Modification of Collagen Properties with Ferulic Acid.
MATERIALS 2020;
13:ma13153419. [PMID:
32756407 PMCID:
PMC7435917 DOI:
10.3390/ma13153419]
[Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
Collagen materials are widely used in biomedicine and in cosmetics. However, their properties require improvement for several reasons. In this work, collagen solution as well as collagen films were modified by the addition of ferulic acid (FA). Thin collagen films containing FA were obtained by solvent evaporation. The properties of collagen solution have been studied by steady shear tests. The structure and surface properties of collagen thin films were studied. It was found that for collagen solution with 5% addition of FA, the apparent viscosity was the highest, whereas the collagen solutions with other additions of FA (1%, 2%, and 10%), no significant difference in the apparent viscosity was observed. Thin films prepared from collagen with 1 and 2% FA addition were homogeneous, whereas films with 5% and 10% FA showed irregularity in the surface properties. Mechanical properties, such as maximum tensile strength and elongation at break, were significantly higher for films with 10% FA than for films with smaller amount of FA. Young modulus was similar for films with 1% and 10% FA addition, but bigger than for 2% and 5% of FA in collagen films. The cross-linking of collagen with ferulic acid meant that prepared thin films were elastic with better mechanical properties than collagen films.
Collapse