that addresses the issue of how to apply internal standard (IS) to dried matrix spot (DMS) samples that allows the IS to integrate with the sample prior to extraction. The TouchSpray, a piezo electric spray system, from The Technology Partnership (TTP), was used to apply methanol containing IS to dried blood spot (DBS) samples. It is demonstrated that this method of IS application has the potential to work in practice, for use in quantitative determination of circulating exposures of pharmaceuticals in toxicokinetic and pharmacokinetic studies. Three different methods of IS application were compared: addition of IS to control blood prior to DBS sample preparation (control 1), incorporation into extraction solvent (control 2), and the novel use of TouchSpray technology (test). It is demonstrated that there was no significant difference in accuracy and precision data using these three techniques obtained using both manual extraction and direct elution.
Collapse
Affiliation(s)
- Paul Abu-Rabie
- Platform Technology and Science, Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Research and Development, Ware, Hertfordshire, United Kingdom.
| | | | | | | | | | | |
Collapse
|
43
|
Cohen-Wolkowiez M, White NR, Bridges A, Benjamin DK, Kashuba ADM. Development of a liquid chromatography-tandem mass spectrometry assay of six antimicrobials in plasma for pharmacokinetic studies in premature infants. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3497-506. [PMID: 21983195 DOI: 10.1016/j.jchromb.2011.09.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/13/2011] [Accepted: 09/18/2011] [Indexed: 11/25/2022]
Abstract
This method provides a simple extraction procedure, as well as a validated, sensitive, and specific liquid chromatography-tandem mass spectrometry assay for the simultaneous quantification of ampicillin, piperacillin, tazobactam, meropenem, acyclovir, and metronidazole in human plasma. The method was validated over concentration ranges specific for each compound, with a lower limit of quantification of 50-300 ng/mL and a sample volume of 50 μL. The method is accurate and precise, with within- and between-day accuracy ranging from 85 to 110% and 92 to 110%, respectively, and within- and between-day precision of 89-111% and 91-109%, respectively. Simplicity, low plasma volume, and high throughput make this method suitable for clinical pharmacokinetic studies in premature infants.
Collapse
Affiliation(s)
- Michael Cohen-Wolkowiez
- Department of Pediatrics, Duke University, Duke Clinical Research Institute, Durham, NC 27715, USA.
| | | | | | | | | |
Collapse
|
44
|
Laughon MM, Benjamin DK, Capparelli EV, Kearns GL, Berezny K, Paul IM, Wade K, Barrett J, Smith PB, Cohen-Wolkowiez M. Innovative clinical trial design for pediatric therapeutics. Expert Rev Clin Pharmacol 2011; 4:643-52. [PMID: 21980319 PMCID: PMC3184526 DOI: 10.1586/ecp.11.43] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Until approximately 15 years ago, sponsors rarely included children in the development of therapeutics. US and European legislation has resulted in an increase in the number of pediatric trials and specific label changes and dosing recommendations, although infants remain an understudied group. The lack of clinical trials in children is partly due to specific challenges in conducting trials in this patient population. Therapeutics in special populations, including premature infants, obese children and children receiving extracorporeal life support, are even less studied. National research networks in Europe and the USA are beginning to address some of the gaps in pediatric therapeutics using novel clinical trial designs. Recent innovations in pediatric clinical trial design, including sparse and scavenged sampling, population pharmacokinetic analyses and 'opportunistic' studies, have addressed some of the historical challenges associated with clinical trials in children.
Collapse
Affiliation(s)
- Matthew M Laughon
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel K Benjamin
- Department of Pediatrics, Duke University, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | | | | | | | - Ian M Paul
- Penn State College of Medicine, Hershey, PA, USA
| | - Kelly Wade
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeff Barrett
- Penn State College of Medicine, Hershey, PA, USA
| | - Phillip Brian Smith
- Department of Pediatrics, Duke University, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Michael Cohen-Wolkowiez
- Department of Pediatrics, Duke University, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| |
Collapse
|
45
|
Abstract
Details of the development of conventional analytical methods for the determination of drugs in pediatric plasma/serum samples via microassays are presented. Examples of the development of small-volume sampling and the use of the newer detection systems such as LC/MS/MS for enhanced detection are presented. Dried blood spot sampling has conventionally been used for the study of inborn errors of metabolism using Guthrie cards. Limited applications in the area of drug-level determination, for example, in therapeutic drug monitoring had been reported but the methodology had not been widely used up until relatively recently. In the last few years, there has been a resurgence of interest in this methodology for drug-level determinations, and examples of drug analysis in pediatric and neonatal patients where the small-volume samples are particularly useful are presented. The application of the methodology in pharmacokinetic/pharmacodynamic studies is discussed. The utilization of solid-phase microextraction and stir bar sorptive extraction in drug analysis is presented. Clinical applications of these methodologies are reported including the development of in vivo solid-phase microextraction.
Collapse
Affiliation(s)
- Jeff S Millership
- Department of Pharmaceutical Chemistry, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK.
| |
Collapse
|