1
|
Al-Ezzi SMS, Bista I, Al-Ezzi MM, Prajjwal P, Al-Ezzi SMS, Pattani HH, Amiri B, Marsool MDM. Updates in the management of atrial fibrillation: Emerging therapies and treatment. Dis Mon 2024; 70:101633. [PMID: 37716839 DOI: 10.1016/j.disamonth.2023.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
OBJECTIVE The most common and clinically important cardiac arrhythmia is atrial fibrillation (AF), which has a large negative impact on public health due to higher fatalities, morbidity, and healthcare expenditure rates. This study aims to provide valuable insights into the effectiveness and outcomes of various treatment approaches and interventions for AF. STUDY DESIGN Systematic review. METHOD The most pertinent published research (original papers and reviews) in the scientific literature were searched for and critically assessed using the online, internationally indexed databases PubMed, Medline, and Cochrane Reviews. These studies are summarised in this review. Keywords like "Atrial Fibrillation", "emerging therapies", "treatment", "catheter ablation", and "atrial appendage" were used to search the papers. The papers were researched and examined to be relevant to the topic. CONCLUSION A lot of work has gone into enhancing AF management to deal with this expanding public health concern. Significant developments and advances in the treatment of AF during the past few years have aided clinicians in giving AF patients better care. The most recent treatments for AF include medication, catheter ablation, cryo-balloon ablation, and left atrial appendage closure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bita Amiri
- Tabriz University of Medical Sciences, Cardiovascular Research Center, Tabriz, Iran
| | | |
Collapse
|
2
|
Rodrigo R, González-Montero J, Sotomayor CG. Novel Combined Antioxidant Strategy against Hypertension, Acute Myocardial Infarction and Postoperative Atrial Fibrillation. Biomedicines 2021; 9:620. [PMID: 34070760 PMCID: PMC8228412 DOI: 10.3390/biomedicines9060620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
Reactive oxygen species (ROS) play a physiological role in the modulation of several functions of the vascular wall; however, increased ROS have detrimental effects. Hence, oxidative stress has pathophysiological impacts on the control of the vascular tone and cardiac functions. Recent experimental studies reported the involvement of increased ROS in the mechanism of hypertension, as this disorder associates with increased production of pro-oxidants and decreased bioavailability of antioxidants. In addition, increased ROS exposure is found in ischemia-reperfusion, occurring in acute myocardial infarction and cardiac surgery with extracorporeal circulation, among other settings. Although these effects cause major heart damage, at present, there is no available treatment. Therefore, it should be expected that antioxidants counteract the oxidative processes, thereby being suitable against cardiovascular disease. Nevertheless, although numerous experimental studies agree with this notion, interventional trials have provided mixed results. A better knowledge of ROS modulation and their specific interaction with the molecular targets should contribute to the development of novel multitarget antioxidant effective therapeutic strategies. The complex multifactorial nature of hypertension, acute myocardial infarction, and postoperative atrial fibrillation needs a multitarget antioxidant strategy, which may give rise to additive or synergic protective effects to achieve optimal cardioprotection.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, CP 8380453 Santiago, Chile;
| | - Jaime González-Montero
- Basic and Clinical Oncology Department, Faculty of Medicine, University of Chile, CP 8380453 Santiago, Chile;
| | - Camilo G. Sotomayor
- Clinical Hospital University of Chile, University of Chile, CP 8380453 Santiago, Chile
| |
Collapse
|
3
|
Adebesin AM, Wesser T, Vijaykumar J, Konkel A, Paudyal MP, Lossie J, Zhu C, Westphal C, Puli N, Fischer R, Schunck WH, Falck JR. Development of Robust 17( R),18( S)-Epoxyeicosatetraenoic Acid (17,18-EEQ) Analogues as Potential Clinical Antiarrhythmic Agents. J Med Chem 2019; 62:10124-10143. [PMID: 31693857 DOI: 10.1021/acs.jmedchem.9b00952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
17(R),18(S)-Epoxyeicosatetraenoic acid (EEQ) is a cytochrome P450 metabolite of eicosapentaenoic acid (EPA) and a powerful negative chronotrope with low nanomolar activity in a neonatal rat cardiomyocyte (NRCM) arrhythmia model. Prior studies identified oxamide 2b as a soluble epoxide hydrolase (sEH) stable replacement but unsuitable for in vivo applications due to limited oral bioavailability and metabolic stability. These ADME limitations have been addressed in an improved generation of negative chronotropes, e.g., 4 and 16, which were evaluated as potential clinical candidates.
Collapse
Affiliation(s)
- Adeniyi Michael Adebesin
- Division of Chemistry, Department of Biochemistry , University of Texas Southwestern , Dallas , Texas 75390 , United States
| | - Tim Wesser
- OMEICOS Therapeutics GmbH , Robert-Rössle-Straße 10 , 13125 Berlin , Germany
| | - Jonnalagadda Vijaykumar
- Division of Chemistry, Department of Biochemistry , University of Texas Southwestern , Dallas , Texas 75390 , United States
| | - Anne Konkel
- OMEICOS Therapeutics GmbH , Robert-Rössle-Straße 10 , 13125 Berlin , Germany
| | - Mahesh P Paudyal
- Division of Chemistry, Department of Biochemistry , University of Texas Southwestern , Dallas , Texas 75390 , United States
| | - Janine Lossie
- OMEICOS Therapeutics GmbH , Robert-Rössle-Straße 10 , 13125 Berlin , Germany
| | - Chen Zhu
- Division of Chemistry, Department of Biochemistry , University of Texas Southwestern , Dallas , Texas 75390 , United States
| | - Christina Westphal
- Max Delbrück Center for Molecular Medicine , Robert-Rössle-Straße 10 , 13125 Berlin , Germany
| | - Narender Puli
- Division of Chemistry, Department of Biochemistry , University of Texas Southwestern , Dallas , Texas 75390 , United States
| | - Robert Fischer
- OMEICOS Therapeutics GmbH , Robert-Rössle-Straße 10 , 13125 Berlin , Germany
| | - Wolf-Hagen Schunck
- Max Delbrück Center for Molecular Medicine , Robert-Rössle-Straße 10 , 13125 Berlin , Germany
| | - John R Falck
- Division of Chemistry, Department of Biochemistry , University of Texas Southwestern , Dallas , Texas 75390 , United States
| |
Collapse
|
4
|
Sheikh O, Vande Hei AG, Battisha A, Hammad T, Pham S, Chilton R. Cardiovascular, electrophysiologic, and hematologic effects of omega-3 fatty acids beyond reducing hypertriglyceridemia: as it pertains to the recently published REDUCE-IT trial. Cardiovasc Diabetol 2019; 18:84. [PMID: 31234885 PMCID: PMC6591979 DOI: 10.1186/s12933-019-0887-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/15/2019] [Indexed: 12/15/2022] Open
Abstract
Heart disease continues to affect health outcomes globally, accounting for a quarter of all deaths in the United States. Despite the improvement in the development and implementation of guideline-directed medical therapy, the risk of adverse cardiac events remains substantially high. Historically, it has been debated whether omega-3 polyunsaturated fatty acids provide clinical benefit in cardiac disease. The recently published REDUCE-IT trial demonstrated a statistically significant absolute risk reduction of 4.8% in its primary endpoint (cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or unstable angina) with the use of icosapent ethyl, which is a highly purified eicosapentaenoic acid (EPA) ethyl ester. However, the mechanism of action of omega-3 fatty acids is not commonly discussed. Moreover, the use of EPA was not without risk, as the incidence of atrial fibrillation was increased along with a trend towards increased bleeding risk. Thus, our aim is to help explain the function of purified EPA ethyl ester, especially at the molecular level, which will ultimately lead to a better understanding of their clinically observable effects.
Collapse
Affiliation(s)
- Omar Sheikh
- Cardiology Division, University Texas Health Science Center at San Antonio, 7403 Wurzbach Road, San Antonio, TX, 78229, USA.
| | | | - Ayman Battisha
- Cardiology Division, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Tarek Hammad
- Cardiology Division, University Texas Health Science Center at San Antonio, 7403 Wurzbach Road, San Antonio, TX, 78229, USA
| | - Son Pham
- Cardiology Division, University Texas Health Science Center at San Antonio, 7403 Wurzbach Road, San Antonio, TX, 78229, USA
| | - Robert Chilton
- Cardiology Division, University Texas Health Science Center at San Antonio, 7403 Wurzbach Road, San Antonio, TX, 78229, USA
| |
Collapse
|
5
|
Affiliation(s)
- Farhan Shahid
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gregory Y H Lip
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom.,Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Eduard Shantsila
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|