1
|
Saghazadeh A, Mahmoudi M, Dehghani Ashkezari A, Oliaie Rezaie N, Rezaei N. Systematic review and meta-analysis shows a specific micronutrient profile in people with Down Syndrome: Lower blood calcium, selenium and zinc, higher red blood cell copper and zinc, and higher salivary calcium and sodium. PLoS One 2017; 12:e0175437. [PMID: 28422987 PMCID: PMC5396920 DOI: 10.1371/journal.pone.0175437] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Different metabolic profiles as well as comorbidities are common in people with Down Syndrome (DS). Therefore it is relevant to know whether micronutrient levels in people with DS are also different. This systematic review was designed to review the literature on micronutrient levels in people with DS compared to age and sex-matched controls without DS. We identified sixty nine studies from January 1967 to April 2016 through main electronic medical databases PubMed, Scopus, and Web of knowledge. We carried out meta-analysis of the data on four essential trace elements (Cu, Fe, Se, and Zn), six minerals (Ca, Cl, K, Mg, Na, and P), and five vitamins (vitamin A, B9, B12, D, and E). People with DS showed lower blood levels of Ca (standard mean difference (SMD) = -0.63; 95% confidence interval (CI): -1.16 to -0.09), Se (SMD = -0.99; 95% CI: -1.55 to -0.43), and Zn (SMD = -1.30; 95% CI: -1.75 to -0.84), while red cell levels of Zn (SMD = 1.88; 95% CI: 0.48 to 3.28) and Cu (SMD = 2.77; 95% CI: 1.96 to 3.57) were higher. They had also higher salivary levels of Ca (SMD = 0.85; 95% CI: 0.38 to 1.33) and Na (SMD = 1.04; 95% CI: 0.39 to 1.69). Our findings that micronutrient levels are different in people with DS raise the question whether these differences are related to the different metabolic profiles, the common comorbidities or merely reflect DS.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mahmoudi
- Department of Cellular and Molecular Nutrition, School of Nutrition and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Dietitians and Nutrition Experts Team (DiNET), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Atefeh Dehghani Ashkezari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nooshin Oliaie Rezaie
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, United States of America
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, United States of America
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Song C, He J, Chen J, Liu Y, Xiong F, Wang Y, Li T. Effect of the one‑carbon unit cycle on overall DNA methylation in children with Down's syndrome. Mol Med Rep 2015; 12:8209-14. [PMID: 26497014 DOI: 10.3892/mmr.2015.4439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/09/2015] [Indexed: 11/05/2022] Open
Abstract
DNA methylation is a major epigenetic mechanism regulating gene expression. In order to analyze the impact of the one‑carbon unit cycle on the overall level of DNA methylation in children with Down's syndrome (DS), the levels of indicators associated with the one‑carbon unit cycle, including folic acid (FA), vitamin B12 (VB12) and homocysteine (Hcy), and the overall DNA methylation level of DS and healthy controls (HCs) were determined in the present study. A total of 36 DS children and 40 age‑ and gender‑matched HCs were included in the present study to determine the levels of FA, VB12, Hcy and overall DNA methylation. The effect of the one‑carbon unit cycle on the overall level of DNA methylation within the DS group was analyzed. The results demonstrated that the level of VB12 was decreased (P=0.008), while the Hcy level was increased (P=0.000) in DS patients compared with the HCs. FA and VB12 levels decreased with increasing age in DS patients (P<0.05). DNA hypermethylation and hypomethylation were observed in DS patients with VB12 deficiency and hyperhomocysteinemia, respectively (P=0.031, P=0.021). Abnormalities in the one‑carbon unit cycle tend to worsen with increasing age in DS children. Thus, one‑carbon unit cycle‑associated alterations in DNA methylation may be important in the neuropathological alterations observed in DS.
Collapse
Affiliation(s)
- Cui Song
- Children Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009 CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jingyi He
- Children Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009 CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jie Chen
- Children Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009 CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Youxue Liu
- Children Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009 CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Feng Xiong
- Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yutian Wang
- Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Tingyu Li
- Children Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, CSTC2009 CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
3
|
Erythrocyte phospholipid molecular species and fatty acids of Down syndrome children compared with non-affected siblings. Br J Nutr 2014; 113:72-81. [DOI: 10.1017/s0007114514003298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The majority of children with Down syndrome (DS) develop Alzheimer's disease (AD) at an early age. Although long-chainn-3 fatty acids (FA) are protective of neurodegeneration, little is known about the FA status in DS. In the present study, we aimed to investigate whether children with DS presented altered plasma and erythrocyte membrane phospholipids (PL) FA composition, when compared with their non-affected siblings. Venous blood samples were analysed for plasma and erythrocyte membrane FA composition by TLC followed by GC techniques. Lipid molecular species were determined by electrospray ionisation/tandem MS (ESI-MS/MS). FA analysis measured by standard GC showed an increased concentration of MUFA and a decreased concentration of plasmalogens in major PL fractions, but there were no differences in the concentrations of arachidonic acid or DHA. However, as identified by ESI-MS/MS, children with DS had increased levels of the following erythrocyte PL molecular species: 16 : 0–16 : 0, 16 : 0–18 : 1 and 16 : 0–18 : 2n-6, with reduced levels of 16 : 0–20 : 4n-6 species. Children with DS presented significantly higher levels of MUFA in both plasma and erythrocyte membrane, as well as higher levels of saturated and monounsaturated molecular species. Of interest was the almost double proportion of 16 : 0–18 : 2n-6 and nearly half the proportion of 16 : 0–20 : 4n-6 of choline phosphoacylglycerol species in children with DS compared with their non-affected siblings. These significant differences were only revealed by ESI-MS/MS and were not observed in the GC analysis. Further investigations are needed to explore molecular mechanisms and to test the association between the pathophysiology of DS and the risk of AD.
Collapse
|
4
|
De la Torre R, De Sola S, Pons M, Duchon A, de Lagran MM, Farré M, Fitó M, Benejam B, Langohr K, Rodriguez J, Pujadas M, Bizot JC, Cuenca A, Janel N, Catuara S, Covas MI, Blehaut H, Herault Y, Delabar JM, Dierssen M. Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol Nutr Food Res 2014; 58:278-88. [PMID: 24039182 DOI: 10.1002/mnfr.201300325] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/04/2013] [Accepted: 07/07/2013] [Indexed: 12/17/2022]
Abstract
SCOPE Trisomy for human chromosome 21 results in Down syndrome (DS), which is among the most complex genetic perturbations leading to intellectual disability. Accumulating data suggest that overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), is a critical pathogenic mechanisms in the intellectual deficit. METHODS AND RESULTS Here we show that the green tea flavonol epigallocatechin-gallate (EGCG), a DYRK1A inhibitor, rescues the cognitive deficits of both segmental trisomy 16 (Ts65Dn) and transgenic mice overexpressing Dyrk1A in a trisomic or disomic genetic background, respectively. It also significantly reverses cognitive deficits in a pilot study in DS individuals with effects on memory recognition, working memory and quality of life. We used the mouse models to ensure that EGCG was able to reduce DYRK1A kinase activity in the hippocampus and found that it also induced significant changes in plasma homocysteine levels, which were correlated with Dyrk1A expression levels. Thus, we could use plasma homocysteine levels as an efficacy biomarker in our human study. CONCLUSION We conclude that EGCG is a promising therapeutic tool for cognitive enhancement in DS, and its efficacy may depend of Dyrk1A inhibition.
Collapse
Affiliation(s)
- Rafael De la Torre
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain; Cardiovascular Risk and Nutrition Research Group-Inflammatory and Cardiovascular Disorders Program, IMIM-Hospital del Mar Research Institute, and CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Barcelona, Spain; University Pompeu Fabra, CEXS-UPF, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Meguid NA, Dardir AA, El-Sayed EM, Ahmed HH, Hashish AF, Ezzat A. Homocysteine and oxidative stress in Egyptian children with Down syndrome. Clin Biochem 2010; 43:963-7. [PMID: 20450901 DOI: 10.1016/j.clinbiochem.2010.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/23/2010] [Accepted: 04/16/2010] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To assess homocysteine, folic acid and vitamin B12, trace element levels and oxidant/antioxidant status in Down syndrome (DS) mothers and children. DESIGN AND METHODS 42 mothers with previous history of bearing DS baby with karyotypically confirmed full trisomy 21 were included. 48 healthy mothers with their healthy children were considered as control. Serum B12, folic acid, total homocysteine (tHcy), vitamins E and C, TBARS and trace elements were estimated. RESULTS DS mothers showed higher levels of tHCy, lower levels of folic acid and vitamin B12 than controls. tHCy and folic acid concentrations were significantly decreased, while vitamin B12 exhibited a slight decrease in DS children versus control. Vitamins E and C, zinc and copper levels were markedly reduced in DS mothers. By contrast, TBARS showed significant elevation in them. Furthermore, DS children had severe reduction of vitamin C and zinc levels relative to healthy children. However, vitamin E showed slight reduction and TBARS displayed a slight rise in DS children. CONCLUSION Abnormal folic acid-homocysteine metabolism is a potent marker to identify women at risk for having DS child and it also exposes them to oxidant/antioxidant imbalance.
Collapse
Affiliation(s)
- Nagwa A Meguid
- Research on Children with Special Needs Dept., National Research Centre, Egypt
| | | | | | | | | | | |
Collapse
|
6
|
Pereira PL, Magnol L, Sahún I, Brault V, Duchon A, Prandini P, Gruart A, Bizot JC, Chadefaux-Vekemans B, Deutsch S, Trovero F, Delgado-García JM, Antonarakis SE, Dierssen M, Herault Y. A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Hum Mol Genet 2009; 18:4756-69. [PMID: 19783846 PMCID: PMC2778371 DOI: 10.1093/hmg/ddp438] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mental retardation in Down syndrome (DS), the most frequent trisomy in humans, varies from moderate to severe. Several studies both in human and based on mouse models identified some regions of human chromosome 21 (Hsa21) as linked to cognitive deficits. However, other intervals such as the telomeric region of Hsa21 may contribute to the DS phenotype but their role has not yet been investigated in detail. Here we show that the trisomy of the 12 genes, found in the 0.59 Mb (Abcg1–U2af1) Hsa21 sub-telomeric region, in mice (Ts1Yah) produced defects in novel object recognition, open-field and Y-maze tests, similar to other DS models, but induces an improvement of the hippocampal-dependent spatial memory in the Morris water maze along with enhanced and longer lasting long-term potentiation in vivo in the hippocampus. Overall, we demonstrate the contribution of the Abcg1–U2af1 genetic region to cognitive defect in working and short-term recognition memory in DS models. Increase in copy number of the Abcg1–U2af1 interval leads to an unexpected gain of cognitive function in spatial learning. Expression analysis pinpoints several genes, such as Ndufv3, Wdr4, Pknox1 and Cbs, as candidates whose overexpression in the hippocampus might facilitate learning and memory in Ts1Yah mice. Our work unravels the complexity of combinatorial genetic code modulating different aspect of mental retardation in DS patients. It establishes definitely the contribution of the Abcg1–U2af1 orthologous region to the DS etiology and suggests new modulatory pathways for learning and memory.
Collapse
Affiliation(s)
- Patricia Lopes Pereira
- Molecular Embryology and Immunology, Université d'Orléans, UMR6218, Orléans Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|