1
|
Kim YY, Kim JC, Kim S, Yang JE, Kim HM, Park HW. Heterotypic stress-induced adaptive evolution enhances freeze-drying tolerance and storage stability of Leuconostoc mesenteroides WiKim33. Food Res Int 2024; 175:113731. [PMID: 38128991 DOI: 10.1016/j.foodres.2023.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Lactic acid bacteria (LAB) are currently being investigated for their potential use as probiotics and starter cultures. Researchers have developed powdering processes for the commercialization of LAB. Previous studies have focused on identifying innovative cryoprotective agents and freeze-drying (FD) techniques to enhance the stability of LAB. In this study, adaptive laboratory evolution (ALE) was employed to develop a strain with high FD tolerance and enhanced storage stability. Leuconostoc mesenteroids WiKim33 was subjected to heterotypic shock (heat and osmosis shock) to induce the desired phenotype and genotype. An FD-tolerant enhanced Leu. mesenteroides WiKim33 strain (ALE50) was obtained, which harbored a modified fatty acid composition and cell envelope characteristics. Specifically, ALE50 showed a lower unsaturated fatty acid (UFA)/saturated fatty acid (SFA) ratio and a higher cyclic fatty acid (CFA) composition. Moreover, the exopolysaccharide (EPS) thickness increased significantly by 331% compared to that of the wild type (WT). FD tolerance, which was evaluated using viability testing after FD, was enhanced by 33.4%. Overall, we demonstrated the feasibility of ALE to achieve desirable characteristics and provided insights into the mechanisms underlying increased FD tolerance.
Collapse
Affiliation(s)
- Yeong Yeol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Cheol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Seulbi Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea; Division of Applied Bioscience & Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Eun Yang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ho Myeong Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea.
| |
Collapse
|
2
|
Kathiriya MR, Vekariya YV, Hati S. Understanding the Probiotic Bacterial Responses Against Various Stresses in Food Matrix and Gastrointestinal Tract: A Review. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10104-3. [PMID: 37347421 DOI: 10.1007/s12602-023-10104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
Probiotic bacteria are known to have ability to tolerate inhospitable conditions experienced during food preparation, food storage, and gastrointestinal tract of consumer. As probiotics are living cells, they are adversely affected by the harsh environment of the carrier matrix as well as low pH, bile salts, oxidative stress, osmotic pressure, and commensal microflora of the host. To overcome the unfavorable environments, many probiotics switch on the cell-mediated protection mechanisms, which helps them to survive, acclimatize and remain operational in the harsh circumstances. In this review, we provide comprehensive understanding on the different stresses experienced by the probiotic when added in carrier food as well as during human gastrointestinal tract transit. Under such situation how these health beneficial bacteria protect themselves by activation of several defense systems and get adapted to the lethal environments.
Collapse
Affiliation(s)
- Mital R Kathiriya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India
| | - Yogesh V Vekariya
- Department. of Dairy Engineering, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India.
| |
Collapse
|
3
|
Meng F, Lyu Y, Chen X, Lu F, Zhao H, Lu Y, Zhao M, Lu Z. Maltose-Enhanced Exopolysaccharide Synthesis of Lactiplantibacillus plantarum through CRP-like Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1113-1121. [PMID: 36602107 DOI: 10.1021/acs.jafc.2c07880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Carbon sources alter the synthesis of exopolysaccharides (EPS) in Lactiplantibacillus plantarum. Maltose increased the EPS production of L. plantarum 163 6.5-fold. Subsequently, EPS production, transcriptome, and proteome were analyzed using glucose or maltose to further clarify the regulatory mechanism. A cAMP receptor protein (UniProtKB: F9UNI5) has been identified to control EPS synthesis in the presence of cAMP by binding to the EPS synthesis promoter Pcps4A-J. Overexpression of the cAMP synthesis gene cyaA increased cAMP content and EPS production 4.5- and 2.2-fold, respectively. Furthermore, yogurt produced with L. plantarum 163-cyaA had a similar viscosity to that of commercial Greek yogurt; it had 20 and 83.7% greater viscosity than that produced with L. plantarum 163 with maltose and glucose, respectively. These findings indicated that L. plantarum 163-cyaA has potential applications in the production of functional fermented dairy products.
Collapse
Affiliation(s)
- Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Nanjing 210095, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiaoyu Chen
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 21003, China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
4
|
Wang R, Sun R, Yang Y, E J, Yao C, Zhang Q, Chen Z, Ma R, Li J, Zhang J, Wang J. Effects of salt stress on the freeze-drying survival rate of Lactiplantibacillus plantarum LIP-1. Food Microbiol 2022; 105:104009. [DOI: 10.1016/j.fm.2022.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022]
|
5
|
Şenöztop E, Dokuzlu T, Güngörmüşler M. A comprehensive review on the development of probiotic supplemented confectioneries. Z NATURFORSCH C 2021; 77:71-84. [PMID: 34653326 DOI: 10.1515/znc-2021-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/25/2021] [Indexed: 11/15/2022]
Abstract
Probiotics are living organisms that have beneficial effects on host by regulating the microbial balance of the intestinal system. While probiotics are naturally found in yogurt and other fermented foods, they can also be added to many products. Although mostly in dairy products, it is possible to see examples of food products supplemented by probiotics in bakeries, chocolates and confectioneries. Nowadays, the COVID-19 pandemic that the world suffers increased the demand for such functional food products including probiotics. Due to probiotics having potential effects on strengthening the immune system, confectioneries supplemented by probiotics were comprehensively discussed in this review together with the suggestion of a novel gelly composition. The suggested formulation of the product is a gel-like snack contains natural ingredients such as carrot, lemon juice and sugar provided from apples. This research review article provided a guide together with the recommendations for potential probiotic research in candy and confectionery industry.
Collapse
Affiliation(s)
- Eylül Şenöztop
- Department of Food Engineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| | - Tuğçe Dokuzlu
- Department of Food Engineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| | - Mine Güngörmüşler
- Department of Genetics and Bioengineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| |
Collapse
|
6
|
Nguyen PT, Nguyen TT, Bui DC, Hong PT, Hoang QK, Nguyen HT. Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. AIMS Microbiol 2020; 6:451-469. [PMID: 33364538 PMCID: PMC7755584 DOI: 10.3934/microbiol.2020027] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Exopolysaccharides (EPSs) are biological polymers secreted by microorganisms including Lactic acid bacteria (LAB) to cope with harsh environmental conditions. EPSs are one of the main components involved in the formation of extracellular biofilm matrix to protect microorganisms from adverse factors such as temperature, pH, antibiotics, host immune defenses, etc.. In this review, we discuss EPS biosynthesis; the role of EPSs in LAB stress tolerance; the impact of environmental stresses on EPS production and on the expression of genes involved in EPS synthesis. The evaluation results indicated that environmental stresses can alter EPS biosynthesis in LAB. For further studies, environmental stresses may be used to generate a new EPS type with high biological activity for industrial applications.
Collapse
Affiliation(s)
- Phu-Tho Nguyen
- Graduate University of Sciences and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
- Department of Biotechnology, An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Tho-Thi Nguyen
- Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam
| | - Duc-Cuong Bui
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Phuoc-Toan Hong
- LAVI's Institute for Agricultural Science and Plant Breeding, Ho Chi Minh City, Vietnam
| | - Quoc-Khanh Hoang
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Olajugbagbe TE, Elugbadebo OE, Omafuvbe BO. Probiotic potentials of Pediococuss acidilactici isolated from wara; A Nigerian unripened soft cheese. Heliyon 2020; 6:e04889. [PMID: 32984599 PMCID: PMC7498756 DOI: 10.1016/j.heliyon.2020.e04889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/22/2020] [Accepted: 09/07/2020] [Indexed: 01/23/2023] Open
Abstract
The probiotic potential of Pediococcus acidilactici isolated from Wara, a Nigerian unripened soft cheese from cow milk was investigated in this study. The strain was evaluated for tolerance to low pH, bile salts, high osmotic pressure, exopolysaccharide production, auto-aggregation, microbial adhesion to solvent, survival in simulated gastro-intestinal juice and antimicrobial properties. The strain showed resistance to high acid and bile conditions surviving at pH 2 and 1.5% bile salt concentration. The strain survived at 8% Sodium chloride and produced exopolysaccharide. P. acidilactici possessed high auto-aggregative ability and hydrophobicity (>70%). Furthermore, the strain did not show hemolytic activity and survived in the presence of simulated gastric juice at pH 2 and simulated intestinal juice. The strain exhibited a broad spectrum inhibition against pathogens. The study concluded that P. acidilactici strain isolated from wara could be a useful probiotic for the development of functional food products.
Collapse
|
8
|
Kim KM, Yang SJ, Kim DS, Lee CW, Kim HY, Lee S, Choi JW, Sohn J, Shin SS, Lee S. Probiotic properties and immune-stimulating effect of the Jeju lava seawater mineral-coated probiotics. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Zhang C, Gui Y, Chen X, Chen D, Guan C, Yin B, Pan Z, Gu R. Transcriptional homogenization of Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress. Appl Microbiol Biotechnol 2020; 104:2611-2621. [DOI: 10.1007/s00253-020-10407-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 01/29/2023]
|
10
|
Stress influenced the aerotolerance of Lactobacillus rhamnosus hsryfm 1301. Biotechnol Lett 2018; 40:729-735. [DOI: 10.1007/s10529-018-2523-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
|
11
|
Champagne CP, Raymond Y, Arcand Y. Effects of production methods and protective ingredients on the viability of probiotic Lactobacillus rhamnosus R0011 in air-dried alginate beads. Can J Microbiol 2016; 63:35-45. [PMID: 27900876 DOI: 10.1139/cjm-2016-0349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of this study was to use a microencapsulation technology to prepare air-dried concentrated cultures of Lactobacillus rhamnosus R0011. The cultures were microencapsulated in alginate beads, which were added to a growth medium to allow cell multiplication inside the matrix; the beads were recovered, dipped in protective solutions, and air-dried. The effects of fermentation technology and of the composition of the protective solutions on subsequent survival during air-drying were examined. The cells prepared under a constant pH of 6.2 had only 2.5% survival to air-drying at 25 °C when the protective solution was composed of sucrose and phosphate. Allowing the pH to drop to 4.2 during the biomass production step and using a protective medium composed of glycerol, maltodextrin, yeast extract, and ascorbate increased survival to 20%. If the ingredients of the protective medium at the beginning of drying were concentrated at a water activity of 0.96 rather than 0.98, survival during air-drying increased further to 56%. This rate was similar to that of a traditional freeze-drying process. These data suggest that applying a combination of acid and osmotic stresses to L. rhamnosus R0011 cells improves their subsequent stability during the air-drying process. Dried microencapsulated cultures having 2.6 × 1011 CFU·g-1 were obtained.
Collapse
Affiliation(s)
- Claude P Champagne
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard W., Saint-Hyacinthe, QC J2S 8E3, Canada.,Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard W., Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Yves Raymond
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard W., Saint-Hyacinthe, QC J2S 8E3, Canada.,Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard W., Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Yves Arcand
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard W., Saint-Hyacinthe, QC J2S 8E3, Canada.,Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard W., Saint-Hyacinthe, QC J2S 8E3, Canada
| |
Collapse
|
12
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
13
|
Vamanu E. Effect of gastric and small intestinal digestion on lactic acid bacteria activity in a GIS1 simulator. Saudi J Biol Sci 2015; 24:1453-1457. [PMID: 30294212 PMCID: PMC6169548 DOI: 10.1016/j.sjbs.2015.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/23/2015] [Accepted: 06/28/2015] [Indexed: 11/17/2022] Open
Abstract
The selection of probiotic strains resistant to gastrointestinal transit is an important stage when developing supplements that contain viable biomass. A total of six strains belonging to different genotypes were tested and compared with both a positive and negative control (Lactobacillus plantarum 5s). Significant differences were found between strains as a result of gastrointestinal transit using the in vitro GIS1 static simulator. The Lactobacillus rhamnosus 428ST strain showed maximum viability as a result of in vitro transit, featuring a survival capacity value, Cs, of over 50 ± 0.01%. The remaining genotypes that were tested showed significant reductions in the enzymes and bile salts at the time of action. The value of the survivability capacity was directly correlated with the synthesis of exopolysaccharides and lactic acid. The test results of the GIS1 system have been compared with those of other studies on gastrointestinal transit resistance that used dynamic models.
Collapse
Affiliation(s)
- Emanuel Vamanu
- University of Agronomic Science and Veterinary Medicine, Faculty of Biotechnology, 59 Marasti blvd, 1 district, 011464 Bucharest, Romania
| |
Collapse
|