1
|
Kim H, Gorman BL, Taylor MJ, Anderton CR. Atomistic simulations for investigation of substrate and salt effects on lipid in-source fragmentation in secondary ion mass spectrometry: A follow-up study. Biointerphases 2024; 19:011003. [PMID: 38341772 DOI: 10.1116/6.0003281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/13/2024] Open
Abstract
In-source fragmentation (ISF) poses a significant challenge in secondary ion mass spectrometry (SIMS). These fragment ions increase the spectral complexity and can lead to incorrect annotation of fragments as intact species. The presence of salt that is ubiquitous in biological samples can influence the fragmentation and ionization of analytes in a significant manner, but their influences on SIMS have not been well characterized. To elucidate the effect of substrates and salt on ISF in SIMS, we have employed experimental SIMS in combination with atomistic simulations of a sphingolipid on a gold surface with various NaCl concentrations as a model system. Our results revealed that a combination of bond dissociation energy and binding energy between N-palmitoyl-sphingomyelin and a gold surface is a good predictor of fragment ion intensities in the absence of salt. However, ion-fragment interactions play a significant role in determining fragment yields in the presence of salt. Additionally, the charge distribution on fragment species may be a major contributor to the varying effects of salt on fragmentation. This study demonstrates that atomistic modeling can help predict ionization potential when salts are present, providing insights for more accurate interpretations of complex biological spectra.
Collapse
Affiliation(s)
- Hoshin Kim
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Brittney L Gorman
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Michael J Taylor
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Christopher R Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352
| |
Collapse
|
2
|
Liu CA, Hong SB, Li B. Molecular Dynamics Simulation of the Stability Behavior of Graphene in Glycerol/Urea Solvents in Liquid-Phase Exfoliation. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20100468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Kim HS, Brown NA, Zauscher S, Yingling YG. Effect of Octadecylamine Surfactant on DNA Interactions with Graphene Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:931-938. [PMID: 31917584 DOI: 10.1021/acs.langmuir.9b02926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding of how to integrate DNA molecules with graphene materials is important for the development of biosensors and biomolecular logic circuits. For some of these applications, controlling DNA structural conformation on the graphene substrate is critically important and can be achieved through the use of self-assembled monolayers. Here, we performed all-atom molecular dynamics simulations to understand how various 1-octadecylamine (ODA) coatings of the graphene surface affect the conformation of double-stranded DNA (dsDNA) on the surface. The simulation results demonstrated that dsDNA structures become more stable as ODA concentration increases due to the formation of DNA-ODA hydrogen bonds and reduction of DNA-surface interactions, which aid in retaining internal DNA interactions. Specifically, the interaction of ODA molecules with DNA prevents nucleobases from forming π-π stacking interactions with the surface. Some dsDNA conformations, such as sharp kinks or unwinding, can occur more frequently in DNA with A-T sequences due to weaker pairing interactions than with G-C sequences. Furthermore, our results conclude that both DNA sequence and ODA concentration play an essential role in experimentally observed conformational changes of DNA on the graphene surface.
Collapse
Affiliation(s)
- Ho Shin Kim
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Nathanael A Brown
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science , Duke University , Durham , North Carolina 27708 , United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
4
|
Lai PX, Mao JY, Unnikrishnan B, Chu HW, Wu CW, Chang HT, Huang CC. Self-assembled, bivalent aptamers on graphene oxide as an efficient anticoagulant. Biomater Sci 2018; 6:1882-1891. [PMID: 29808843 DOI: 10.1039/c8bm00288f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Graphene oxide (GO) has unique structural properties, can effectively adsorb single-strand DNA through π-π stacking, hydrogen bonding and hydrophobic interactions, and is useful in many biotechnology applications. In this study, we developed a thrombin-binding-aptamers (15- and 29-mer) conjugated graphene oxide (TBA15/TBA29-GO) composite for the efficient inhibition of thrombin activity towards the formation of fibrin from fibrinogen. The TBA15/TBA29-GO composite was simply obtained by the self-assembly of TBA15/TBA29 hybrids on GO. The high density and appropriate orientation of TBA15/TBA29 on the GO surface enabled TBA15/TBA29-GO to acquire an ultrastrong binding affinity for thrombin (dissociation constant = 2.9 × 10-12 M). Compared to bivalent TBA15h20A20/TBA29h20A20 hybrids, the TBA15/TBA29-GO composite exhibited a superior anticoagulant potency (ca. 10-fold) against thrombin-mediated coagulation as a result of steric blocking effects and a higher binding affinity for thrombin. In addition, the prolonged thrombin clotting time, prothrombin time (PT), and activated partial thromboplastin time (aPTT) of TBA15/TBA29-GO were at least 2 times longer than those of commercially available drugs (heparin, argatroban, hirudin, and warfarin). The in vitro cytotoxicity and hemolysis analyses revealed the high biocompatibility of TBA15/TBA29-GO. The rat-tail bleeding assay of the hemostasis time and ex vivo PT and aPTT further revealed that TBA15/TBA29-GO is superior (>2-fold) to heparin, which is commonly used in the treatment and prevention of thrombotic diseases. Our multivalent, oligonucleotide-modified GO nanocomposites are easy to prepare, cost-effective, and highly biocompatible and they show great potential as effective anticoagulants for the treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Pei-Xin Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
5
|
Gu R, Oweida T, Yingling YG, Chilkoti A, Zauscher S. Enzymatic Synthesis of Nucleobase-Modified Single-Stranded DNA Offers Tunable Resistance to Nuclease Degradation. Biomacromolecules 2018; 19:3525-3535. [PMID: 30011192 DOI: 10.1021/acs.biomac.8b00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We synthesized long, nucleobase-modified, single-stranded DNA (ssDNA) using terminal deoxynucleotidyl transferase (TdT) enzymatic polymerization. Specifically, we investigated the effect of unnatural nucleobase size and incorporation density on ssDNA resistance to exo- and endonuclease degradation. We discovered that increasing the size and density of unnatural nucleobases enhances ssDNA resistance to degradation in the presence of exonuclease I, DNase I, and human serum. We also studied the mechanism of this resistance enhancement using molecular dynamics simulations. Our results show that the presence of unnatural nucleobases in ssDNA decreases local chain flexibility and hampers nuclease access to the ssDNA backbone, which hinders nuclease binding to ssDNA and slows its degradation. Our discoveries suggest that incorporating nucleobase-modified nucleotides into ssDNA, using enzymatic polymerization, is an easy and efficient strategy to prolong and tune the half-life of DNA-based materials in nucleases-containing environments.
Collapse
Affiliation(s)
| | - Thomas Oweida
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | | | | |
Collapse
|
6
|
Tu Q, Kim HS, Oweida TJ, Parlak Z, Yingling YG, Zauscher S. Interfacial Mechanical Properties of Graphene on Self-Assembled Monolayers: Experiments and Simulations. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10203-10213. [PMID: 28230343 DOI: 10.1021/acsami.6b16593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Self-assembled monolayers (SAMs) have been widely used to engineer the electronic properties of substrate-supported graphene devices. However, little is known about how the surface chemistry of SAMs affects the interfacial mechanical properties of graphene supported on SAMs. Fluctuations and changes in these properties affect the stress transfer between substrate and the supported graphene and thus the performance of graphene-based devices. The changes in interfacial mechanical properties can be characterized by measuring the out-of-plane elastic properties. Combining contact resonance atomic force microcopy experiments with molecular dynamics simulations, we show that the head group chemistry of a SAM, which affects the interfacial interactions, can have a significant effect on the out-of-plane elastic modulus of the graphene-SAM heterostructure. Graphene supported on hydrophobic SAMs leads to heterostructures stiffer than those of graphene supported on hydrophilic SAMs, which is largely due to fewer water molecules present at the graphene-SAM interface. Our results provide an important, and often overlooked, insight into the mechanical properties of substrate-supported graphene electronics.
Collapse
Affiliation(s)
- Qing Tu
- Department of Mechanical Engineering and Materials Science, Duke University , Durham, North Carolina 27708, United States
- NSF Research Triangle, Materials Research Science and Engineering Center , Durham, North Carolina 27708, United States
| | - Ho Shin Kim
- NSF Research Triangle, Materials Research Science and Engineering Center , Durham, North Carolina 27708, United States
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Thomas J Oweida
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Zehra Parlak
- Department of Mechanical Engineering and Materials Science, Duke University , Durham, North Carolina 27708, United States
| | - Yaroslava G Yingling
- NSF Research Triangle, Materials Research Science and Engineering Center , Durham, North Carolina 27708, United States
- Department of Materials Science and Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University , Durham, North Carolina 27708, United States
- NSF Research Triangle, Materials Research Science and Engineering Center , Durham, North Carolina 27708, United States
| |
Collapse
|
7
|
Wilson J, Sloman L, He Z, Aksimentiev A. Graphene Nanopores for Protein Sequencing. ADVANCED FUNCTIONAL MATERIALS 2016; 26:4830-4838. [PMID: 27746710 PMCID: PMC5063307 DOI: 10.1002/adfm.201601272] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An inexpensive, reliable method for protein sequencing is essential to unraveling the biological mechanisms governing cellular behavior and disease. Current protein sequencing methods suffer from limitations associated with the size of proteins that can be sequenced, the time, and the cost of the sequencing procedures. Here, we report the results of all-atom molecular dynamics simulations that investigated the feasibility of using graphene nanopores for protein sequencing. We focus our study on the biologically significant phenylalanine-glycine repeat peptides (FG-nups)-parts of the nuclear pore transport machinery. Surprisingly, we found FG-nups to behave similarly to single stranded DNA: the peptides adhere to graphene and exhibit step-wise translocation when subject to a transmembrane bias or a hydrostatic pressure gradient. Reducing the peptide's charge density or increasing the peptide's hydrophobicity was found to decrease the translocation speed. Yet, unidirectional and stepwise translocation driven by a transmembrane bias was observed even when the ratio of charged to hydrophobic amino acids was as low as 1:8. The nanopore transport of the peptides was found to produce stepwise modulations of the nanopore ionic current correlated with the type of amino acids present in the nanopore, suggesting that protein sequencing by measuring ionic current blockades may be possible.
Collapse
Affiliation(s)
- James Wilson
- Department of Physics, University of Illinois Urbana-Champaign,
Urbana, IL 61801, USA
| | - Leila Sloman
- McGill University, 845 Rue Sherbrooke O, Montreal, QC H3A 0G4,
Canada
| | - Zhiren He
- Department of Physics, University of Illinois Urbana-Champaign,
Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois Urbana-Champaign,
Urbana, IL 61801, USA
| |
Collapse
|