1
|
Üremiş MM, Gürel E, Aslan M, Taşlıdere E. Dexpanthenol protects against nicotine-induced kidney injury by reducing oxidative stress and apoptosis through activation of the AKT/Nrf2/HO-1 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1105-1114. [PMID: 37606756 DOI: 10.1007/s00210-023-02671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
Dexpanthenol (DEX), a subtype of vitamin B5, plays an important role in anabolic reactions, cellular energy and regeneration in the body. Nicotine has been shown to induce kidney damage through the mechanisms of oxidative stress and apoptosis. The purpose of this study was to investigate the potential protective effects of DEX against nicotine-induced kidney damage through modulation of the AKT/Nrf2/HO-1 signaling pathway. Male rats were intraperitoneally administered with 0.5 mg/kg/day nicotine and/or 500 mg/kg/day DEX for 8 weeks. Following administration, renal function tests were conducted on serum samples, and histopathological examinations and analysis of oxidative stress markers and antioxidant enzymes were performed on tissue samples. Protein levels of Akt, Nrf-2, HO-1, Bcl-xL, and Caspase-9 were also evaluated. Nicotine administration resulted in decreased protein levels of p-Akt, Nrf-2, HO-1, and Bcl-xL and increased Caspase-9 protein levels. In addition, nicotine administration caused an increase in MDA, TOS, and OSI levels and a decrease in GSH, GSH-Px, GST, CAT, SOD, and TAS levels. Additionally, BUN and Creatinine levels increased after nicotine administration. DEX administration positively regulated these parameters and brought them closer to control levels. Nicotine-induced kidney injury caused apoptosis and oxidative stress through Caspase-9 activation. DEX effectively prevented nicotine-induced kidney damage by increasing intracellular antioxidant levels and regulating apoptosis through Bcl-xL activation. These findings suggest that DEX has potential as a protective agent against nicotine-induced kidney damage.
Collapse
Affiliation(s)
- Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
| | - Elif Gürel
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Meral Aslan
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Elif Taşlıdere
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
2
|
From Biorefinery to Food Product Design: Peach (Prunus persica) By-Products Deserve Attention. FOOD BIOPROCESS TECH 2022; 16:1197-1215. [PMID: 36465719 PMCID: PMC9702882 DOI: 10.1007/s11947-022-02951-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
There is an increasing demand for functional foods to attend the consumers preference for products with health benefits. Peach (Prunus persica), from Rosaceae family, is a worldwide well-known fruit, and its processing generates large amounts of by-products, consisting of peel, stone (seed shell + seed), and pomace, which represent about 10% of the annual global production, an equivalent of 2.4 million tons. Some studies have already evaluated the bioactive compounds from peach by-products, although, the few available reviews do not consider peach by-products as valuable materials for product design methodology. Thereby, a novelty of this review is related to the use of these mostly unexplored by-products as alternative sources of valuable components, encouraging the circular bioeconomy approach by designing new food products. Besides, this review presents recent peach production data, compiles briefly the extraction methods for the recovery of lipids, proteins, phenolics, and fiber from peach by-products, and also shows in vivo study reports on anti-inflammatory, anti-obesity, and anti-cerebral ischemia activities associated with peach components and by-product. Therefore, different proposals to recover bioactive fractions from peach by-products are provided, for further studies on food-product design.
Collapse
|
3
|
Yan L. Folic acid-induced animal model of kidney disease. Animal Model Exp Med 2021; 4:329-342. [PMID: 34977484 PMCID: PMC8690981 DOI: 10.1002/ame2.12194] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys are a vital organ that is vulnerable to both acute kidney injury (AKI) and chronic kidney disease (CKD) which can be caused by numerous risk factors such as ischemia, sepsis, drug toxicity and drug overdose, exposure to heavy metals, and diabetes. In spite of the advances in our understanding of the pathogenesis of AKI and CKD as well AKI transition to CKD, there is still no available therapeutics that can be used to combat kidney disease effectively, highlighting an urgent need to further study the pathological mechanisms underlying AKI, CKD, and AKI progression to CKD. In this regard, animal models of kidney disease are indispensable. This article reviews a widely used animal model of kidney disease, which is induced by folic acid (FA). While a low dose of FA is nutritionally beneficial, a high dose of FA is very toxic to the kidneys. Following a brief description of the procedure for disease induction by FA, major mechanisms of FA-induced kidney injury are then reviewed, including oxidative stress, mitochondrial abnormalities such as impaired bioenergetics and mitophagy, ferroptosis, pyroptosis, and increased expression of fibroblast growth factor 23 (FGF23). Finally, application of this FA-induced kidney disease model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given that this animal model is simple to create and is reproducible, it should remain useful for both studying the pathological mechanisms of kidney disease and identifying therapeutic targets to fight kidney disease.
Collapse
Affiliation(s)
- Liang‐Jun Yan
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
4
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Ikwuka DC, Anyaehie BU, Nwobodo E, Umegbolu EI, Nworgu CC. Ameliorative effects of African walnut on nicotine-induced reproductive toxicity in rat model. Int J Health Sci (Qassim) 2021; 15:3-8. [PMID: 33456436 PMCID: PMC7786447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Walnuts are widely consumed nut by men in Nigeria and it has been connected to improving male reproductive health. This study evaluated the effect of African walnut on sperm parameters and testicular architecture of nicotine (NIC)-induced reproductive toxicity in male Wistar rats. METHODS Wistar rats were randomly assigned into four groups, that is, GN0 (1 ml/day normal saline and normal rat chow), GN1 (1 ml/day NIC and normal rat chow), and GN1W6 and GN1W12 (1 ml/day of NIC daily fed with 6% and 12% walnut-rich feed), respectively. This continued for 28 days. The animals were euthanized and their sperm was collected and its parameters were analyzed. The testis was harvested and prepared for histological examination. RESULTS NIC significantly reduced sperm motility (P = 0.0006) and sperm count (P = 0.0001), induced mild apoptosis of Leydig cells and caused moderate spermatogenic arrest in GN1. However, walnut-supplemented diet significantly increased the NIC-induced reduction in sperm motility (P = 0.04) and sperm count (P = 0.0001) and its consumption was effective in attenuating testicular damage caused by NIC administration in GN1W6 and GN1W12. CONCLUSION African walnut could exert therapeutic effect in the reduction of the adverse effect of NIC on the sperm motility, sperm count, and testicular architecture. It is worthwhile to consider it as a useful and affordable supplement to be added to the diet of males with infertility problems.
Collapse
Affiliation(s)
- David Chibuike Ikwuka
- Department of Physiology, College of Medicine, University of Nigeria, Enugu, Nigeria,Department of General Outpatient, District Hospital Awgu, Enugu State, Nigeria,
Address for correspondence: David Chibuike Ikwuka, Department of Physiology, University of Nigeria Enugu Campus, Enugu State, Nigeria. Phone: +2348037147603. E-mail:
| | | | - Ed Nwobodo
- Department of Human Physiology, Faculty of Basic Medical Science, Nnamdi Azikiwe University Nnewi Campus, Nigeria
| | | | | |
Collapse
|
6
|
Lara MV, Bonghi C, Famiani F, Vizzotto G, Walker RP, Drincovich MF. Stone Fruit as Biofactories of Phytochemicals With Potential Roles in Human Nutrition and Health. FRONTIERS IN PLANT SCIENCE 2020; 11:562252. [PMID: 32983215 PMCID: PMC7492728 DOI: 10.3389/fpls.2020.562252] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 05/07/2023]
Abstract
Phytochemicals or secondary metabolites present in fruit are key components contributing to sensory attributes like aroma, taste, and color. In addition, these compounds improve human nutrition and health. Stone fruits are an important source of an array of secondary metabolites that may reduce the risk of different diseases. The first part of this review is dedicated to the description of the main secondary organic compounds found in plants which include (a) phenolic compounds, (b) terpenoids/isoprenoids, and (c) nitrogen or sulfur containing compounds, and their principal biosynthetic pathways and their regulation in stone fruit. Then, the type and levels of bioactive compounds in different stone fruits of the Rosaceae family such as peach (Prunus persica), plum (P. domestica, P. salicina and P. cerasifera), sweet cherries (P. avium), almond kernels (P. dulcis, syn. P. amygdalus), and apricot (P. armeniaca) are presented. The last part of this review encompasses pre- and postharvest treatments affecting the phytochemical composition in stone fruit. Appropriate management of these factors during pre- and postharvest handling, along with further characterization of phytochemicals and the regulation of their synthesis in different cultivars, could help to increase the levels of these compounds, leading to the future improvement of stone fruit not only to enhance organoleptic characteristics but also to benefit human health.
Collapse
Affiliation(s)
- María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Giannina Vizzotto
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
7
|
Chen J, Liu J, Lei Y, Liu M. Potential ameliorative effects of epigallocatechin-3-gallate against cigarette smoke exposure induced renal and hepatic deficits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110202. [PMID: 31945511 DOI: 10.1016/j.ecoenv.2020.110202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
The environmental pollution caused by cigarette smoke (CS) seriously endangers people's health. Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea. In this study, rats were exposed to CS for 90 days. Kidney function was evaluated by detecting the levels of serum creatinine and blood urea nitrogen. Liver function was evaluated by detecting the activities of alanine aminotransferase and aspartate transaminase. The renal and hepatic oxidative stress and inflammation were assessed by detecting the levels of malondialdehyde, reduced glutathione, antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and proinflammatory cytokines. Organ fibrosis was evaluated by observing collagen deposition via masson staining, by examining the hydroxyproline level, by measuring the mRNA levels of fibrosis-associated genes collagen (Col)-1A1 and Col-3A1, as well as by assessing the activity of profibrotic TGF-β1 pathway. Additionally, renal and hepatic epithelial-mesenchymal transition (EMT) were evaluated. It was observed that EGCG ameliorated the renal and hepatic oxidative stress, inflammation, EMT, as well as inhibited the activation of TGF-β1 signaling pathway induced by CS. These results showed that EGCG could attenuate CS-induced renal and hepatic fibrosis.
Collapse
Affiliation(s)
- Jinglou Chen
- The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China; Medical College, Jianghan University, Wuhan, China.
| | - Jianhua Liu
- The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China; Medical College, Jianghan University, Wuhan, China
| | - Yongfang Lei
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Liu
- The Gerontology Research Center of Jianghan University, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Jianghan University, Wuhan, China.
| |
Collapse
|
8
|
Hajiasgharzadeh K, Somi MH, Mansoori B, Doustvandi MA, Vahidian F, Alizadeh M, Mokhtarzadeh A, Shanehbandi D, Baradaran B. Alpha7 Nicotinic Acetylcholine Receptor Mediates Nicotine-induced Apoptosis and Cell Cycle Arrest of Hepatocellular Carcinoma HepG2 Cells. Adv Pharm Bull 2019; 10:65-71. [PMID: 32002363 PMCID: PMC6983989 DOI: 10.15171/apb.2020.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose: The cytotoxic properties upon treatment with nicotine have been reported in several studies, but the underlying mechanisms remain not fully defined. The alpha7 nicotinic acetylcholine receptor (α7nAChR) is one of the important nicotinic receptors, which nicotine partly by binding to this receptor exerts its effects. The current study aimed to investigates the influences of nicotine on cellular proliferative and apoptotic activities and tried to determine the involvement of α7nAChR in these functions. Methods: Human hepatocellular carcinoma (HepG2) cell line was used to determine the individual or combined effects of treatments with nicotine (10 μM) and specific siRNA (100 nM) targeting α7nAChR expression. The MTT assay, DAPI staining assay, and flow cytometry assay were applied to measure the cell viability, apoptosis and cell cycle progression of the cells, respectively. In addition, the changes in the mRNA level of the genes were assessed by qRT-PCR. Results: Compared to control groups, the cells treated with nicotine exhibited significant dosedependent decreases in cell viability (log IC50 = -5.12±0.15). Furthermore, nicotine induced apoptosis and cell cycle arrest especially at G2/M Phase. The qRT-PCR revealed that nicotine increased the mRNA levels of α7nAChR as well as caspase-3 and suppressed the expression of cyclin B1. Treatment with α7-siRNA abolished these effects of nicotine. Conclusion: These experiments determined that upregulation of α7nAChR by nicotine inhibits HepG2 cells proliferation and induces their apoptosis. These effects blocked by treatment with α7-siRNA, which indicates the involvement of α7nAChR pathways in these processes.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Choi EH, Lee SB, Lee DY, Kim GT, Shim SM, Park TS. Increased Intestinal Absorption of Vitamin U in Steamed Graviola Leaf Extract Activates Nicotine Detoxification. Nutrients 2019; 11:E1334. [PMID: 31207874 PMCID: PMC6627529 DOI: 10.3390/nu11061334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 01/02/2023] Open
Abstract
Graviola leaves contain much vitamin U (vit U), but their sensory quality is not good enough for them to be developed as food ingredients. Addition of excipient natural ingredients formulated alongside vit U as active ingredients could enhance not only its sensory quality but also its bioavailability. The objectives of this study were to measure the bioaccessibility and intestinal cellular uptake of bioactive components, including rutin, kaempferol-rutinoside, and vit U, from steamed extract of graviola leaves (SGV) and SGV enriched with kale extract (SGK), and to examine how much they can detoxify nicotine in HepG2 cells. The bioaccessibility of vit U from SGV and SGK was 82.40% and 68.03%, respectively. The cellular uptake of vit U in SGK by Caco-2 cells was higher than that in SGV. Cotinine content converted from nicotine in HepG2 cells for 120 min was 0.22 and 0.25 μg/mg protein in 50 μg/mL of SGV and SGK, respectively, which were 2.86 and 3.57 times higher than the no-treatment control. SGK treatment of HepG2 cells upregulated CYP2A6 three times as much as did that of SGV. Our results suggest that graviola leaf extract enriched with excipient ingredients such as kale could improve vit U absorption and provide a natural therapy for detoxifying nicotine.
Collapse
Affiliation(s)
- Eun-Hye Choi
- Department of Food Science and Technology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 05006, Korea.
| | - Seon-Bong Lee
- Department of Food Science and Technology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 05006, Korea.
| | - Da-Yeon Lee
- Department of Food Science and Technology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 05006, Korea.
| | - Goon-Tae Kim
- Department of Life Science, Gachon University, Bokjung-dong, Sujung-gu, Sungnam, Gyeonggi-do, Seongnam 13120, Korea.
| | - Soon-Mi Shim
- Department of Food Science and Technology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 05006, Korea.
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Bokjung-dong, Sujung-gu, Sungnam, Gyeonggi-do, Seongnam 13120, Korea.
| |
Collapse
|
10
|
Malińska D, Więckowski MR, Michalska B, Drabik K, Prill M, Patalas-Krawczyk P, Walczak J, Szymański J, Mathis C, Van der Toorn M, Luettich K, Hoeng J, Peitsch MC, Duszyński J, Szczepanowska J. Mitochondria as a possible target for nicotine action. J Bioenerg Biomembr 2019; 51:259-276. [PMID: 31197632 PMCID: PMC6679833 DOI: 10.1007/s10863-019-09800-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/19/2019] [Indexed: 12/26/2022]
Abstract
Mitochondria are multifunctional and dynamic organelles deeply integrated into cellular physiology and metabolism. Disturbances in mitochondrial function are involved in several disorders such as neurodegeneration, cardiovascular diseases, metabolic diseases, and also in the aging process. Nicotine is a natural alkaloid present in the tobacco plant which has been well studied as a constituent of cigarette smoke. It has also been reported to influence mitochondrial function both in vitro and in vivo. This review presents a comprehensive overview of the present knowledge of nicotine action on mitochondrial function. Observed effects of nicotine exposure on the mitochondrial respiratory chain, oxidative stress, calcium homeostasis, mitochondrial dynamics, biogenesis, and mitophagy are discussed, considering the context of the experimental design. The potential action of nicotine on cellular adaptation and cell survival is also examined through its interaction with mitochondria. Although a large number of studies have demonstrated the impact of nicotine on various mitochondrial activities, elucidating its mechanism of action requires further investigation.
Collapse
Affiliation(s)
- Dominika Malińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Mariusz R Więckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Bernadeta Michalska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Karolina Drabik
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Monika Prill
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Paulina Patalas-Krawczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jarosław Walczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jędrzej Szymański
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Marco Van der Toorn
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Jerzy Duszyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|