1
|
Owolo O, Audu HJ, Afolayan AO, Ayeni FA. Pepper power: short-term impact of pepper consumption on the gut bacteriome composition in healthy volunteers. PeerJ 2024; 12:e18707. [PMID: 39686991 PMCID: PMC11648697 DOI: 10.7717/peerj.18707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Background Pepper from Capsicum species is a well-established spice with a rich history of culinary use. Some observations have linked its consumption to gastrointestinal discomfort and alterations in stool patterns while it is considered beneficial in some cultures. However, there is lack of information on the direct effect of pepper consumption on human gut microbiota, we conducted dietary intervention studies to assess the impact of pepper on gut bacteriome composition in humans. Methods Ten healthy volunteers were recruited, and each person received 200 ml of 0.14 g/ml fresh Habanero Pepper (Capsicum chinense) daily over a 4-day period after which they abstained from pepper consumption for the subsequent 4 days before resumption of their normal diet. Stool samples were collected at baseline, after pepper consumption, after 4 days without pepper and after 4- and 6-days resumption of normal diet. We sequenced the V3-V4 region of the 16S rRNA gene and analyzed microbial diversity and composition using the QIIME2 pipeline and relevant R packages. Results Consumption of pepper over a 4-day period led to a higher abundance of Verrucomicrobia, a phylum rarely found in significant proportions at other time points. There was a gradual depletion of Shigella and Staphylococcus spp. from baseline untill the end of the study. Other taxa showed timepoint specific associations, emphasizing the potential impact of short-term dietary interventions on the relative abundance of these genera. Conclusions Our study adds nuance to the understanding of diet-microbiota interactions, highlighting the intricate relationship between pepper consumption and gut bacteriome composition. Further exploration of these dynamics holds promise for personalized dietary recommendations and targeted interventions to support gut microbial health.
Collapse
Affiliation(s)
- Oluwafayoke Owolo
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Haruna J. Audu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ayorinde O. Afolayan
- Institute for Infection Prevention and Control, Medical Centre, University of Freiburg, Freiburg im Breisgau, Germany
| | - Funmilola A. Ayeni
- Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| |
Collapse
|
2
|
Bodur SE, Bodur S, Ayyıldız MF, Günkara ÖT, Dikmen Y, Doru ES, Bakırdere S. Determination of capsaicin at trace levels in different food, biological and environmental samples by quadruple isotope dilution-gas chromatography mass spectrometry after its preconcentration. J Chromatogr A 2024; 1731:465147. [PMID: 39038417 DOI: 10.1016/j.chroma.2024.465147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024]
Abstract
Despite the therapeutic properties of capsaicin for some diseases, it shows some side effects for human health. The goal of this study was to develop a precise and accurate analytical strategy for the trace determination of capsaicin in different food, biological and environmental samples including pepper, saliva and wastewater by gas chromatography-mass spectrometry (GC-MS) after spraying-based fine droplet formation-liquid phase microextraction (SFDF-LPME) and quadruple isotope dilution (ID4) method. Acetic anhydride was used as derivatizing agent, and the extraction method was used to enrich the analyte derivative to reach low detection limits. Under the optimum conditions, limit of detection (LOD) and limit of quantitation (LOQ) were determined to be 0.33 and 1.10 µg/kg, respectively. Percent recoveries calculated for SFDF-LPME-GC-MS method ranged between 84.1 and 131.7 %. After the application of ID4-SFDF-LPME-GC-MS method, percent recoveries were obtained in the range of 94.9 and 104.0 % (%RSD ≤ 2.8) for the selected samples. It is obvious that the isotope dilution-based method provided high accurate and precise results due to the elimination of errors during the derivatization, extraction and measurement steps.
Collapse
Affiliation(s)
- Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye; İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010 İstanbul, Türkiye; İstinye University, Scientific and Technological Research Application and Research Center, 34010 İstanbul, Türkiye
| | - Merve Fırat Ayyıldız
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Ömer Tahir Günkara
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye
| | - Yaren Dikmen
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye
| | - Esra Sultan Doru
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Türkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Türkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Türkiye.
| |
Collapse
|
3
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
4
|
Malczak I, Gajda A. Interactions of naturally occurring compounds with antimicrobials. J Pharm Anal 2023; 13:1452-1470. [PMID: 38223447 PMCID: PMC10785267 DOI: 10.1016/j.jpha.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 01/16/2024] Open
Abstract
Antibiotics are among the most often used medications in human healthcare and agriculture. Overusing these substances can lead to complications such as increasing antibiotic resistance in bacteria or a toxic effect when administering large amounts. To solve these problems, new solutions in antibacterial therapy are needed. The use of natural products in medicine has been known for centuries. Some of them have antibacterial activity, hence the idea to combine their activity with commercial antibiotics to reduce the latter's use. This review presents collected information on natural compounds (terpenes, alkaloids, flavonoids, tannins, sulfoxides, and mycotoxins), of which various drug interactions have been observed. Many of the indicated compounds show synergistic or additive interactions with antibiotics, which suggests their potential for use in antibacterial therapy, reducing the toxicity of the antibiotics used and the risk of further development of bacterial resistance. Unfortunately, there are also compounds which interact antagonistically, potentially hindering the therapy of bacterial infection. Depending on its mechanism of action, each compound can behave differently in combination with different antibiotics and when acting against various bacterial strains.
Collapse
Affiliation(s)
- Izabela Malczak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100, Poland
| | - Anna Gajda
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100, Poland
| |
Collapse
|
5
|
Bonetti A, Toschi A, Tugnoli B, Piva A, Grilli E. A blend of selected botanicals maintains intestinal epithelial integrity and reduces susceptibility to Escherichia coli F4 infection by modulating acute and chronic inflammation in vitro. Front Vet Sci 2023; 10:1275802. [PMID: 37841479 PMCID: PMC10570737 DOI: 10.3389/fvets.2023.1275802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
In the pig production cycle, the most delicate phase is weaning, a sudden and early change that requires a quick adaptation, at the cost of developing inflammation and oxidation, especially at the intestinal level. In this period, pathogens like enterotoxigenic Escherichia coli (ETEC) contribute to the establishment of diarrhea, with long-lasting detrimental effects. Botanicals and their single bioactive components represent sustainable well-recognized tools in animal nutrition thanks to their wide-ranging beneficial functions. The aim of this study was to investigate the in vitro mechanism of action of a blend of botanicals (BOT), composed of thymol, grapeseed extract, and capsicum oleoresin, in supporting intestinal cell health during inflammatory challenges and ETEC infections. To reach this, we performed inflammatory and ETEC challenges on Caco-2 cells treated with BOT, measuring epithelial integrity, cellular oxidative stress, bacterial translocation and adhesion, gene expression levels, and examining tight junction distribution. BOT protected enterocytes against acute inflammation: while the challenge reduced epithelial tightness by 40%, BOT significantly limited its drop to 30%, also allowing faster recovery rates. In the case of chronic inflammation, BOT systematically improved by an average of 25% the integrity of challenged cells (p < 0.05). Moreover, when cells were infected with ETEC, BOT maintained epithelial integrity at the same level as an effective antibiotic and significantly reduced bacterial translocation by 1 log average. The mode of action of BOT was strictly related to the modulation of the inflammatory response, protecting tight junctions' expression and structure. In addition, BOT influenced ETEC adhesion to intestinal cells (-4%, p < 0.05), also thanks to the reduction of enterocytes' susceptibility to pathogens. Finally, BOT effectively scavenged reactive oxygen species generated by inflammatory and H2O2 challenges, thus alleviating oxidative stress by 40% compared to challenge (p < 0.05). These results support the employment of BOT in piglets at weaning to help manage bacterial infections and relieve transient or prolonged stressful states thanks to the modulation of host-pathogen interaction and the fine-tuning activity on the inflammatory tone.
Collapse
Affiliation(s)
- Andrea Bonetti
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Ozzano dell’Emilia, Bologna, Italy
| | | | | | - Andrea Piva
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Ozzano dell’Emilia, Bologna, Italy
- Vetagro S.p.A., Reggio Emilia, Italy
| | - Ester Grilli
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, Ozzano dell’Emilia, Bologna, Italy
- Vetagro Inc., Chicago, IL, United States
| |
Collapse
|
6
|
Periferakis AT, Periferakis A, Periferakis K, Caruntu A, Badarau IA, Savulescu-Fiedler I, Scheau C, Caruntu C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023; 15:4097. [PMID: 37836381 PMCID: PMC10574431 DOI: 10.3390/nu15194097] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Capsaicin is a phytochemical derived from plants of the genus Capsicum and subject of intensive phytochemical research due to its numerous physiological and therapeutical effects, including its important antimicrobial properties. Depending on the concentration and the strain of the bacterium, capsaicin can exert either bacteriostatic or even bactericidal effects against a wide range of both Gram-positive and Gram-negative bacteria, while in certain cases it can reduce their pathogenicity by a variety of mechanisms such as mitigating the release of toxins or inhibiting biofilm formation. Likewise, capsaicin has been shown to be effective against fungal pathogens, particularly Candida spp., where it once again interferes with biofilm formation. The parasites Toxoplasma gondi and Trypanosoma cruzi have been found to be susceptible to the action of this compound too while there are also viruses whose invasiveness is significantly dampened by it. Among the most encouraging findings are the prospects for future development, especially using new formulations and drug delivery mechanisms. Finally, the influence of capsaicin in somatostatin and substance P secretion and action, offers an interesting array of possibilities given that these physiologically secreted compounds modulate inflammation and immune response to a significant extent.
Collapse
Affiliation(s)
- Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
7
|
Zhang Z, Zhao H, Deng Y, Luo W, Luo X, Wang C, Quan C, Guo Z, Wang Y. Bacterial diversity and its correlation with sensory quality of two types of zha-chili from Shennongjia region, China. Food Res Int 2023; 168:112789. [PMID: 37120235 DOI: 10.1016/j.foodres.2023.112789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 05/01/2023]
Abstract
In the Shennongjia region of China, two types of zha-chili with distinct flavors exist: the first type (P zha-chili) uses a significant amount of chili pepper but no potato, while the other (PP zha-chili) contains a smaller amount of chili pepper but a proportion of potato. In order to investigate the bacterial diversity and sensory properties of these two types of zha-chili, this study employed a combination of amplicon sequencing, culture-based methods, and sensory technology. The results of the study showed statistically significant differences (P < 0.05) in bacterial diversity and communities between the two types of zha-chili. In particular, four dominant lactic acid bacteria (LAB) genera - Lactiplantibacillus, Lactococcus, Leuconostoc, and Weissella - were significantly enriched in PP zha-chili. The findings suggest that the proportions of chili pepper and potato can influence the bacterial diversity and content of LAB, with a higher proportion of chili pepper potentially inhibiting the growth of harmful species within the Enterobacteriaceae family. The study also used culture-based methods to identify the most dominant bacteria in the zha-chili samples as Lactiplantibacillus plantarum group, Companilactobacillus alimentarius, and Lacticaseibacillus paracasei. Correlation analysis indicated that LAB likely plays a significant role in shaping the aroma profile of zha-chili, with Levilactobacillus, Leuconostoc, Lactiplantibacillus, and Lactococcus showing correlation with E-nose sensory indices. However, these LAB were not significantly correlated with the taste properties of zha-chili. The study provides new insights into the influence of chili pepper and potato on the microbial diversity and flavor properties of zha-chili, and also presents potential LAB isolates for future research on zha-chili.
Collapse
Affiliation(s)
- Zhendong Zhang
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou Province, China.
| | - Huijun Zhao
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, China.
| | - Yumei Deng
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou Province, China.
| | - Wen Luo
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou Province, China.
| | - Xiyun Luo
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou Province, China.
| | - Chan Wang
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou Province, China.
| | - Changbin Quan
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou Province, China.
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, China.
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
8
|
Shi Q, Tang H, Mei Y, Chen J, Wang X, Liu B, Cai Y, Zhao N, Yang M, Li H. Effects of endogenous capsaicin stress and fermentation time on the microbial succession and flavor compounds of chili paste (a Chinese fermented chili pepper). Food Res Int 2023; 168:112763. [PMID: 37120214 DOI: 10.1016/j.foodres.2023.112763] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Chili paste, is a popular traditional product derived from chili pepper, and its fermentation system is affected by the variable concentration of capsaicin, which originates from the peppers. In the present study, the effects of capsaicin and fermentation time on the microbial community and flavor compounds of chili paste were investigated. After capsaicin supplementation, the total acid was significantly decreased (p < 0.05) along with lower total bacteria, especially lactic acid bacteria. Lactiplantibacillus, Lactobacillus, Weissella, Issatchenkia, Trichoderma, and Pichia were the shared and predominant genera; whereas, the Bacteroides and Kazachstania abundance was significantly increased due to the selection effect of capsaicin over time. Additionally, alterations of the microbial interaction networks and their metabolic preferences led to less lactic acid content with greater accumulation of ethyl nonanoate, methyl nonanoate, etc. This study will provide a perspective for selecting chili pepper varieties and improving the quality of fermented chili paste.
Collapse
|
9
|
Construction and Activity Study of a Natural Antibacterial Patch Based on Natural Active Substance-Green Porous Structures. Molecules 2023; 28:molecules28031319. [PMID: 36770989 PMCID: PMC9918939 DOI: 10.3390/molecules28031319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Bacterial infections are a serious threat to human health, and the rapid emergence of bacterial resistance caused by the abuse of antibiotics exacerbates the seriousness of this problem. Effectively utilizing natural products to construct new antimicrobial strategies is regarded as a promising way to suppress the rapid development of bacterial resistance. In this paper, we fabricated a new type of natural antibacterial patch by using a natural active substance (allicin) as an antibacterial agent and the porous structure of the white pulp of pomelo peel as a scaffold. The antibacterial activity and mechanisms were systematically investigated by using various technologies, including the bacteriostatic circle, plate counting, fluorescence staining, and a scanning electron microscope. Both gram-positive and negative bacteria can be effectively killed by this patch. Moreover, this natural antibacterial patch also showed significant anti-skin infection activity. This study provides a green approach for constructing efficient antibacterial patches.
Collapse
|
10
|
Multifaceted Pharmacological Potentials of Curcumin, Genistein, and Tanshinone IIA through Proteomic Approaches: An In-Depth Review. Cancers (Basel) 2022; 15:cancers15010249. [PMID: 36612248 PMCID: PMC9818426 DOI: 10.3390/cancers15010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023] Open
Abstract
Phytochemicals possess various intriguing pharmacological properties against diverse pathological conditions. Extensive studies are on-going to understand the structural/functional properties of phytochemicals as well as the molecular mechanisms of their therapeutic function against various disease conditions. Phytochemicals such as curcumin (Cur), genistein (Gen), and tanshinone-IIA (Tan IIA) have multifaceted therapeutic potentials and various efforts are in progress to understand the molecular dynamics of their function with different tools and technologies. Cur is an active lipophilic polyphenol with pleiotropic function, and it has been shown to possess various intriguing properties including antioxidant, anti-inflammatory, anti-microbial, anticancer, and anti-genotoxic properties besides others beneficial properties. Similarly, Gen (an isoflavone) exhibits a wide range of vital functions including antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-angiogenic activities etc. In addition, Tan IIA, a lipophilic compound, possesses antioxidant, anti-angiogenic, anti-inflammatory, anticancer activities, and so on. Over the last few decades, the field of proteomics has garnered great momentum mainly attributed to the recent advancement in mass spectrometry (MS) techniques. It is envisaged that the proteomics technology has considerably contributed to the biomedical research endeavors lately. Interestingly, they have also been explored as a reliable approach to understand the molecular intricacies related to phytochemical-based therapeutic interventions. The present review provides an overview of the proteomics studies performed to unravel the underlying molecular intricacies of various phytochemicals such as Cur, Gen, and Tan IIA. This in-depth study will help the researchers in better understanding of the pharmacological potential of the phytochemicals at the proteomics level. Certainly, this review will be highly instrumental in catalyzing the translational shift from phytochemical-based biomedical research to clinical practice in the near future.
Collapse
|
11
|
Point-of-Care Testing of Chloramphenicol in Food Production Using Smartphone-Based Electrochemical Detector. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Basak P, Maitra P, Khan U, Saha K, Bhattacharya SS, Dutta M, Bhattacharya S. Capsaicin Inhibits Shigella flexneri Intracellular Growth by Inducing Autophagy. Front Pharmacol 2022; 13:903438. [PMID: 35873583 PMCID: PMC9298657 DOI: 10.3389/fphar.2022.903438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotic treatment plays an essential role in preventing Shigella infection. However, incidences of global rise in antibiotic resistance create a major challenge to treat bacterial infection. In this context, there is an urgent need for newer approaches to reduce S. flexneri burden. This study largely focuses on the role of the herbal compound capsaicin (Caps) in inhibiting S. flexneri growth and evaluating the molecular mechanism behind bacterial clearance. Here, we show for the first time that Caps inhibits intracellular S. flexneri growth by inducing autophagy. Activation of autophagy by Caps is mediated through transcription factor TFEB, a master regulator of autophagosome biogenesis. Caps induced the nuclear localization of TFEB. Activation of TFEB further induces the gene transcription of autophagosomal genes. Our findings revealed that the inhibition of autophagy by silencing TFEB and Atg5 induces bacterial growth. Hence, Caps-induced autophagy is one of the key factors responsible for bacterial clearance. Moreover, Caps restricted the intracellular proliferation of S. flexneri-resistant strain. The efficacy of Caps in reducing S. flexneri growth was confirmed by an animal model. This study showed for the first time that S. flexneri infection can be inhibited by inducing autophagy. Overall observations suggest that Caps activates TFEB to induce autophagy and thereby combat S. flexneri infection.
Collapse
Affiliation(s)
- Priyanka Basak
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Priyanka Maitra
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Uzma Khan
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Kalyani Saha
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Moumita Dutta
- Division of Electron Microscopy, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sushmita Bhattacharya
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
13
|
Capsaicin for Weight Control: “Exercise in a Pill” (or Just Another Fad)? Pharmaceuticals (Basel) 2022; 15:ph15070851. [PMID: 35890150 PMCID: PMC9316879 DOI: 10.3390/ph15070851] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Medical management of obesity represents a large unmet clinical need. Animal experiments suggest a therapeutic potential for dietary capsaicin, the pungent ingredient in hot chili peppers, to lose weight. This is an attractive theory since capsaicin has been a culinary staple for thousands of years and is generally deemed safe when consumed in hedonically acceptable, restaurant-like doses. This review critically evaluates the available experimental and clinical evidence for and against capsaicin as a weight control agent and comes to the conclusion that capsaicin is not a magic “exercise in a pill”, although there is emerging evidence that it may help restore a healthy gut microbiota.
Collapse
|
14
|
Kumar V, Kumar V, Mahajan N, Kaur J, Devi K, Dharavath RN, Singh RP, Kondepudi KK, Bishnoi M. Mucin secretory action of capsaicin prevents high fat diet-induced gut barrier dysfunction in C57BL/6 mice colon. Biomed Pharmacother 2021; 145:112452. [PMID: 34808551 DOI: 10.1016/j.biopha.2021.112452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
The gut barrier - including tight junction proteins (TJPs) and mucus layers, is the first line of defense against physical, chemical or pathogenic incursions. This barrier is compromised in various health disorders. Capsaicin, a dietary agonist of Transient receptor potential vanilloid 1 (TRPV1) channel, is reported to alleviate the complications of obesity. While it is well known to improve energy expenditure and metabolism, and prevent dysbiosis, the more local effects on the host gut - particularly the gut barrier and mucus system remain elusive. To investigate the effect of capsaicin on the gut barrier and mucus production and to understand the involvement of mucus, bacteria, and TRPV1 in these phenomena, we employed a diet-induced obesity model in C57BL/6 mice, and capsaicin (2 mg/kg/day p.o.) or mucin (1 g/kg/day p.o.) as interventions, for 12 weeks. Parameters like weight gain, glucose homeostasis, TJPs expression, mucus staining, intestinal permeability etc were studied. 16 S rDNA sequencing and in vitro Ca2+ measurement experiments were performed to explore the role of microbiota in the beneficial effects. Mucin feeding reflected several anti-obesity effects produced by capsaicin, suggesting that mucus modulation might play a crucial role in capsaicin-induced anti-obesity effects. 16 S rDNA sequencing and in vitro Ca2+ measurement experiments pointed to TRPV1 modulation by bacteria besides capsaicin. Capsaicin, bacteria and the host mucus system seem to act in a cyclic cascade involving TRPV1, which can be activated by capsaicin and various bacteria. These findings provide new insight into the role of TRPV1 in maintaining a healthy gut environment.
Collapse
Affiliation(s)
- Vijay Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Vibhu Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Neha Mahajan
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Jasleen Kaur
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Kirti Devi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Ravinder Naik Dharavath
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Ravindra Pal Singh
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India.
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Humboldt Fellow (Experienced Researcher), Klinik für Anästhesiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankanstrasse, 91054 Erlangen, Germany.
| |
Collapse
|
15
|
Qays Yaseen L, Hameed Nayyef S, Ibraheem Salih N. The inhibitory effect of aqueous and alcoholic extract of red pepper on some isolated pathogenic bacteria from different areas of human body. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.04.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In most underdeveloped nations, traditional medicine, including herbal treatment, is still widely used. Due to the growth of antibiotic resistance, this study aims to use pepper as an anti-bacterial as alternative to antibiotics. Pepper is one of the most important plants used as a medicine for a long time in various countries and civilizations. This study aims to use pepper as an anti-bacterial in alternative to antibiotics.
The current study included the inhibitory efficacy of aqueous and alcoholic red pepper extract on seven bacterial isolates: -Staphylococcus aureus, Streptococcus spp, Escherichia coli, Klebseilla spp, Salmonella spp, Pseudomonas aeruginosa, Proteus spp. These isolates were isolated from different pathologies and regions, and they were diagnosed according to the site of infection. Several antibiotics were also used as a standard control sample for germs.
This study shows that the highest inhibitory Effect against E. coli bacterium, as the average inhibition diameter was about 16.5 mm, and it is an excellent inhibitory when compared to the antagonist's gentamicin and nitrofurantoin as it showed good inhibitory efficacy against the bacteria such as S. aureus P. aeruginosa, and Salmonella spp. While the effect on Klebsiella was equal, on the other hand, the aqueous extract did not show any efficacy against Proteus spp, as was shown in the results. The results also showed that Staph. Aureus bacteria were the most affected by the alcohol extract of the red pepper as it showed a high inhibition zone compared with the control sample tetracycline and nitrofurantoin. The plant's aqueous and alcoholic red pepper extracts were effective against the tested bacterial isolates. The plant's aqueous and alcoholic red pepper extract has good inhibitory efficacy against the studied bacterial isolates.
Collapse
|
16
|
Ekom SE, Tamokou JDD, Kuete V. Antibacterial and Therapeutic Potentials of the Capsicum annuum Extract against Infected Wound in a Rat Model with Its Mechanisms of Antibacterial Action. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4303902. [PMID: 34646883 PMCID: PMC8505066 DOI: 10.1155/2021/4303902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022]
Abstract
The wound healing process is essential to reform the damaged tissue and prevent its invasion by pathogens. The present study aims at evaluating the antibacterial and therapeutic properties of the Capsicum annuum L. (Solanaceae) extract against infected wound in a rat model with its mechanisms of antibacterial action. The fruit extract was prepared by maceration in methanol. The broth microdilution method was used to investigate the antibacterial activity of the methanol extract of C. annuum fruits. The therapeutic effect of the extract gel was performed on an excision wound infected with Staphylococcus aureus using a rat model. The total phenol, flavonoid, and tannin contents as well as the antibacterial mechanisms of action of the extract were determined using spectrophotometric methods. The C. annuum fruit extract showed antibacterial properties which can be linked to its total phenolic, flavonoid, and tannin contents. The antibacterial activity is due to the inhibition of the biofilm formation, ATPases/H+ proton pump, and dehydrogenase activity as well as the alteration of the bacterial cell membrane through the leakage of nucleic acids, reducing sugars and proteins. The extract gel showed a significant (p < 0.05) increase in the percentage of wound closure and eradicated S. aureus at the infection site. The extract gel was nonirritating to the skin and slightly irritating to the eyes and should be used with caution. Overall, the findings of the present study support the traditional use of the studied plant in the treatment of wounds and infectious diseases associated with the tested bacteria.
Collapse
Affiliation(s)
- Steve Endeguele Ekom
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Jean-De-Dieu Tamokou
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Victor Kuete
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon
| |
Collapse
|