Gumpper-Fedus K, Crowe O, Hart PA, Pita-Grisanti V, Velez-Bonet E, Belury MA, L Ramsey M, Cole RM, Badi N, Culp S, Hinton A, F Lara L, Krishna SG, Conwell DL, Cruz-Monserrate Z. Differences in Plasma Fatty Acid Composition Related to Chronic Pancreatitis: A Pilot Study.
Pancreas 2024;
53:e416-e423. [PMID:
38530954 PMCID:
PMC11087201 DOI:
10.1097/mpa.0000000000002318]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
OBJECTIVES
Chronic pancreatitis (CP) is an inflammatory disease affecting the absorption of fat-soluble nutrients. Signaling in pancreatic cells that lead to inflammation may be influenced by fatty acids (FAs) through diet and de novo lipogenesis. Here, we investigated the relationship between plasma FA composition in CP with heterogeneity of etiology and complications of CP.
MATERIALS AND METHODS
Blood and clinical parameters were collected from subjects with CP (n = 47) and controls (n = 22). Plasma was analyzed for FA composition using gas chromatography and compared between controls and CP and within CP.
RESULTS
Palmitic acid increased, and linoleic acid decreased in CP compared with controls. Correlations between age or body mass index and FAs are altered in CP compared with controls. Diabetes, pancreatic calcifications, and substance usage, but not exocrine pancreatic dysfunction, were associated with differences in oleic acid and linoleic acid relative abundance in CP. De novo lipogenesis index was increased in the plasma of subjects with CP compared with controls and in calcific CP compared with noncalcific CP.
CONCLUSIONS
Fatty acids that are markers of de novo lipogenesis and linoleic acid are dysregulated in CP depending on the etiology or complication. These results enhance our understanding of CP and highlight potential pathways targeting FAs for treating CP.
Collapse