1
|
Almeida MB, Galdiano CMR, Silva Benvenuto FSRD, Carrilho E, Brazaca LC. Strategies Employed to Design Biocompatible Metal Nanoparticles for Medical Science and Biotechnology Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67054-67072. [PMID: 38688024 DOI: 10.1021/acsami.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The applicability of nanomaterials has evolved in biomedical domains thanks to advances in biocompatibility strategies and the mitigation of cytotoxic effects, allowing diagnostics, imaging, and therapeutic approaches. The application of nanoparticles (NP), particularly metal nanoparticles (mNPs), such as gold (Au) and silver (Ag), includes inherent challenges related to the material characteristics, surface modification, and bioconjugation techniques. By tailoring the surface properties through appropriate coating with biocompatible molecules or functionalization with active biomolecules, researchers can reach a harmonious interaction with biological systems or samples (mostly fluids or tissues). Thus, this review highlights the mechanisms associated with the obtention of biocompatible mNP and presents a comprehensive overview of methods that facilitate safe and efficient production. Therefore, we consider this review to be a valuable resource for all researchers navigating this dynamic field.
Collapse
Affiliation(s)
- Mariana Bortholazzi Almeida
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | | | - Filipe Sampaio Reis da Silva Benvenuto
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, São Paulo 13083-970, Brazil
| | - Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
2
|
Ishak A, Sonnier R, Otazaghine B, Longuet C. A One-Step Approach for a Durable and Highly Hydrophobic Coating for Flax Fabrics for Self-Cleaning Application. Molecules 2024; 29:829. [PMID: 38398582 PMCID: PMC10891639 DOI: 10.3390/molecules29040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Highly hydrophobic flax fabrics with durable properties were prepared using the "dip-coating" method for self-cleaning application. Flax fabrics were coated with a polysiloxane coating via a hydrosilylation reaction with a Karstedt catalyst at room temperature. The coated fabrics displayed highly and durable hydrophobic properties (contact angle and sliding angle of about 145° and 23°, respectively) with good self-cleaning ability for certain pollutants and excellent durability. Moreover, the influence of the coating process on the mechanical properties of fabrics was investigated. A decrease in E modulus and an increase in tensile stress at maximum force and elongation at maximum force has been observed. Furthermore, this influence of the coating process can be easily controlled by adjusting the proportion of curing agent in the treatment solution.
Collapse
Affiliation(s)
| | | | - Belkacem Otazaghine
- PCH, IMT–Mines Alès, 6, Avenue de Clavières, 30100 Alès, France; (A.I.); (R.S.); (C.L.)
| | | |
Collapse
|
3
|
Mohamed HRH, Elbasiouni SH, Farouk AH, Nasif KA, Nasraldin K, Safwat G. Alleviation of calcium hydroxide nanoparticles induced genotoxicity and gastritis by coadministration of calcium titanate and yttrium oxide nanoparticles in mice. Sci Rep 2023; 13:22011. [PMID: 38086889 PMCID: PMC10716372 DOI: 10.1038/s41598-023-49303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Diverse applications of nanoparticles due to their unique properties has rapidly increased human exposure to numerous nanoparticles such as calcium hydroxide (Ca(OH)2), calcium titanate (CaTiO3), and yttrium oxide (Y2O3) nanoparticles almost in all aspect of daily life. However, very limited data are available on the effect of these nanoparticles on genomic DNA integrity and inflammation induction in the gastric tissues. Hence, this study estimated the effect of Ca(OH)2, CaTiO3, or/and Y2O3 nanoparticles multiple oral administration on the genomic DNA damage and inflammation induction in the mice gastric tissues. A suspension containing 50 mg/kg b.w of Ca(OH)2, CaTiO3, or Y2O3 nanoparticles were given orally to male mice separately or together simultaneously three times a week for two consecutive weeks. Multiple oral administration of Ca(OH)2 nanoparticles led to significant elevations in DNA damage induction and ROS generation, in contrast to the non-significant changes observed in the level of induced DNA damage and generated ROS after administration of CaTiO3 or Y2O3 nanoparticles separately or in combination with Ca(OH)2 nanoparticles. Oral administration of Ca(OH)2 nanoparticles alone also highly upregulated INOS and COX-2 genes expression and extremely decreased eNOS gene expression. However, high elevations in eNOS gene expression were detected after multiple administration of CaTiO3 and Y2O3 nanoparticles separately or together simultaneously with Ca(OH)2 nanoparticles. Meanwhile, non-remarkable changes were noticed in the expression level of INOS and COX-2 genes after administration of CaTiO3 and Y2O3 nanoparticles separately or simultaneously together with Ca(OH)2 nanoparticles. In conclusion: genomic DNA damage and inflammation induced by administration of Ca(OH)2 nanoparticles alone at a dose of 50 mg/kg were mitigated by about 100% when CaTiO3 and Y2O3 nanoparticles were coadministered with Ca(OH)2 nanoparticles until they reached the negative control level through altering the expression level of eNOS, INOS and COX-2 genes and scavenging gastric ROS. Therefore, further studies are recommended to investigate the toxicological properties of Ca(OH)2, CaTiO3 and Y2O3 nanoparticles and possibility of using CaTiO3 and Y2O3 nanoparticles to mitigate genotoxicity and inflammation induction by Ca(OH)2 nanoparticles.
Collapse
Affiliation(s)
- Hanan R H Mohamed
- Zoology Department Faculty of Science, Cairo University, Giza, Egypt.
| | - Salma H Elbasiouni
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Ahmed H Farouk
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Kirolls A Nasif
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Karima Nasraldin
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| |
Collapse
|
4
|
Oliveira IB, Carvalhais A, Guilherme S, Oliveira H, Oliveira CCV, Ferrão L, Cabrita E, Pacheco M, Mieiro C. Shipping can be achieved but cargo arrives with damage - titanium dioxide nanoparticles affect the DNA of Pacific oyster sperm. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106446. [PMID: 36907145 DOI: 10.1016/j.aquatox.2023.106446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NP) were reported to be reprotoxic in humans and fish. However, the effects of these NP on the reproduction of marine bivalves, namely oysters, remain unknown. Thus, a short-term (1 h) direct exposure of sperm of the Pacific oyster (Crassostrea gigas) to two TiO2 NP concentrations (1 and 10 mg.L-1) was performed, and sperm motility, antioxidant responses, and DNA integrity were evaluated. Although no changes occurred in sperm motility and the activities of the antioxidants, the genetic damage indicator increased at both concentrations, demonstrating that TiO2 NP affects the DNA integrity of oyster sperm. Although DNA transfer can happen, it does not fulfill its biological mission since the transferred DNA is not intact and may compromise the reproduction and recruitment of the oysters. This vulnerability of C. gigas sperm towards TiO2 NP highlights the importance of studying the effects of NPs exposure to broadcast spawners.
Collapse
Affiliation(s)
| | - Ana Carvalhais
- CESAM and Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sofia Guilherme
- CESAM and Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Helena Oliveira
- CESAM and Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | | | - Leonor Ferrão
- CCMAR, Campus Gambelas, University of Algarve, Faro 8005-139, Portugal; Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Spain
| | - Elsa Cabrita
- CCMAR, Campus Gambelas, University of Algarve, Faro 8005-139, Portugal
| | - Mário Pacheco
- CESAM and Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Cláudia Mieiro
- CESAM and Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
5
|
Chen J, Chen H, Wu Y, Meng J, Jin L. Parental exposure to CdSe/ZnS QDs affects cartilage development in rare minnow (Gobiocypris rarus) offspring. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109304. [PMID: 35257888 DOI: 10.1016/j.cbpc.2022.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 11/03/2022]
Abstract
Cartilage development is a sensitive process that is easily disturbed by environmental toxins. In this study, the toxicity of CdSe/ZnS quantum dots on the skeleton of the next generation (F1) was evaluated using rare minnows (Gobiocypris rarus) as model animals. Four-month-old sexually mature parental rare minnows (F0) were selected and treated with 0, 100, 200, 400 and 800 nmol/L CdSe/ZnS quantum dots for 4 days. Embryos of F1 generation rare minnows were obtained by artificial insemination. The results showed that with increasing maternal quantum dots exposure, the body length of F1 embryos decreased, the overall calcium content decreased, and the deformity and mortality rates increased. Alcian blue staining results showed that the lengths of the craniofacial mandible, mandibular arch length, mandibular width, and CH-CH and CH-PQ angles of larvae of rare minnows increased; histological hematoxylin-eosin staining further indicated that quantum dots affected the development of chondrocytes. Furthermore, high concentrations of CdSe/ZnS quantum dots inhibited the transcript expression of the bmp2b, bmp4, bmp6, runx2b, sox9a, lox1 and col2α1 genes. In conclusion, CdSe/ZnS quantum dots can affect the skeletal development of F1 generation embryos of rare minnows at both the individual and molecular levels, the damage to the craniofacial bone is more obvious, and the toxic effect of high concentrations of quantum dots (400 nmol/L and 800 nmol/L) is more significant.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Hang Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yingyi Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Juanzhu Meng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
6
|
Mehmood S, Maqsood M, Mahtab N, Khan MI, Sahar A, Zaib S, Gul S. Epigallocatechin gallate: Phytochemistry, bioavailability, utilization challenges, and strategies. J Food Biochem 2022; 46:e14189. [PMID: 35474461 DOI: 10.1111/jfbc.14189] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
Epigallocatechin gallate (EGCG), a green tea catechin, has gained the attention of current study due to its excellent health-promoting effects. It possesses anti-obesity, antimicrobial, anticancer, anti-inflammatory activities, and is under extensive investigation in functional foods for improvement. It is susceptible to lower stability, lesser bioavailability, and lower absorption rate due to various environmental, processing, formulations, and gastrointestinal conditions of the human body. Therefore, it is the foremost concern for the researchers to enhance its bioactivity and make it the most suitable therapeutic compound for its clinical applications. In the current review, factors affecting the bioavailability of EGCG and the possible strategies to overcome these issues are reviewed and discussed. This review summarizes structural modifications and delivery through nanoparticle-based approaches including nano-emulsions, encapsulations, and silica-based nanoparticles for effective use of EGCG in functional foods. Moreover, recent advances to enhance EGCG therapeutic efficacy by specifically targeting its molecules to increase its bioavailability and stability are also described. PRACTICAL APPLICATIONS: The main green tea constituent EGCG possesses several health-promoting effects making EGCG a potential therapeutic compound to cure ailments. However, its low stability and bioavailability render its uses in many disorders. Synthesizing EGCG prodrugs by structural modifications helps against its low bioavailability and stability by overcoming premature degradation and lower absorption rate. This review paper summarizes various strategies that benefit EGCG under different physiological conditions. The esterification, nanoparticle approaches, silica-based EGCG-NPs, and EGCG formulations serve as ideal EGCG modification strategies to deliver superior concentrations with lesser toxicity for its efficient penetration and absorption across cells both in vitro and in vivo. As a result of EGCG modifications, its bioactivities would be highly improved at lower doses. The protected or modified EGCG molecule would have enhanced potential effects and stability that would contribute to the clinical applications and expand its use in various food and cosmetic industries.
Collapse
Affiliation(s)
- Shomaila Mehmood
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei, P. R. China
| | - Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Nazia Mahtab
- School of Resources and Environmental Engineering, Anhui University, Hefei, P. R. China
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Sania Zaib
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shehla Gul
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
7
|
Olmedo-Suárez MÁ, Ramírez-Díaz I, Pérez-González A, Molina-Herrera A, Coral-García MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022; 12:513. [PMID: 35454102 PMCID: PMC9032613 DOI: 10.3390/biom12040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.
Collapse
Affiliation(s)
- Miguel Ángel Olmedo-Suárez
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Decanato de Ciencias de la Salud, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Sagrario Lobato
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|