1
|
Vlăsceanu D, Popescu D, Baciu F, Stochioiu C. Examining the Flexural Behavior of Thermoformed 3D-Printed Wrist-Hand Orthoses: Role of Material, Infill Density, and Wear Conditions. Polymers (Basel) 2024; 16:2359. [PMID: 39204579 PMCID: PMC11359674 DOI: 10.3390/polym16162359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
This paper examined the mechanical properties of wrist-hand orthoses made from polylactic acid (PLA) and polyethylene terephthalate glycol (PETG), produced through material extrusion with infill densities of 55% and 80%. These orthoses, commonly prescribed for wrist injuries, were 3D-printed flat and subsequently thermoformed to fit the user's hand. Experimental and numerical analyses assessed their mechanical resistance to flexion after typical wear conditions, including moisture and long-term aging, as well as their moldability. Digital Imaging Correlation investigations were performed on PLA and PETG specimens for determining the characteristics required for running numerical analysis of the mechanical behavior of the orthoses. The results indicated that even the orthoses with the lower infill density maintained suitable rigidity for wrist immobilization, despite a decrease in their mechanical properties after over one year of shelf life. PLA orthoses with 55% infill density failed at a mean load of 336 N (before aging) and 215 N (after aging), while PETG orthoses did not break during tests. Interestingly, PLA and PETG orthoses with 55% infill density were less influenced by aging compared to their 80% density counterparts. Additionally, moisture and aging affected the PLA orthoses more, with thermoforming, ongoing curing, and stress relaxation as possible explanations related to PETG behavior. Both materials proved viable for daily use, with PETG offering better flexural resistance but posing greater thermoforming challenges.
Collapse
Affiliation(s)
- Daniel Vlăsceanu
- Department of Strength of Materials, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (D.V.); (C.S.)
| | - Diana Popescu
- Department of Robotics and Production Systems, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Florin Baciu
- Department of Strength of Materials, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (D.V.); (C.S.)
| | - Constantin Stochioiu
- Department of Strength of Materials, Faculty of Industrial Engineering and Robotics, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (D.V.); (C.S.)
| |
Collapse
|
2
|
Daoud GE, von Windheim N, Alfayez Y, Michaels RE, Nyirjesy S, Chinn SB, Spector ME, VanKoevering KK. The Larry Tube: Customized 3D Printed Laryngectomy Tubes Following Total Laryngectomy. Ann Otol Rhinol Laryngol 2023; 132:1477-1482. [PMID: 36852947 DOI: 10.1177/00034894231154190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
OBJECTIVE To determine whether a custom laryngectomy tube can improve airway symptoms in total laryngectomy patients with atypical anatomy who are unable to use commercial laryngectomy tubes. Furthermore, to exemplify the power of customizable 3D printed medical devices when combined with the expanded access pathway through the FDA. METHODS A custom-fabricated laryngectomy tube, manufactured at in-house clinical engineering labs, was utilized for each patient following typical laryngectomy tube protocols. All participants had previously undergone a total laryngectomy. Patients were selected based on critical airway obstruction posing potentially life-threatening scenarios while using commercially available laryngectomy tubes. RESULTS For all patients involved, there were no further airway obstruction complications or events, and they reported a subjective, significant improvement in comfort after placement of the custom laryngectomy tube. CONCLUSION Custom laryngectomy tubes can provide patients with atypical anatomy relief from airway obstructions and improve comfort when commercial options fail to address the anatomic restriction. The process used to develop custom laryngectomy tubes may be relevant for other diseases and patients with atypical anatomies through the expanded access pathway.
Collapse
Affiliation(s)
- Georges E Daoud
- The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, USA
| | - Natalia von Windheim
- The Ohio State University Center for Design and Manufacturing Excellence, Columbus, OH, USA
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Yazen Alfayez
- The Ohio State University Center for Design and Manufacturing Excellence, Columbus, OH, USA
| | - Ross E Michaels
- University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Nyirjesy
- The Ohio State University Center for Design and Manufacturing Excellence, Columbus, OH, USA
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Steven B Chinn
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Matthew E Spector
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle K VanKoevering
- The Ohio State University College of Medicine, Columbus, OH, USA
- The Ohio State University Center for Design and Manufacturing Excellence, Columbus, OH, USA
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Baecher H, Hoch CC, Knoedler S, Maheta BJ, Kauke-Navarro M, Safi AF, Alfertshofer M, Knoedler L. From bench to bedside - current clinical and translational challenges in fibula free flap reconstruction. Front Med (Lausanne) 2023; 10:1246690. [PMID: 37886365 PMCID: PMC10598714 DOI: 10.3389/fmed.2023.1246690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Fibula free flaps (FFF) represent a working horse for different reconstructive scenarios in facial surgery. While FFF were initially established for mandible reconstruction, advancements in planning for microsurgical techniques have paved the way toward a broader spectrum of indications, including maxillary defects. Essential factors to improve patient outcomes following FFF include minimal donor site morbidity, adequate bone length, and dual blood supply. Yet, persisting clinical and translational challenges hamper the effectiveness of FFF. In the preoperative phase, virtual surgical planning and artificial intelligence tools carry untapped potential, while the intraoperative role of individualized surgical templates and bioprinted prostheses remains to be summarized. Further, the integration of novel flap monitoring technologies into postoperative patient management has been subject to translational and clinical research efforts. Overall, there is a paucity of studies condensing the body of knowledge on emerging technologies and techniques in FFF surgery. Herein, we aim to review current challenges and solution possibilities in FFF. This line of research may serve as a pocket guide on cutting-edge developments and facilitate future targeted research in FFF.
Collapse
Affiliation(s)
- Helena Baecher
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Cosima C. Hoch
- Medical Faculty, Friedrich Schiller University Jena, Jena, Germany
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bhagvat J. Maheta
- College of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Ali-Farid Safi
- Craniologicum, Center for Cranio-Maxillo-Facial Surgery, Bern, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Ahmed M, Melaragno LE, Nyirjesy SC, von Windheim N, Fenberg R, Herster R, Sheldon A, Binzel K, Knopp MV, Herderick ED, VanKoevering KK. Higher Computed Tomography (CT) Scan Resolution Improves Accuracy of Patient-specific Mandibular Models When Compared to Cadaveric Gold Standard. J Oral Maxillofac Surg 2023; 81:1176-1185. [PMID: 37315925 DOI: 10.1016/j.joms.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND 3D-printed patient-specific anatomical models are becoming an increasingly popular tool for planning reconstructive surgeries to treat oral cancer. Currently there is a lack of information regarding model accuracy, and how the resolution of the computed tomography (CT) scan affects the accuracy of the final model. PURPOSE The primary objective of this study was to determine the CT z-axis resolution necessary in creating a patient specific mandibular model with clinically acceptable accuracy for global bony reconstruction. This study also sought to evaluate the effect of the digital sculpting and 3D printing process on model accuracy. STUDY DESIGN This was a cross-sectional study using cadaveric heads obtained from the Ohio State University Body Donation Program. INDEPENDENT VARIABLES The first independent variable is CT scan slice thickness of either 0.675 , 1.25, 3.00, or 5.00 mm. The second independent variable is the three produced models for analysis (unsculpted, digitally sculpted, 3D printed). MAIN OUTCOME VARIABLE The degree of accuracy of a model as defined by the root mean square (RMS) value, a measure of a model's discrepancy from its respective cadaveric anatomy. ANALYSES All models were digitally compared to their cadaveric bony anatomy using a metrology surface scan of the dissected mandible. The RMS value of each comparison evaluates the level of discrepancy. One-way ANOVA tests (P < .05) were used to determine statistically significant differences between CT scan resolutions. Two-way ANOVA tests (P < .05) were used to determine statistically significant differences between groups. RESULTS CT scans acquired for 8 formalin-fixed cadaver heads were processed and analyzed. The RMS for digitally sculpted models decreased as slice thickness decreased, confirming that higher resolution CT scans resulted in statistically more accurate model production when compared to the cadaveric gold standard. Furthermore, digitally sculpted models were significantly more accurate than unsculpted models (P < .05) at each slice thickness. CONCLUSIONS Our study demonstrated that CT scans with slice thicknesses of 3.00 mm or smaller created statistically significantly more accurate models than models created from slice thicknesses of 5.00 mm. The digital sculpting process statistically significantly increased the accuracy of models and no loss of accuracy through the 3D printing process was observed.
Collapse
Affiliation(s)
- Maariyah Ahmed
- Undergraduate Student, Center for Design and Manufacturing Excellence, College of Engineering, The Ohio State University, Columbus, OH; Undergraduate Student, The Ohio State University College of Engineering, Department of Biomedical Engineering, Columbus, OH
| | - Luigi E Melaragno
- Undergraduate Student, Center for Design and Manufacturing Excellence, College of Engineering, The Ohio State University, Columbus, OH; Undergraduate Student, The Ohio State University College of Engineering, Department of Biomedical Engineering, Columbus, OH
| | - Sarah C Nyirjesy
- Resident, The Ohio State University Department of Otolaryngology- Head and Neck Surgery, Columbus, OH
| | - Natalia von Windheim
- Post-Doctoral Fellow, Center for Design and Manufacturing Excellence, College of Engineering, The Ohio State University, Columbus, OH
| | - Rachel Fenberg
- Clinical Researcher, The Ohio State University Department of Otolaryngology- Head and Neck Surgery, Columbus, OH; Medical Student, Albert Einstein College of Medicine, College of Medicine, New York, NY
| | - Rachel Herster
- Research Specialist, Center for Design and Manufacturing Excellence, College of Engineering, The Ohio State University, Columbus, OH
| | - Alexandra Sheldon
- Medical Student, The Ohio State University College of Medicine, Columbus, OH
| | - Katherine Binzel
- Professor, Wright Center of Innovation in Biomedical Imaging, Department of Radiology, OSUWMC, Columbus, OH
| | - Michael V Knopp
- Professor, Wright Center of Innovation in Biomedical Imaging, Department of Radiology, OSUWMC, Columbus, OH
| | - Edward D Herderick
- Director of Additive Manufacturing, Center for Design and Manufacturing Excellence, College of Engineering, The Ohio State University, Columbus, OH
| | - Kyle K VanKoevering
- Assistant Professor, The Ohio State University Department of Otolaryngology- Head and Neck Surgery, Columbus, OH.
| |
Collapse
|
5
|
Popescu D, Baciu F, Vlăsceanu D, Marinescu R, Lăptoiu D. Investigations on the Fatigue Behavior of 3D-Printed and Thermoformed Polylactic Acid Wrist-Hand Orthoses. Polymers (Basel) 2023; 15:2737. [PMID: 37376386 DOI: 10.3390/polym15122737] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Additively manufactured wrist-hand orthoses (3DP-WHOs) offer several advantages over traditional splints and casts, but their development based on a patient's 3D scans currently requires advanced engineering skills, while also recording long manufacturing times as they are commonly built in a vertical position. A proposed alternative involves 3D printing the orthoses as a flat model base and then thermoforming them to fit the patient's forearm. This manufacturing approach is faster, cost-effective and allows easier integration of flexible sensors as an example. However, it is unknown whether these flat-shaped 3DP-WHOs offer similar mechanical resistance as the 3D-printed hand-shaped orthoses, with a lack of research in this area being revealed by the literature review. To evaluate the mechanical properties of 3DP-WHOs produced using the two approaches, three-point bending tests and flexural fatigue tests were conducted. The results showed that both types of orthoses had similar stiffness up to 50 N, but the vertically built orthoses failed at a maximum load of 120 N, while the thermoformed orthoses could withstand up to 300 N with no damages observed. The integrity of the thermoformed orthoses was maintained after 2000 cycles at 0.5 Hz and ±2.5 mm displacement. It was observed that the minimum force occurring during fatigue tests was approximately -95 N. After 1100-1200 cycles, it reached -110 N and remained constant. The outcomes of this study are expected to enhance the trust that hand therapists, orthopedists, and patients have in using thermoformable 3DP-WHOs.
Collapse
Affiliation(s)
- Diana Popescu
- Department of Robotics and Production Systems, Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Florin Baciu
- Department of Strength of Materials, Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Daniel Vlăsceanu
- Department of Strength of Materials, Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Rodica Marinescu
- Department of Orthopedics, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Dan Lăptoiu
- Department of Orthopedics, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
6
|
Lohss M, Hammersley E, Ghodadra A. Customizable document control solution for 3D printing at the point-of-care. 3D Print Med 2023; 9:5. [PMID: 36930362 PMCID: PMC10022280 DOI: 10.1186/s41205-023-00172-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The rapid expansion and anticipated U.S Food and Drug Administration regulation of 3D printing at the point-of-care necessitates the creation of robust quality management systems. A critical component of any quality management system is a document control system for the organization, tracking, signature collection, and distribution of manufacturing documentation. While off-the-shelf solutions for document control exist, external programs are costly and come with network security concerns. Here, we present our internally developed, cost-effective solution for an electronic document control system for 3D printing at the point-of-care. METHODS We created a hybrid document control system by linking two commercially available platforms, Microsoft SharePoint and Adobe Sign, using a customized document approval workflow. RESULTS Our platform meets all Code of Federal Regulations Title 21, Part 11 guidances. CONCLUSION Our hybrid solution for document control provides an affordable system for users to sort, manage, store, edit, and sign documents. The system can serve as a framework for other 3D printing programs to prepare for future U.S Food and Drug Administration regulation, improve the efficiency of 3D printing at the point-of-care, and enhance the quality of work produced by their respective program.
Collapse
Affiliation(s)
- Maxwell Lohss
- University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, PA, 15213, USA
| | - Elliott Hammersley
- UPMC Department of Radiology, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Anish Ghodadra
- UPMC Department of Radiology, 200 Lothrop St, Pittsburgh, PA, 15213, USA. .,University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
Nyirjesy SC, Judd RT, Alfayez Y, Lancione P, Swendseid B, von Windheim N, Nogan S, Seim NB, VanKoevering KK. Use of 3-dimensional printing at the point-of-care to manage a complex wound in hemifacial necrotizing fasciitis: a case report. 3D Print Med 2023; 9:4. [PMID: 36813875 PMCID: PMC9948423 DOI: 10.1186/s41205-022-00166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/31/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Complex facial wounds can be difficult to stabilize due to proximity of vital structures. We present a case in which a patient-specific wound splint was manufactured using computer assisted design and three-dimensional printing at the point-of-care to allow for wound stabilization in the setting of hemifacial necrotizing fasciitis. We also describe the process and implementation of the United States Food and Drug Administration Expanded Access for Medical Devices Emergency Use mechanism. CASE PRESENTATION A 58-year-old female presented with necrotizing fasciitis of the neck and hemiface. After multiple debridements, she remained critically ill with poor vascularity of tissue in the wound bed and no evidence of healthy granulation tissue and concern for additional breakdown towards the right orbit, mediastinum, and pretracheal soft tissues, precluding tracheostomy placement despite prolonged intubation. A negative pressure wound vacuum was considered for improved healing, but proximity to the eye raised concern for vision loss due to traction injury. As a solution, under the Food and Drug Administration's Expanded Access for Medical Devices Emergency Use mechanism, we designed a three-dimensional printed, patient-specific silicone wound splint from a CT scan, allowing the wound vacuum to be secured to the splint rather than the eyelid. After 5 days of splint-assisted vacuum therapy, the wound bed stabilized with no residual purulence and developed healthy granulation tissue, without injury to the eye or lower lid. With continued vacuum therapy, the wound contracted to allow for safe tracheostomy placement, ventilator liberation, oral intake, and hemifacial reconstruction with a myofascial pectoralis muscle flap and a paramedian forehead flap 1 month later. She was eventually decannulated and at six-month follow-up has excellent wound healing and periorbital function. CONCLUSIONS Patient-specific, three-dimensional printing is an innovative solution that can facilitate safe placement of negative pressure wound therapy adjacent to delicate structures. This report also demonstrates feasibility of point-of-care manufacturing of customized devices for optimizing complex wound management in the head and neck, and describes successful use of the United States Food and Drug Administration's Expanded Access for Medical Devices Emergency Use mechanism.
Collapse
Affiliation(s)
- Sarah C. Nyirjesy
- grid.412332.50000 0001 1545 0811Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210 USA
| | - Ryan T. Judd
- grid.412332.50000 0001 1545 0811Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210 USA
| | - Yazen Alfayez
- grid.412332.50000 0001 1545 0811Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210 USA
| | - Peter Lancione
- grid.412332.50000 0001 1545 0811Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210 USA
| | - Brian Swendseid
- grid.412332.50000 0001 1545 0811Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210 USA
| | - Natalia von Windheim
- grid.412332.50000 0001 1545 0811Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210 USA
| | - Stephen Nogan
- grid.412332.50000 0001 1545 0811Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210 USA
| | - Nolan B. Seim
- grid.412332.50000 0001 1545 0811Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210 USA
| | - Kyle K. VanKoevering
- grid.412332.50000 0001 1545 0811Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210 USA
| |
Collapse
|
8
|
Nyirjesy SC, Heller M, von Windheim N, Gingras A, Kang SY, Ozer E, Agrawal A, Old MO, Seim NB, Carrau RL, Rocco JW, VanKoevering KK. The role of computer aided design/computer assisted manufacturing (CAD/CAM) and 3- dimensional printing in head and neck oncologic surgery: A review and future directions. Oral Oncol 2022; 132:105976. [PMID: 35809506 DOI: 10.1016/j.oraloncology.2022.105976] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/17/2022] [Indexed: 01/12/2023]
Abstract
Microvascular free flap reconstruction has remained the standard of care in reconstruction of large tissue defects following ablative head and neck oncologic surgery, especially for bony structures. Computer aided design/computer assisted manufacturing (CAD/CAM) and 3-dimensionally (3D) printed models and devices offer novel solutions for reconstruction of bony defects. Conventional free hand techniques have been enhanced using 3D printed anatomic models for reference and pre-bending of titanium reconstructive plates, which has dramatically improved intraoperative and microvascular ischemia times. Improvements led to current state of the art uses which include full virtual planning (VP), 3D printed osteotomy guides, and patient specific reconstructive plates, with advanced options incorporating dental rehabilitation and titanium bone replacements into the primary surgical plan through use of these tools. Limitations such as high costs and delays in device manufacturing may be mitigated with in house software and workflows. Future innovations still in development include printing custom prosthetics, 'bioprinting' of tissue engineered scaffolds, integration of therapeutic implants, and other possibilities as this technology continues to rapidly advance. This review summarizes the literature and serves as a summary guide to the historic, current, advanced, and future possibilities of 3D printing within head and neck oncologic surgery and bony reconstruction. This review serves as a summary guide to the historic, current, advanced, and future roles of CAD/CAM and 3D printing within the field of head and neck oncologic surgery and bony reconstruction.
Collapse
Affiliation(s)
- Sarah C Nyirjesy
- Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210, United States
| | - Margaret Heller
- Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210, United States
| | - Natalia von Windheim
- Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210, United States
| | - Amelia Gingras
- Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210, United States
| | - Stephen Y Kang
- Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210, United States
| | - Enver Ozer
- Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210, United States
| | - Amit Agrawal
- Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210, United States
| | - Matthew O Old
- Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210, United States
| | - Nolan B Seim
- Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210, United States
| | - Ricardo L Carrau
- Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210, United States
| | - James W Rocco
- Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210, United States
| | - Kyle K VanKoevering
- Department of Otolaryngology- Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Columbus, OH 43210, United States.
| |
Collapse
|
9
|
Bose S, Koski C, Bhattacharjee A. 3D printed hydroxyapatite-nacre-starch based bone grafts: Evaluation of biological and mechanical properties. JOURNAL OF MATERIALS RESEARCH 2022; 37:2033-2044. [PMID: 37441111 PMCID: PMC10338040 DOI: 10.1557/s43578-022-00602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/17/2022] [Indexed: 07/15/2023]
Abstract
The possibilities of utilizing nacre as a reinforcing material to manufacture 3D printed bone grafts are yet to be explored. This work reports the feasibility of fabricating 3D printed nacre-hydroxyapatitestarch composite bone graft substitutes, emphasizing the effects of nacre addition on biological and mechanical properties. Pressure-less extrusion-based 3D printing of ceramic-polymer viscous slurry is challenging due to the composition and process-parameter variations. To overcome these challenges, a dual extrusion solid freeform fabricator (SFF) has been designed. An increase in nacre loading improves the compressive strength from 9.5 ± 0.1 MPa to 11.7 ± 0.2 MPa, without any post-processing or sintering. Nacre's in vitro osteogenic properties lead to a slight increase in hFOB cellular attachment on the graft surface by day 11. The fabricated structures show good mechanical integrity during the dissolution study in simulated body fluid (SBF). These bone graft substitutes may be utilized to repair low load bearing skeletal defects.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Caitlin Koski
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Arjak Bhattacharjee
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
10
|
Bastawrous S, Wu L, Liacouras PC, Levin DB, Ahmed MT, Strzelecki B, Amendola MF, Lee JT, Coburn J, Ripley B. Establishing 3D Printing at the Point of Care: Basic Principles and Tools for Success. Radiographics 2022; 42:451-468. [PMID: 35119967 DOI: 10.1148/rg.210113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the medical applications of three-dimensional (3D) printing increase, so does the number of health care organizations in which adoption or expansion of 3D printing facilities is under consideration. With recent advancements in 3D printing technology, medical practitioners have embraced this powerful tool to help them to deliver high-quality patient care, with a focus on sustainability. The use of 3D printing in the hospital or clinic at the point of care (POC) has profound potential, but its adoption is not without unanticipated challenges and considerations. The authors provide the basic principles and considerations for building the infrastructure to support 3D printing inside the hospital. This process includes building a business case; determining the requirements for facilities, space, and staff; designing a digital workflow; and considering how electronic health records may have a role in the future. The authors also discuss the supported applications and benefits of medical 3D printing and briefly highlight quality and regulatory considerations. The information presented is meant to be a practical guide to assist radiology departments in exploring the possibilities of POC 3D printing and expanding it from a niche application to a fixture of clinical care. An invited commentary by Ballard is available online. ©RSNA, 2022.
Collapse
Affiliation(s)
- Sarah Bastawrous
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Lei Wu
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Peter C Liacouras
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Dmitry B Levin
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Mohamed Tarek Ahmed
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Brian Strzelecki
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Michael F Amendola
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - James T Lee
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - James Coburn
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Beth Ripley
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| |
Collapse
|