1
|
Schloesser L, Klose SM, Mauschitz MM, Abdullah Z, Finger RP. The role of immune modulators in age-related macular degeneration. Surv Ophthalmol 2024; 69:851-869. [PMID: 39097172 DOI: 10.1016/j.survophthal.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We provide an overview of the expanding literature on the role of cytokines and immune mediators in pathophysiology of age-related macular degeneration (AMD). Although many immunological mediators have been linked to AMD pathophysiology, the broader mechanistic picture remains unclear with substantial variations in the levels of evidence supporting these mediators. Therefore, we reviewed the literature considering the varying levels of supporting evidence. A Medical Subject Headings (MeSH) term-based literature research was conducted in September, 2023, consisting of the MeSH terms "cytokine" and "Age-related macular degeneration" connected by the operator "AND". After screening the publications by title, abstract, and full text, a total of 146 publications were included. The proinflammatory cytokines IL-1β (especially in basic research studies), IL-6, IL-8, IL-18, TNF-α, and MCP-1 are the most extensively characterised cytokines/chemokines, highlighting the role of local inflammasome activation and altered macrophage function in the AMD pathophysiology. Among the antiinflammatory mediators IL-4, IL-10, and TGF-β were found to be the most extensively characterised, with IL-4 driving and IL-10 and TGF-β suppressing disease progression. Despite the extensive literature on this topic, a profound understanding of AMD pathophysiology has not yet been achieved. Therefore, further studies are needed to identify potential therapeutic targets, followed by clinical studies.
Collapse
Affiliation(s)
- Lukas Schloesser
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Sara M Klose
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Asia-Pacific Centre for Animal Health, Faculty of Science, University of Melbourne, Melbourne, Australia
| | | | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Robert P Finger
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Yu Y, Wang G, Liu Y, Meng Z. Potential application of traditional Chinese medicine in age-related macular degeneration-focusing on mitophagy. Front Pharmacol 2024; 15:1410998. [PMID: 38828456 PMCID: PMC11140084 DOI: 10.3389/fphar.2024.1410998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Retinal pigment epithelial cell and neuroretinal damage in age-related macular degeneration (AMD) can lead to serious visual impairments and blindness. Studies have shown that mitophagy, a highly specialized cellular degradation system, is implicated in the pathogenesis of AMD. Mitophagy selectively eliminates impaired or non-functioning mitochondria via several pathways, such as the phosphatase and tensin homolog-induced kinase 1/Parkin, BCL2-interacting protein 3 and NIP3-like protein X, FUN14 domain-containing 1, and AMP-activated protein kinase pathways. This has a major impact on the maintenance of mitochondrial homeostasis. Therefore, the regulation of mitophagy could be a promising therapeutic strategy for AMD. Traditional Chinese medicine (TCM) uses natural products that could potentially prevent and treat various diseases, such as AMD. This review aims to summarize recent findings on mitophagy regulation pathways and the latest progress in AMD treatment targeting mitophagy, emphasizing methods involving TCM.
Collapse
Affiliation(s)
- Yujia Yu
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Gaofeng Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Province Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Province Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhaoru Meng
- School of Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Zhang Z, Liang F, Chang J, Shan X, Yin Z, Wang L, Li S. Autophagy in dry AMD: A promising therapeutic strategy for retinal pigment epithelial cell damage. Exp Eye Res 2024; 242:109889. [PMID: 38593971 DOI: 10.1016/j.exer.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Dry age-related macular degeneration (AMD) is a prevalent clinical condition that leads to permanent damage to central vision and poses a significant threat to patients' visual health. Although the pathogenesis of dry AMD remains unclear, there is consensus on the role of retinal pigment epithelium (RPE) damage. Oxidative stress and chronic inflammation are major contributors to RPE cell damage, and the NOD-like receptor thermoprotein structural domain-associated protein 3 (NLRP3) inflammasome mediates the inflammatory response leading to apoptosis in RPE cells. Furthermore, lipofuscin accumulation results in oxidative stress, NLRP3 activation, and the development of vitelliform lesions, a hallmark of dry AMD, all of which may contribute to RPE dysfunction. The process of autophagy, involving the encapsulation, recognition, and transport of accumulated proteins and dead cells to the lysosome for degradation, is recognized as a significant pathway for cellular self-protection and homeostasis maintenance. Recently, RPE cell autophagy has been discovered to be closely linked to the development of macular degeneration, positioning autophagy as a cutting-edge research area in the realm of dry AMD. In this review, we present an overview of how lipofuscin, oxidative stress, and the NLRP3 inflammasome damage the RPE through their respective causal mechanisms. We summarized the connection between autophagy, oxidative stress, and NLRP3 inflammatory cytokines. Our findings suggest that targeting autophagy improves RPE function and sustains visual health, offering new perspectives for understanding the pathogenesis and clinical management of dry AMD.
Collapse
Affiliation(s)
- Zhao Zhang
- Tianjin University of Chinese Medicine, Tianjin, 300193, China; The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Fengming Liang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Jun Chang
- Tianjin University of Chinese Medicine, Tianjin, 300193, China; The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Xiaoqian Shan
- Tianjin University of Chinese Medicine, Tianjin, 300193, China; The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zhixian Yin
- Hebei University of Technology, School of Electronics and Information Engineering, Tianjin, 300401, China
| | - Li Wang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Shujiao Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, 100040, China
| |
Collapse
|
4
|
Abe S, Yoshihisa A, Oohara H, Sugawara Y, Sato Y, Misaka T, Sato T, Oikawa M, Kobayashi A, Yamaki T, Nakazato K, Takeishi Y. Calcium-Phosphorus Product Is Associated with Adverse Prognosis in Hospitalized Patients with Heart Failure and Chronic Kidney Disease. Int Heart J 2024; 65:84-93. [PMID: 38296583 DOI: 10.1536/ihj.23-203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
It has been reported that high levels of calcium-phosphorus (Ca-P) product are an indicator of coronary calcification and mortality risk in patients undergoing chronic hemodialysis. In the present study, we aimed to evaluate the significance of Ca-P product to predict the prognosis of patients with heart failure (HF) and chronic kidney disease (CKD). We conducted a prospective observational study of 793 patients with decompensated HF and CKD, and measured the value of Ca-P product. The cut-off value was obtained from the survival classification and regression tree (CART) analysis to predict post-discharge all-cause mortality and/or worsening HF, and the patients were divided into 2 groups: a high group (Ca-P product > 28, n = 594) and a low group (Ca-P product ≤ 28, n = 199). We compared the patient baseline characteristics and post-discharge prognosis between the 2 groups. The age as well as the prevalence of male sex, ischemic etiology, and anemia were significantly higher in the low group than in the high group. In contrast, there was no difference in echocardiographic parameters between the 2 groups. In the Kaplan-Meier analysis (mean follow-up 1089 days), all-cause mortality and/or worsening HF event rates were higher in the low group than in the high group (log-rank P = 0.001). In the multivariable Cox proportional hazard analysis, lower Ca-P product was found to be an independent predictor of all-cause mortality and/or worsening HF (hazard ratio 0.981, P = 0.031). Lower Ca-P product predicts adverse prognosis in patients with HF and CKD.
Collapse
Affiliation(s)
- Satoshi Abe
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University
- Department of Clinical Laboratory Sciences, Fukushima Medical University School of Health Science
| | - Himika Oohara
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Yukiko Sugawara
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Yu Sato
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Takamasa Sato
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University
| | | | - Takayoshi Yamaki
- Department of Cardiovascular Medicine, Fukushima Medical University
| | | | | |
Collapse
|
5
|
Kropp M, Mohit M, Leroy-Ciocanea CI, Schwerm L, Harmening N, Bascuas T, De Clerck E, Kreis AJ, Pajic B, Johnen S, Thumann G. Mammalian Animal and Human Retinal Organ Culture as Pre-Clinical Model to Evaluate Oxidative Stress and Antioxidant Intraocular Therapeutics. Antioxidants (Basel) 2023; 12:1211. [PMID: 37371942 DOI: 10.3390/antiox12061211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress (OS) is involved in the pathogenesis of retinal neurodegenerative diseases such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) and an important target of therapeutic treatments. New therapeutics are tested in vivo despite limits in terms of transferability and ethical concerns. Retina cultures using human tissue can deliver critical information and significantly reduce the number of animal experiments along with increased transferability. We cultured up to 32 retina samples derived from one eye, analyzed the model's quality, induced OS, and tested the efficiency of antioxidative therapeutics. Bovine, porcine, rat, and human retinae were cultured in different experimental settings for 3-14 d. OS was induced by a high amount of glucose or hydrogen peroxide (H2O2) and treated with scutellarin, pigment epithelium-derived factor (PEDF), and/or granulocyte macrophage colony-stimulating factor (GM-CSF). The tissue morphology, cell viability, inflammation, and glutathione level were determined. The retina samples showed only moderate necrosis (23.83 ± 5.05 increased to 27.00 ± 1.66 AU PI-staining over 14 d) after 14 days in culture. OS was successfully induced (reduced ATP content of 288.3 ± 59.9 vs. 435.7 ± 166.8 nM ATP in the controls) and the antioxidants reduced OS-induced apoptosis (from 124.20 ± 51.09 to 60.80 ± 319.66 cells/image after the scutellarin treatment). Enhanced mammalian animal and human retina cultures enable reliable, highly transferable research on OS-triggered age-related diseases and pre-clinical testing during drug development.
Collapse
Affiliation(s)
- Martina Kropp
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Mohit Mohit
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | | | - Laura Schwerm
- Department of Ophthalmology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
| | - Nina Harmening
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Thais Bascuas
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Eline De Clerck
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Andreas J Kreis
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Bojan Pajic
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Eye Clinic ORASIS, Swiss Eye Research Foundation, 5734 Reinach, Switzerland
- Department of Physics, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
6
|
Pinelli R, Ferrucci M, Biagioni F, Berti C, Bumah VV, Busceti CL, Puglisi-Allegra S, Lazzeri G, Frati A, Fornai F. Autophagy Activation Promoted by Pulses of Light and Phytochemicals Counteracting Oxidative Stress during Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1183. [PMID: 37371913 DOI: 10.3390/antiox12061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The seminal role of autophagy during age-related macular degeneration (AMD) lies in the clearance of a number of reactive oxidative species that generate dysfunctional mitochondria. In fact, reactive oxygen species (ROS) in the retina generate misfolded proteins, alter lipids and sugars composition, disrupt DNA integrity, damage cell organelles and produce retinal inclusions while causing AMD. This explains why autophagy in the retinal pigment epithelium (RPE), mostly at the macular level, is essential in AMD and even in baseline conditions to provide a powerful and fast replacement of oxidized molecules and ROS-damaged mitochondria. When autophagy is impaired within RPE, the deleterious effects of ROS, which are produced in excess also during baseline conditions, are no longer counteracted, and retinal degeneration may occur. Within RPE, autophagy can be induced by various stimuli, such as light and naturally occurring phytochemicals. Light and phytochemicals, in turn, may synergize to enhance autophagy. This may explain the beneficial effects of light pulses combined with phytochemicals both in improving retinal structure and visual acuity. The ability of light to activate some phytochemicals may further extend such a synergism during retinal degeneration. In this way, photosensitive natural compounds may produce light-dependent beneficial antioxidant effects in AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesca Biagioni
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Caterina Berti
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Martin, TN 38237, USA
| | - Carla Letizia Busceti
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | | | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Alessandro Frati
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| |
Collapse
|