1
|
Tan Y, Fu Y, Yao H, Li H, Wu X, Guo Z, Liang X, Kuang M, Tan L, Jing C. The relationship of organophosphate flame retardants with hyperuricemia and gout via the inflammatory response: An integrated approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168169. [PMID: 37918745 DOI: 10.1016/j.scitotenv.2023.168169] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Evidence regarding the relationships between organophosphate flame retardants (OPFRs) and hyperuricemia and gout as well as the underlying mechanisms remains scarce, but some evidence indicates that inflammation might play a key role. OBJECTIVES Using an integrated approach, we aim to elucidate the associations of urinary metabolite OPFRs (m-OPFRs) with hyperuricemia and gout. METHODS Cross-sectional analyses using data from the National Health and Nutrition Examination Survey were performed to reveal the associations. Adults with complete data on five m-OPFRs with high detection frequencies and outcomes were enrolled. We used multivariate logistic regression, restricted cubic spline (RCS), and Bayesian kernel machine regression (BKMR) methods to account for single, nonlinear, and joint effects. The mediating effect of the inflammatory response was also estimated. Moreover, adverse outcome pathways (AOPs) based on network analysis were further constructed to reveal the underlying mechanism. RESULTS Multivariate logistic models revealed that bis(2-chloroethyl) phosphate (BCEP) significantly increased risk of hyperuricemia (OR [95 % CI]: 1.165 [1.047, 1.296]) in the fully adjusted model. Elevated levels of bis(1-chloro-2-propyl) phosphate were associated with gout (OR [95 % CI]: 1.293 [1.015, 1.647]). No nonlinear relationship was observed in RCS. There was a positive association between mixed m-OPFRs and hyperuricemia risk in BMKR, with bis(1,3-dichloro-2-propyl) phosphate and BCEP being the main contributors (PIP > 0.5). We found that the inflammatory response significantly mediated the association between BCEP and hyperuricemia (P < 0.05). Network topology analysis identified seven genes and six phenotypes related to OPFR exposure and hyperuricemia. The AOP framework suggested that the inflammatory response, especially the activation of the TNF pathway, played a core role in the above relationships. CONCLUSION Our results first revealed that individual and mixed OPFRs were associated with hyperuricemia, in which the inflammatory response plays an important role. Further longitudinal studies are warranted to consolidate or refute our main findings.
Collapse
Affiliation(s)
- Yuxuan Tan
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Yingyin Fu
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Huojie Yao
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Haiying Li
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Xiaomei Wu
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Ziang Guo
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Xiao Liang
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China
| | - Mincong Kuang
- Center for Disease Control and Prevention of Doumen District, Zhuhai 519125, Guangdong, PR China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
2
|
Wang X, Li F, Teng Y, Ji C, Wu H. Potential adverse outcome pathways with hazard identification of organophosphate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158093. [PMID: 35985583 DOI: 10.1016/j.scitotenv.2022.158093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Data-driven analysis and pathway-based approaches contribute to reasonable arrangements of limited resources and laboratory tests for continuously emerging commercial chemicals, which provides opportunities to save time and effort for toxicity research. With the widespread usage of organophosphate esters (OPEs) on a global scale, the concentrations generally reached up to micromolar range in environmental media and even in organisms. However, potential adverse effects and toxicity pathways of OPEs have not been systematically assessed. Therefore, it is necessary to review the current situation, formulate the future research priorities, and characterize toxicity mechanisms via data-driven analysis. Results showed that the early toxicity studies focused on neurotoxicity, cytotoxicity, and metabolic disorders. Then the main focus shifted to the mechanisms of cardiotoxicity, endocrine disruption, hepatocytes, reproductive and developmental toxicity to vulnerable sub-populations, such as infants and embryos, affected by OPEs. In addition, several novel OPEs have been emerging, such as bis(2-ethylhexyl)-phenyl phosphate (HDEHP) and oxidation derivatives (OPAsO) generated from organophosphite antioxidants (OPAs), leading to multiple potential ecological and human health risks (neurotoxicity, hepatotoxicity, developmental toxicity, etc.). Notably, in-depth statistical analysis was promising in encapsulating toxicological information to develop adverse outcome pathways (AOPs) frameworks. Subsequently, network-centric analysis and quantitative weight-of-evidence (QWOE) approaches were utilized to construct and evaluate the putative AOPs frameworks of OPEs, showing the moderate confidences of the developed AOPs. In addition, frameworks demonstrated that several events, such as nuclear receptor activation, reactive oxygen species (ROS) production, oxidative stress, and DNA damage, were involved in multiple different adverse outcome (AO), and these AOs had certain degree of connectivity. This study brought new insights into facilitating the complement of AOP efficiently, as well as establishing toxicity pathways framework to inform risk assessment of emerging OPEs.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
3
|
Terasaka S, Hayashi A, Nukada Y, Yamane M. Investigating the uncertainty of prediction accuracy for the application of physiologically based pharmacokinetic models to animal-free risk assessment of cosmetic ingredients. Regul Toxicol Pharmacol 2022; 135:105262. [PMID: 36103952 DOI: 10.1016/j.yrtph.2022.105262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models are considered useful tools in animal-free risk assessment. To utilize PBPK models for risk assessment, it is necessary to compare their reliability with in vivo data. However, obtaining in vivo pharmacokinetics data for cosmetic ingredients is difficult, complicating the utilization of PBPK models for risk assessment. In this study, to utilize PBPK models for risk assessment without accuracy evaluation, we proposed a novel concept-the modeling uncertainty factor (MUF). By calculating the prediction accuracy for 150 compounds, we established that using in vitro data for metabolism-related parameters and limiting the applicability domain increase the prediction accuracy of a PBPK model. Based on the 97.5th percentile of prediction accuracy, MUF was defined at 10 for the area under the plasma concentration curve and 6 for Cmax. A case study on animal-free risk assessment was conducted for bisphenol A using these MUFs. As this study was conducted mainly on pharmaceuticals, further investigation using cosmetic ingredients is pivotal. However, since internal exposure is essential in realizing animal-free risk assessment, our concept will serve as a useful tool to predict plasma concentrations without using in vivo data.
Collapse
Affiliation(s)
- Shimpei Terasaka
- Kao Corporation, Safety Science Research, 2-1-3, Bunka, Sumida-Ku, Tokyo, 131-8501, Japan.
| | - Akane Hayashi
- Kao Corporation, Safety Science Research, 2-1-3, Bunka, Sumida-Ku, Tokyo, 131-8501, Japan
| | - Yuko Nukada
- Kao Corporation, Safety Science Research, 2-1-3, Bunka, Sumida-Ku, Tokyo, 131-8501, Japan
| | - Masayuki Yamane
- Kao Corporation, Safety Science Research, 2-1-3, Bunka, Sumida-Ku, Tokyo, 131-8501, Japan
| |
Collapse
|
4
|
Shi P, Liu S, Xia X, Qian J, Jing H, Yuan J, Zhao H, Wang F, Wang Y, Wang X, Wang X, He M, Xi S. Identification of the hormetic dose-response and regulatory network of multiple metals co-exposure-related hypertension via integration of metallomics and adverse outcome pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153039. [PMID: 35026265 DOI: 10.1016/j.scitotenv.2022.153039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Environmental stressors, including heavy metals, can be associated with hypertension development. However, little information regarding the dose-response relationship and toxicity mechanisms of metal mixtures with hypertension development is currently available. Therefore, we recruited 940 participants from six factories in northeastern China and measured the urinary concentrations of 19 metals. Then, we used Bayesian kernel machine regression (BKMR) to explore associations between metals co-exposure and hypertension. The BKMR model indicated a hermetic dose-response relationship between eight urinary metals (Co, Cr, Ni, Cd, As, Fe, Zn, and Pb) and hypertension risk. Moreover, heterogeneous and non-linear association patterns were detected across different metals/metalloids concentrations. Next, for the first time, we analyzed data of chemicals containing specific metal elements in the Comparative Toxicogenomics Database (CTD) from a disease perspective and provided insights from various biological levels to explain heavy metal co-exposure-related hypertension. On the molecular scale, 43 chemical components and 112 potential target genes were detected for metal exposure-related hypertension. Further, the network topology analysis indicated that target genes such as insulin (INS, degree = 78), albumin (ALB, degree = 74), renin (REN, degree = 71), interleukin-6 (IL6, degree = 70), endothelin 1 (EDN1, degree = 70), and endothelial nitric oxide synthase (NOS3, degree = 69) have a strong correlation with heavy metals co-exposure. Finally, we used integrative analyses in the adverse outcome pathway (AOP) wiki to analyze the co-exposure of heavy metals and hypertension and support an integrated metallomics approach. We selected the AOP 149 as the framework and found that the molecular initiating events (MIEs) of hypertension stems from the oxidation of AA residues on critical peptides of the NO pathway. The NOS3 was particularly promising since its subunit has three metal ion cross-linking domains with Zn2+, Fe2+, and Ga3+, which might serve as a binding site for heavy metal ions.
Collapse
Affiliation(s)
- Peng Shi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xinyu Xia
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jili Qian
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Hongmei Jing
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jiamei Yuan
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Hanqing Zhao
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Fei Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yue Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Environmental Health Damage Research and Assessment, China Medical University, Shenyang 110122, PR China
| | - Xue Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Environmental Health Damage Research and Assessment, China Medical University, Shenyang 110122, PR China
| | - Xuan Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Central Hospital, Shenyang Medical College, Shenyang 110122, PR China
| | - Miao He
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Environmental Health Damage Research and Assessment, China Medical University, Shenyang 110122, PR China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
5
|
Guan R, Li N, Wang W, Liu W, Li X, Zhao C. The adverse outcome pathway (AOP) of estrogen interference effect induced by triphenyl phosphate (TPP): Integrated multi-omics and molecular dynamics approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113387. [PMID: 35272188 DOI: 10.1016/j.ecoenv.2022.113387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Triphenyl phosphate (TPP) has been detected with increasing frequency in various biota and environmental media, and it has been confirmed that G protein-coupled estrogen receptor (GPER) was involved in the estrogenic activity of TPP. Therefore, it is necessary to link the estrogen-interfering effects and possible mechanisms of action of TPP with the molecular initiation event (MIE) to improve its adverse outcome pathway framework. In this study, transcriptomic and proteomic methods were used to analyze the estrogen interference effect of TPP mediated by GPER, and the causal relationship was supplemented by molecular dynamics simulation and fluorescence analysis. The omics results showed that TPP could regulate the response of key GPER signaling factors and the activation of downstream pathways including PI3K-Akt signaling pathway, MAPK signaling pathway, and estrogen signaling pathway. The similar activation effect of TPP and agonist G1 change of GPER was proved by molecular dynamics simulation. After TPP binding, the conformation of GPER will change from the inactive to active state. Therefore, TPP may affect cell proliferation, metastasis, and apoptosis and regulate gene transcription and kinase activity, leading to abnormal immune function and other estrogen-dependent cell processes and cancer through GPER, ultimately causing the estrogen interference effect.
Collapse
Affiliation(s)
- Ruining Guan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningqi Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Weiling Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wencheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xin Li
- Henan University of Science and Technology, Luoyang 471023, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Paini A, Campia I, Cronin MT, Asturiol D, Ceriani L, Exner TE, Gao W, Gomes C, Kruisselbrink J, Martens M, Meek MB, Pamies D, Pletz J, Scholz S, Schüttler A, Spînu N, Villeneuve DL, Wittwehr C, Worth A, Luijten M. Towards a qAOP framework for predictive toxicology - Linking data to decisions. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 21:100195. [PMID: 35211660 PMCID: PMC8850654 DOI: 10.1016/j.comtox.2021.100195] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022]
Abstract
The adverse outcome pathway (AOP) is a conceptual construct that facilitates organisation and interpretation of mechanistic data representing multiple biological levels and deriving from a range of methodological approaches including in silico, in vitro and in vivo assays. AOPs are playing an increasingly important role in the chemical safety assessment paradigm and quantification of AOPs is an important step towards a more reliable prediction of chemically induced adverse effects. Modelling methodologies require the identification, extraction and use of reliable data and information to support the inclusion of quantitative considerations in AOP development. An extensive and growing range of digital resources are available to support the modelling of quantitative AOPs, providing a wide range of information, but also requiring guidance for their practical application. A framework for qAOP development is proposed based on feedback from a group of experts and three qAOP case studies. The proposed framework provides a harmonised approach for both regulators and scientists working in this area.
Collapse
Affiliation(s)
- Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ivana Campia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - David Asturiol
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Thomas E. Exner
- Edelweiss Connect GmbH, Technology Park Basel, Basel, Switzerland
| | - Wang Gao
- Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | | | | | | | | | - David Pamies
- Department of Physiology, Lausanne and Swiss Centre for Applied Human Toxicology (SCAHT), University of Lausanne, Lausanne, Switzerland
| | - Julia Pletz
- Liverpool John Moores University, Liverpool, United Kingdom
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research GmbH – UFZ, Leipzig, Germany
| | - Andreas Schüttler
- Helmholtz Centre for Environmental Research GmbH – UFZ, Leipzig, Germany
| | - Nicoleta Spînu
- Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel L. Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | | | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
7
|
Overview of Adverse Outcome Pathways and Current Applications on Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:415-439. [DOI: 10.1007/978-3-030-88071-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Rim KT. Application of the adverse outcome pathway framework to predict the toxicity of chemicals in the semiconductor manufacturing industry. Mol Cell Toxicol 2021; 17:325-345. [PMID: 33968152 PMCID: PMC8097676 DOI: 10.1007/s13273-021-00139-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Background To solve current issues using big data, solve current issues related to the semiconductor and electronics industry, I tried to establish the data for each toxicity mechanism for adverse outcome pathway (AOP) for the exposure. Objective I planned to increase the efficiency of human hazard assessment by searching, analyzing, and linking test data on the relationship between key events occurred at each level, which are the biological targets of chemicals in semiconductor manufacturing. Results It was found that 48 kinds of chemicals had 11 AOPs, while 103 chemicals had multiple AOPs, and 26 had case evidence. As a result of AOP analysis, it was found that a total of 320 chemicals had 42 AOPs, and 190 major chemicals corresponded to 11 AOPs. It was found necessary to develop a complex AOP and secure an (inhalation or dermal) exposure scenario for combined exposure at work. As a comparative search (41 out of 190 chemicals) of biomarkers specific to occupational diseases, 12 biomarkers were found to be related to breast cancer. The AOPs for 50 specific chemicals were presented, together with occupational disease-specific AOPs and key events relationship from 50 chemicals, and taxonomic classification for each AOP analysis could be found. With a comparative search, 41 out of 190 chemicals were associated with specific biomarkers for occupational diseases, and 12 mRNA or protein biomarkers were found to be related to breast cancer by cross-validation with the attached Table 24 of the Enforcement Regulations of the OSHAct and the CTD. Conclusion The mechanism of occupational diseases caused by chemicals was presented, together with pathological preventions. I believe that a strategy is needed to expand the target organization for each chemical by linking with activities, such as work environment measurement, and cooperating with screening items and methods suitable for toxic chemicals, like AOP tools. Supplementary Information The online version contains supplementary material available at 10.1007/s13273-021-00139-4.
Collapse
Affiliation(s)
- Kyung-Taek Rim
- Chemicals Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, South Korea
| |
Collapse
|
9
|
Kang DS, Kim HS, Jung JH, Lee CM, Ahn YS, Seo YR. Formaldehyde exposure and leukemia risk: a comprehensive review and network-based toxicogenomic approach. Genes Environ 2021; 43:13. [PMID: 33845901 PMCID: PMC8042688 DOI: 10.1186/s41021-021-00183-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
Formaldehyde is a widely used but highly reactive and toxic chemical. The International Agency for Research on Cancer classifies formaldehyde as a Group 1 carcinogen, based on nasopharyngeal cancer and leukemia studies. However, the correlation between formaldehyde exposure and leukemia incidence is a controversial issue. To understand the association between formaldehyde exposure and leukemia, we explored biological networks based on formaldehyde-related genes retrieved from public and commercial databases. Through the literature-based network approach, we summarized qualitative associations between formaldehyde exposure and leukemia. Our results indicate that oxidative stress-mediated genetic changes induced by formaldehyde could disturb the hematopoietic system, possibly leading to leukemia. Furthermore, we suggested major genes that are thought to be affected by formaldehyde exposure and associated with leukemia development. Our suggestions can be used to complement experimental data for understanding and identifying the leukemogenic mechanism of formaldehyde.
Collapse
Affiliation(s)
- Doo Seok Kang
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jong-Hyeon Jung
- Faculty of Health Science, Daegu Haany University, Gyeongsan, Gyeongbuk, 38610, Republic of Korea
| | - Cheol Min Lee
- Department of Chemical and Biological Engineering, College of Natural Science and Engineering, Seokyeong University, Seoul, 02173, Republic of Korea
| | - Yeon-Soon Ahn
- Department of Preventive Medicine and Institute of Occupational and Environmental Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, 26426, Republic of Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
10
|
Yan Z, Jin X, Liu D, Hong Y, Liao W, Feng C, Bai Y. The potential connections of adverse outcome pathways with the hazard identifications of typical organophosphate esters based on toxicity mechanisms. CHEMOSPHERE 2021; 266:128989. [PMID: 33228983 DOI: 10.1016/j.chemosphere.2020.128989] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/03/2023]
Abstract
Following the world-wide ban of brominated flame retardants (BFRs), organophosphate esters (OPEs), which could potentially affect human health and ecosystem safety, have been frequently detected in various environmental media. However, the knowledge regarding the underlying toxicity effects of OPEs remains limited. In order to address these issues, this study reviewed the related reports which have been published in recent years. This analysis process included 12 OPEs, 10 model organisms, and 15 cell lines, which were used to systematically examine the mechanisms of endocrine disruption, neurotoxicity, hepatotoxicity, and cardiotoxicity, as well as reproductive and developmental toxicity. Subsequently, an adverse outcome pathway (AOP) framework of the toxicological effects of OPEs was built. The results demonstrated that multiple different pathways may lead to a single same adverse outcome (AO), and there was a certain degree of correlation among the different AOs. It was found that among all the 12 OPEs, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) may potentially be the most toxic. In addition, rather than the parent chemicals, the metabolites of OPEs may also have different degrees of toxicity effects on aquatic organisms and humans. Overall, the results of the present study also suggested that an AOP framework should be built via fully utilizing the existing toxicity data of OPEs based on in vivo-in vitro-in silico to completely and deeply understand the toxic mechanisms of OPEs. This improved knowledge could then provide a theoretical basis for ecological risk assessments and water quality criteria research in the near future.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Jiangxi Irrigation Experiment Central Station, Nanchang, 330201, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
11
|
Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol Ther 2021; 218:107670. [PMID: 32891711 PMCID: PMC7470770 DOI: 10.1016/j.pharmthera.2020.107670] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inflammation in the tumor microenvironment is a hallmark of cancer and is recognized as a key characteristic of carcinogens. However, the failure of resolution of inflammation in cancer is only recently being understood. Products of arachidonic acid and related fatty acid metabolism called eicosanoids, including prostaglandins, leukotrienes, lipoxins, and epoxyeicosanoids, critically regulate inflammation, as well as its resolution. The resolution of inflammation is now appreciated to be an active biochemical process regulated by endogenous specialized pro-resolving lipid autacoid mediators which combat infections and stimulate tissue repair/regeneration. Environmental and chemical human carcinogens, including aflatoxins, asbestos, nitrosamines, alcohol, and tobacco, induce tumor-promoting inflammation and can disrupt the resolution of inflammation contributing to a devastating global cancer burden. While mechanisms of carcinogenesis have focused on genotoxic activity to induce mutations, nongenotoxic mechanisms such as inflammation and oxidative stress promote genotoxicity, proliferation, and mutations. Moreover, carcinogens initiate oxidative stress to synergize with inflammation and DNA damage to fuel a vicious feedback loop of cell death, tissue damage, and carcinogenesis. In contrast, stimulation of resolution of inflammation may prevent carcinogenesis by clearance of cellular debris via macrophage phagocytosis and inhibition of an eicosanoid/cytokine storm of pro-inflammatory mediators. Controlling the host inflammatory response and its resolution in carcinogen-induced cancers will be critical to reducing carcinogen-induced morbidity and mortality. Here we review the recent evidence that stimulation of resolution of inflammation, including pro-resolution lipid mediators and soluble epoxide hydrolase inhibitors, may be a new chemopreventive approach to prevent carcinogen-induced cancer that should be evaluated in humans.
Collapse
Affiliation(s)
- Anna Fishbein
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
12
|
Rim KT. Adverse outcome pathways for chemical toxicity and their applications to workers' health: a literature review. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2020; 12:99-108. [PMID: 32412554 PMCID: PMC7222038 DOI: 10.1007/s13530-020-00053-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/08/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE AND METHODS Various papers related to the application of adverse outcome pathways (AOPs) for the prevention of occupational disease were reviewed. The Internet was used as the primary tool to search for the necessary research data and information, using such online resources as Google Scholar, ScienceDirect, Scopus, NDSL, and PubMed. The key search terms were "adverse outcome pathway," "toxicology," "risk assessment," "human," "worker," "occupational safety and health," and so on. RESULTS AND CONCLUSION The aim of this paper is to explain the use of AOP for the understanding of chemical toxicity as a conceptual means and to predict the toxic mechanism. The tools of AOP have emerged as a forward-looking alternative to the existing chemical risk assessment paradigm. AOP is being applied to the assessment of acute toxicity and to chronic toxic chemicals in the workplace. Not only can it lead to breakthroughs in occupational and environmental cancer prevention, it is also widely used in chemical risk assessment and has led to breakthroughs in the prevention of occupational disease in the workplace.
Collapse
Affiliation(s)
- Kyung-Taek Rim
- Chemicals Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| |
Collapse
|
13
|
Vinken M, Kramer N, Allen TEH, Hoffmans Y, Thatcher N, Levorato S, Traussnig H, Schulte S, Boobis A, Thiel A, Rietjens IMCM. The use of adverse outcome pathways in the safety evaluation of food additives. Arch Toxicol 2020; 94:959-966. [PMID: 32065296 DOI: 10.1007/s00204-020-02670-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
In the last decade, adverse outcome pathways have been introduced in the fields of toxicology and risk assessment of chemicals as pragmatic tools with broad application potential. While their use in the pharmaceutical and cosmetics sectors has been well documented, their application in the food area remains largely unexplored. In this respect, an expert group of the International Life Sciences Institute Europe has recently explored the use of adverse outcome pathways in the safety evaluation of food additives. A key activity was the organization of a workshop, gathering delegates from the regulatory, industrial and academic areas, to discuss the potentials and challenges related to the application of adverse outcome pathways in the safety assessment of food additives. The present paper describes the outcome of this workshop followed by a number of critical considerations and perspectives defined by the International Life Sciences Institute Europe expert group.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Nynke Kramer
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD, Utrecht, The Netherlands
| | - Timothy E H Allen
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yvette Hoffmans
- Wageningen University and Research, Droevendaalsesteeg 4, 6708 PB, Wageningen, The Netherlands
| | - Natalie Thatcher
- Mondelēz International, Bournville Place, Bournville Ln, Birmingham, B30 2LU, UK
| | - Sara Levorato
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedford, MK441LQ, UK
| | - Heinz Traussnig
- Mayr-Melnhof Karton Gesellschaft m.b.H., Frohnleiten Mill, Wannersdorf 80, 8130, Frohnleiten, Austria
| | - Stefan Schulte
- Department of Product Safety, BASF SE, 67056, Ludwigshafen, Germany
| | - Alan Boobis
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Anette Thiel
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303, Kaiseraugst, Switzerland
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
14
|
Yang JH, Koedrith P, Kang DS, Kee NK, Jung JH, Lee CM, Ahn YS, Seo YR. A Putative Adverse Outcome Pathway Relevant to Carcinogenicity Induced by Sulfuric Acid in Strong Inorganic Acid Mists. J Cancer Prev 2019; 24:139-145. [PMID: 31624719 PMCID: PMC6786810 DOI: 10.15430/jcp.2019.24.3.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 01/16/2023] Open
Abstract
Based on epidemiological studies, an International Agency for Research on Cancer Working Group determined that strong inorganic acid mists containing sulfuric acid are carcinogenic to human even though, sulfuric acid, per se, is not. Accumulative studies indicate that there is a link between chronic occupational exposure to sulfuric acid mists and an increased risk of laryngeal cancer. Unintended, acute exposure to sulfuric acid mists can cause corrosive damage to target tissues depending on the route of exposure. This review compares the toxicity and carcinogenicity of sulfuric acid mists compared to other strong inorganic acid mists. It also examines the routes and duration of exposure (short-term, prolonged, and long-term). In vivo evidence does not support or refute the carcinogenicity of sulfuric inorganic mists even though its co-carcinogenic or promoting potential has been considered. On the basis of existing evidence on sulfuric acid mist toxicity, we suggested a putative adverse outcome pathway (AOP) relevant to carcinogenicity caused by mists containing sulfuric acid. A possible key factor involved in sulfuric acid mist carcinogenesis is the genotoxic effects of low pH since it can increase instability in chromosomes and DNA. A putative AOP for sulfuric acid mist carcinogenicity would help generate better risk assessments and more accurate predictions regarding the risk of developing cancer due to prolonged exposure. Establishing an AOP would also be useful for future studies examining the carcinogenicity of other strong inorganic mists.
Collapse
Affiliation(s)
- Jun Hyuek Yang
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Preeyaporn Koedrith
- Faculty of Environment and Resource Studies, Mahidol University, NakhonPathom, Thailand
| | - Doo Seok Kang
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Nam Kook Kee
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Jong-Hyeon Jung
- Faculty of Health Science, Daegu Haany University, Gyeongsan, Korea
| | - Cheol Min Lee
- Department of Chemical and Biological Engineering, College of Natural Science and Engineering, Seokyeong University, Seoul, Korea
| | - Yeon-Soon Ahn
- Department of Preventive Medicine and Institute of Occupational and Environmental Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Rok Seo
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| |
Collapse
|
15
|
Jeong J, Choi J. Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. CHEMOSPHERE 2019; 231:249-255. [PMID: 31129406 DOI: 10.1016/j.chemosphere.2019.05.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 05/20/2023]
Abstract
Increasing concern over microplastics has recently brought increased attention to studies on microplastic toxicity. Here, we conduct a systematic review on toxicity of microplastics that focuses on identifying data gaps in the mechanisms of microplastic toxicity. We observe that microplastic toxicology research thus far has focused on ecotoxicity using apical endpoints and only a few studies deal with toxicity mechanisms. Based on this review, we propose putative Adverse Outcome Pathways (AOPs) applicable to microplastic management to understand microplastic toxicity. We matched toxicity mechanisms and apical endpoints to a key event (KE) and adverse outcome (AO) information from the AOP Wiki. Overall, our results suggest that the molecular initiating event (MIE) was reactive oxygen species (ROS) formation and the AO was increased mortality, decreased growth and feeding, and reproduction failure. However, there are a limited number of studies on toxicity mechanisms of microplastics and, therefore, evidence concerning the relationship between KEs is not sufficient. Clearly, more studies on toxicity mechanisms are required to fill these gaps in data. This study also suggests that the AOP framework is a suitable tool to integrate existing data from various literature sources and can identify data gaps in microplastic toxicity mechanisms.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, South Korea.
| |
Collapse
|