1
|
Nallagatla H, Hemalatha R, Kondapalli NB, Mohammed S. Impact of a novel synbiotic supplementation during gestation and lactation on immune responses in the Swiss albino mice offspring. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2453-2459. [PMID: 27696418 DOI: 10.1002/jsfa.8059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/14/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Prebiotics from various regularly consumed cereals and novel substrates are currently being utilised as functional foods. The aim of this study was to determine the effect of synbiotic, formulated with prebiotic extracted from natural resources like green gram (Vigna radiata) along with probiotic Lactobacillus rhamnosus GG (LGG) in modulating immune responses in the offspring when supplemented during gestation and lactation. RESULTS Synbiotic supplementation was effective in improving cell mediated immunity and humoral immunity among F0 dams. Among F1 pups (F1 Syn + and F1 Syn-), synbiotic supplementation showed significantly heightened (P < 0.05) splenocyte proliferation, increased interleukin-10, interferon gamma and interleukin-17 responses, leucocyte phagocytic ability and increased secretory-immunoglobulin A. However, four-fold increase in IgG titres to Hepatitis-B vaccine was observed only in those mice that were supplemented with synbiotic postweaning (F1 Syn+). CONCLUSION Synbiotic supplementation to pregnant dams affected the offspring's cellular and mucosal immunity favorably. However, IgG response to Hepatitis-B vaccine was influenced positively only when the supplementation was extended to the offsprings in the post weaning period. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Himaja Nallagatla
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition (ICMR), Jamai-Osmania, Hyderabad, 500 007, Telangana, India
| | - Rajkumar Hemalatha
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition (ICMR), Jamai-Osmania, Hyderabad, 500 007, Telangana, India
| | - Narendra Babu Kondapalli
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition (ICMR), Jamai-Osmania, Hyderabad, 500 007, Telangana, India
| | - Shujauddin Mohammed
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition (ICMR), Jamai-Osmania, Hyderabad, 500 007, Telangana, India
| |
Collapse
|
2
|
Himaja N, Hemalatha R, Narendra Babu K, Shujauddin M. Lactobacillus rhamnosus GG supplementation during critical windows of gestation influences immune phenotype in Swiss albino mice offspring. Benef Microbes 2016; 7:195-204. [DOI: 10.3920/bm2015.0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotic supplementation during critical windows of gestation might have a significant influence on the infant’s immune phenotype. Swiss albino mice (F0 generation) aged 31 days were supplemented orally with probiotic Lactobacillus rhamnosus GG (LGG); and the supplementation was continued throughout mating, gestation and lactation. The pups (F1 generation) born to them were separated post weaning and received either the same probiotic supplementation as their mothers or were denied supplementation postnatally. Neutrophil phagocytic ability, splenocyte proliferation, immunoglobulins and cytokines were determined in both F0 and F1 pups. In addition, antibody response against hepatitis-B surface antigen (HBsAg) was determined in F1 pups. Probiotic supplementation had no effect on the neutrophil phagocytic ability and splenocyte proliferation index. The serum immunoglobulin G (IgG) and secretory IgA (s-IgA) among the probiotic supplemented group of F0 generation were significantly (P<0.05) higher compared to the controls. Similarly, the mean concentration of interleukin (IL)-10, IL-17 and interferon gamma (IFN-γ) among F0 probiotic group were significantly higher (P<0.05) compared to the control. Prenatal and postnatal probiotic supplementation in F1 pups led to similar results as F0 dams. Prenatal probiotic supplementation in F1 pups led to significantly (P<0.05) higher serum IgG (55.15±1.35 ng/ml) and intestinal s-IgA (77.9 ± 2.86 ng/mg protein) concentration when compared to the control. Similarly, IFN-γ concentration increased (P<0.05) with prenatal probiotic supplementation compared to the control. However, IL-10 and IL-17 concentrations of prenatal probiotic supplemented F1 pups were comparable to the control. As for the antibody response to HBsAg, prenatal probiotic supplementation led to enhanced HBsAg antibody response (471.4±3.97 U/ml) compared to the control. LGG affected the immune regulation and immune responses favourably in mothers and offspring. In addition, some of the beneficial effects of prenatal LGG supplementation extended into postnatal life of the offspring, thus suggesting possible immunoprogramming effect of LGG.
Collapse
Affiliation(s)
- N. Himaja
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition (ICMR), Jamai-Osmania, Hyderabad 500 007, Telangana, India
| | - R. Hemalatha
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition (ICMR), Jamai-Osmania, Hyderabad 500 007, Telangana, India
| | - K. Narendra Babu
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition (ICMR), Jamai-Osmania, Hyderabad 500 007, Telangana, India
| | - M. Shujauddin
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition (ICMR), Jamai-Osmania, Hyderabad 500 007, Telangana, India
| |
Collapse
|
3
|
Abstract
The ultraviolet (UV) radiation contained in sunlight is a powerful immune suppressant. While exposure to UV is best known for its ability to cause skin cancer, it is also associated with protection against a range of autoimmune diseases, particularly multiple sclerosis (MS). Although the precise mechanism by which sunlight affords protection from MS remains to be determined, some have hypothesised that UV immunosuppression explains the "latitude-gradient effect" associated with MS. By stimulating the release of soluble factors in exposed skin, UV activates immune suppressive pathways that culminate in the induction of regulatory cells in distant tissues. Each and every one of the immune suppressive cells and molecules activated by UV exposure are potential targets for treating and preventing MS. A thorough understanding of the mechanisms involved is therefore required if we are to realise the therapeutic potential of photoimmunology.
Collapse
Affiliation(s)
- Felix Marsh-Wakefield
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Camperdown, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Scott N Byrne
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Camperdown, Australia. .,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia. .,Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Camperdown, Australia. .,Infectious Diseases and Immunology, Level 5 (East), The Charles Perkins Centre Hub (D17), University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
4
|
Swaminathan A, Lucas RM, Harley D, McMichael AJ. Will Global Climate Change Alter Fundamental Human Immune Reactivity: Implications for Child Health? CHILDREN (BASEL, SWITZERLAND) 2014; 1:403-23. [PMID: 27417487 PMCID: PMC4928742 DOI: 10.3390/children1030403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 12/31/2022]
Abstract
The human immune system is an interface across which many climate change sensitive exposures can affect health outcomes. Gaining an understanding of the range of potential effects that climate change could have on immune function will be of considerable importance, particularly for child health, but has, as yet, received minimal research attention. We postulate several mechanisms whereby climate change sensitive exposures and conditions will subtly impair aspects of the human immune response, thereby altering the distribution of vulnerability within populations-particularly for children-to infection and disease. Key climate change-sensitive pathways include under-nutrition, psychological stress and exposure to ambient ultraviolet radiation, with effects on susceptibility to infection, allergy and autoimmune diseases. Other climate change sensitive exposures may also be important and interact, either additively or synergistically, to alter health risks. Conducting directed research in this area is imperative as the potential public health implications of climate change-induced weakening of the immune system at both individual and population levels are profound. This is particularly relevant for the already vulnerable children of the developing world, who will bear a disproportionate burden of future adverse environmental and geopolitical consequences of climate change.
Collapse
Affiliation(s)
- Ashwin Swaminathan
- National Centre for Epidemiology and Population Health, Australian National University, Corner of Mills and Eggleston Roads, Canberra, Australian Capital Territory 2601, Australia; E-Mails: ;
- Departments of General Medicine and Infectious Diseases, Canberra Hospital, Yamba Drive, Garran, Canberra, Australian Capital Territory 2605, Australia
- Australian National University Medical School, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Robyn M. Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Corner of Mills and Eggleston Roads, Canberra, Australian Capital Territory 2601, Australia; E-Mails: ;
- Telethon Kids Institute, University of Western Australia, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| | - David Harley
- National Centre for Epidemiology and Population Health, Australian National University, Corner of Mills and Eggleston Roads, Canberra, Australian Capital Territory 2601, Australia; E-Mails: ;
| | - Anthony J. McMichael
- National Centre for Epidemiology and Population Health, Australian National University, Corner of Mills and Eggleston Roads, Canberra, Australian Capital Territory 2601, Australia; E-Mails: ;
| |
Collapse
|
5
|
Rebel H, der Spek CDV, Salvatori D, van Leeuwen JPTM, Robanus-Maandag EC, de Gruijl FR. UV exposure inhibits intestinal tumor growth and progression to malignancy in intestine-specific Apc mutant mice kept on low vitamin D diet. Int J Cancer 2014; 136:271-7. [PMID: 24890436 DOI: 10.1002/ijc.29002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/12/2014] [Indexed: 12/31/2022]
Abstract
Mortality from colorectal cancer increases with latitude and decreases with ambient UV radiation. We investigated whether moderate UV dosages could inhibit intestinal tumor development and whether this corresponded with UV-induced vitamin D. FabplCre;Apc(15lox/+) mice, which develop intestinal tumors, and their parents were put on a vitamin D-deficient diet. Next to a control group, one group was vitamin D supplemented and another one group was daily UV irradiated from 6 weeks of age. Vitamin D statuses after 6 weeks of treatment were markedly increased: mean ± SD from 7.7 ± 1.9 in controls to 75 ± 15 nmol/l with vitamin D supplementation (no gender difference), and to 31 ± 13 nmol/l in males and 85 ± 17 nmol/l in females upon UV irradiation. The tumor load (area covered by tumors) at 7.5 months of age was significantly reduced in both the vitamin D-supplemented group (130 ± 25 mm(2), p = 0.018) and the UV-exposed group (88 ± 9 mm(2), p < 0.0005; no gender differences) compared to the control group (202 ± 23 mm(2)). No reductions in tumor numbers were found. Only UV exposure appeared to reduce progression to malignancy (p = 0.014). Our experiments clearly demonstrate for the first time an inhibitory effect of moderate UV exposure on outgrowth and malignant progression of primary intestinal tumors, which at least in part can be attributed to vitamin D.
Collapse
Affiliation(s)
- Heggert Rebel
- Department of Dermatology, Leiden University Medical Center, 2333, ZC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
6
|
Sleijffers A, Garssen J, Vos JG, Loveren H. Ultraviolet light and resistance to infectious diseases. J Immunotoxicol 2012; 1:3-14. [PMID: 18958636 DOI: 10.1080/15476910490438333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Exposure to ultraviolet (UV) radiation, as in sunlight, can modulate immune responses in animals and humans. This immunomodulation can lead to positive health effects especially with respect to certain autoimmune diseases and allergies. However, UV-induced immunomodulation has also been shown to be deleterious. Experimental animal studies have revealed that UV exposure can impair the resistance to many infectious agents, such as bacteria, parasites, viruses, and fungi. Importantly, these effects are not restricted to skin-associated infections, but also concern systemic infections. UV radiation induces a multistep process, locally in the skin as well as systemically, that ultimately leads to immunosuppression. The first event is the absorption of "UV" photons by chromophores, or so-called photoreceptors, such as DNA and urocanic acid (UCA) in the upper cell layers of the skin. Upon absorption of UV radiation, trans-UCA isomerizes to the cis-isomer. Cis-UCA is likely the most important mediator of UV-induced immunosuppression, as this compound has been shown to modulate the induction of contact type hypersensitivity and delayed type hypersensitivity, allograft rejection, and the functions of monocytes and T-lymphocytes as well as natural killer cells. The real consequences of UV-induced immunomodulation on resistance to infectious diseases for humans are not fully known. Risk estimations have been performed through extrapolation of animal data, obtained from infection models, to the human situation. This estimation indicated that UV doses relevant to outdoor exposure can impair the human immune system sufficiently to have effects on resistance to infections, but also indicated that human data are necessary to further quantify and validate this risk estimation. Further information has been obtained from vaccination studies in human volunteers as ethical reasons prohibit studies with infectious agents. Studies in mice and human volunteers on the effects of prior UVB exposure on hepatitis B vaccination responses revealed suppressed cellular and humoral immune responses in mice but not in human volunteers. However, subgroups within the performed human volunteer study made by determination of cytokine polymorphisms or UVB-induced mediators, revealed that some individuals have suppressed hepatitis B vaccination responses after UVB exposure. Thus, it might be concluded that the human immune system can be affected by UVB exposure, and decreased resistance to infectious diseases can be expected after sun exposure.
Collapse
Affiliation(s)
- Annemarie Sleijffers
- Laboratory for Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | |
Collapse
|
7
|
Jeevan A, Formichella CR, Russell KE, Dirisala VR. Guinea pig skin, a model for epidermal cellular and molecular changes induced by UVR in vivo and in vitro: effects on Mycobacterium bovis Bacillus Calmette-Guérin vaccination. Photochem Photobiol 2012; 89:189-98. [PMID: 22882532 DOI: 10.1111/j.1751-1097.2012.01218.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/22/2012] [Indexed: 11/27/2022]
Abstract
Previously, we reported that ultraviolet B-radiation (UVR) suppressed Bacillus Calmette-Guérin (BCG) vaccine-induced resistance to Mycobacterium tuberculosis in guinea pigs (GP). Herein, we investigated the cellular and molecular changes within the irradiated GP epidermis and the in vivo effect of supernatants from UV-irradiated (200 J m(-2)) epidermal cells (UV-sup) on M. bovis BCG vaccination. UVR increased the number of nucleated keratinocytes in the skin, but caused a decrease in the proportions of CD25(+)T cells. In the spleen, UVR resulted in a decrease in the proportions of T-cell subsets including CD25(+)T cells, and major histocompatibility complex (MHC) class II(+) and CD14(+) cells. Similarly, significant up-regulation of several cytokine mRNAs including IL-10 was also observed. Furthermore, UV-sup significantly reduced the MHC class II expression in peritoneal cells and reduced T-cell proliferation to ConA. The proliferation to purified protein derivative (PPD) was restored to normal levels by anti-IL-10 antibody. The UV-sup when injected into BCG-vaccinated GP significantly diminished the skin test response and T-cell proliferation to PPD and up-regulated the expression of IL-10, IL-4, IL-1β and Foxp3 mRNAs in the lymph node or spleen. Thus, whole body UVR induces profound cellular and molecular changes and injection of UV-sup from epidermal cells mimics the effect of whole body UVR in BCG-vaccinated GP.
Collapse
Affiliation(s)
- Amminikutty Jeevan
- Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, TX, USA.
| | | | | | | |
Collapse
|
8
|
Bandaru P, Rajkumar H, Nappanveettil G. Altered or Impaired Immune Response to Hepatitis B Vaccine in WNIN/GR-Ob Rat: An Obese Rat Model with Impaired Glucose Tolerance. ISRN ENDOCRINOLOGY 2011; 2011:980105. [PMID: 22363894 PMCID: PMC3262630 DOI: 10.5402/2011/980105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 06/19/2011] [Indexed: 02/02/2023]
Abstract
Obesity is shown to increase the incidence and severity of infectious diseases and
individuals seem to exhibit poor antibody response to vaccination due to several inherent immune defects. With the increasing prevalence of impaired glucose tolerance (IGT) seen in obese individuals, the present study was aimed to investigate the basal immune response and immune response upon Hepatitis B vaccination (HBV) in an obese rat model WNIN/GR-Ob with impaired glucose tolerance (IGT). Decreased proportions of splenic CD4+ T helper cells and CD3+ T cells were observed in obese animals compared to lean animals. Upon HBV, obese animals showed reduced cell-mediated immunity and humoral immunity in terms of splenic lymphocyte proliferative response to Concanavalin A (Con A) and Hepatitis B surface antigen (HBsAg) and HBsAg-specific IgG response. Innate immunity as assessed in terms of Tumor Necrosis Factor α (TNF α) and Nitric oxide (NO) production by peritoneal macrophages upon HBV was low and unchanged, respectively, in obese animals. Thus long-term immunological memory is impaired or altered upon HBV.
Collapse
Affiliation(s)
- Prathibha Bandaru
- Department of Microbiology, National Institute of Nutrition, Jamai Osmania, Hyderabad 500 604, India
| | | | | |
Collapse
|
9
|
Norval M, Woods GM. UV-induced immunosuppression and the efficacy of vaccination. Photochem Photobiol Sci 2011; 10:1267-74. [PMID: 21713277 DOI: 10.1039/c1pp05105a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure to ultraviolet radiation (UVR) suppresses immunity by complex pathways, initiated by chromophores located in the skin and ending with the generation of specific subsets of T and B regulatory cells. The primary and memory (recall) immune response to a wide variety of antigens, including microorganisms, can be reduced by UVR, leading to the possibility that the efficacy of vaccination could be similarly reduced. A limited number of animal models of vaccination demonstrate that this may indeed be the case. The situation in human subjects has not been rigorously assessed but there are indications from a variety of sources that UVR adversely affects the immune responses to several vaccines. These studies are reviewed and the implications for vaccine administration discussed. As vaccination represents a major public health measure world-wide for the control of an increasing number of common infections, it is important to maximise its efficacy; therefore further evaluation of UVR in the context of vaccination is required and warranted.
Collapse
Affiliation(s)
- Mary Norval
- Biomedical Sciences, University of Edinburgh Medical School, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK.
| | | |
Collapse
|
10
|
Altered or impaired immune response upon vaccination in WNIN/Ob rats. Vaccine 2011; 29:3038-42. [PMID: 21320543 DOI: 10.1016/j.vaccine.2011.01.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 01/24/2011] [Accepted: 01/30/2011] [Indexed: 01/23/2023]
Abstract
The present study was aimed to study the immune response in three months old male and female naïve obese animals and upon hepatitis B vaccination in three months old female WNIN/Ob obese mutant rats, established at our institute in comparison with its lean litter mates. Altered immune profile was seen in naïve obese mutant rats in terms of percentage of splenic CD8(+) cytotoxic cells in males and percentages of splenic CD3(+) T lymphocytes and CD4(+) T helper cells in females respectively. Furthermore these obese mutant rats also exhibited impaired immune response to hepatitis B vaccine with low specific Hepatitis B surface antigen (HBsAg) specific IgG response and splenic lymphocyte proliferative response to HBsAg compared to the lean counterpart. The loss of immunological memory following vaccination could be attributed to the metabolic and hormonal changes associated with obesity. This observation has implication in public health policies related to vaccination in developed as well as developing countries.
Collapse
|
11
|
Gorman S, McGlade JP, Lambert MJM, Strickland DH, Thomas JA, Hart PH. UV exposure and protection against allergic airways disease. Photochem Photobiol Sci 2010; 9:571-7. [PMID: 20354653 DOI: 10.1039/b9pp00136k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asthma is a chronic inflammatory disease of the small and large conducting airway mucosa characterised by Th2 cell immunity. Allergen-specific IgE levels control the immediate response whilst the interplay between airway mucosal antigen presenting cells, Th2 effector cells and CD4+CD25+ regulatory T cells control the late phase, cell-mediated response. Using two experimental systems in mice with ovalbumin and papain, respectively, as the allergens, UV irradiation of skin prior to allergen sensitisation reduced the expression of allergic airways disease, particularly the late phase response. In this review, the reduced Th2-driven, asthma-like responses in respiratory tissues of UV-irradiated mice are detailed. Possible mechanisms of UV regulation are debated. The potential beneficial effects of UV irradiation of skin in controlling allergic airways disease are discussed. This review gives some scientific understanding to century-old anecdotal reports that beach and mountain resort holidays associated with increased UV exposure are beneficial in asthma treatment.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, PO Box 855, West Perth, Western Australia, Australia 6872
| | | | | | | | | | | |
Collapse
|
12
|
Ultraviolet radiation reduces resistance to Mycobacterium tuberculosis infection in BCG-vaccinated guinea pigs. Tuberculosis (Edinb) 2009; 89:431-8. [DOI: 10.1016/j.tube.2009.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/20/2009] [Accepted: 09/10/2009] [Indexed: 11/17/2022]
|
13
|
Abstract
Around 1980, experiments with hairless mice showed us that UV-induced actinic keratoses (AK) and ensuing skin carcinomas did not arise independently: the rate of occurrence in one skin area was increased considerably if AKs had already been induced separately in another distant skin area, i.e. a systemic effect. The ground laying work of Margaret Kripke in the 1970s provided a fitting explanation: UV-induced immunosuppression and tolerance toward the UV-induced tumors. From Kripke's work a new discipline arose: "Photoimmunology." Enormous strides were made in exploring and expanding the effects from UV carcinogenesis to infectious diseases, and in elucidating the mechanisms involved. Stemming from concerns about a depletion of the ozone layer and the general impact of ambient UV radiation, the groups I worked in and closely collaborated with explored the anticipated adverse effects of UV-induced immunosuppression on healthy individuals. An important turning point was brought about in 1992 when the group of Kevin Cooper reported that immunosuppression could be induced by UV exposure in virtually all human subjects tested, suggesting that this is a normal and sound physiological reaction to UV exposure. This reaction could actually protect us from illicit immune responses against our UV-exposed skin, such as observed in idiopathic polymorphic light eruption. This premise has fruitfully rekindled the research on this common "sun allergy," affecting to widely varying degrees about one in five Europeans with indoor professions.
Collapse
Affiliation(s)
- Frank R de Gruijl
- Dermatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
14
|
Norval M, Cullen AP, de Gruijl FR, Longstreth J, Takizawa Y, Lucas RM, Noonan FP, van der Leun JC. The effects on human health from stratospheric ozone depletion and its interactions with climate change. Photochem Photobiol Sci 2007; 6:232-51. [PMID: 17344960 DOI: 10.1039/b700018a] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ozone depletion leads to an increase in the ultraviolet-B (UV-B) component (280-315 nm) of solar ultraviolet radiation (UVR) reaching the surface of the Earth with important consequences for human health. Solar UVR has many harmful and some beneficial effects on individuals and, in this review, information mainly published since the previous report in 2003 (F. R. de Gruijl, J. Longstreth, M. Norval, A. P. Cullen, H. Slaper, M. L. Kripke, Y. Takizawa and J. C. van der Leun, Photochem. Photobiol. Sci., 2003, 2, pp. 16-28) is discussed. The eye is exposed directly to sunlight and this can result in acute or long-term damage. Studying how UV-B interacts with the surface and internal structures of the eye has led to a further understanding of the location and pathogenesis of a number of ocular diseases, including pterygium and cataract. The skin is also exposed directly to solar UVR, and the development of skin cancer is the main adverse health outcome of excessive UVR exposure. Skin cancer is the most common form of malignancy amongst fair-skinned people, and its incidence has increased markedly in recent decades. Projections consistently indicate a further doubling in the next ten years. It is recognised that genetic factors in addition to those controlling pigment variation can modulate the response of an individual to UVR. Several of the genetic factors affecting susceptibility to the development of squamous cell carcinoma, basal cell carcinoma and melanoma have been identified. Exposure to solar UVR down-regulates immune responses, in the skin and systemically, by a combination of mechanisms including the generation of particularly potent subsets of T regulatory cells. Such immunosuppression is known to be a crucial factor in the generation of skin cancers. Apart from a detrimental effect on infections caused by some members of the herpesvirus and papillomavirus families, the impact of UV-induced immunosuppression on other microbial diseases and vaccination efficacy is not clear. One important beneficial effect of solar UV-B is its contribution to the cutaneous synthesis of vitamin D, recognised to be a crucial hormone for bone health and for other aspects of general health. There is accumulating evidence that UVR exposure, either directly or via stimulation of vitamin D production, has protective effects on the development of some autoimmune diseases, including multiple sclerosis and type 1 diabetes. Adequate vitamin D may also be protective for the development of several internal cancers and infections. Difficulties associated with balancing the positive effects of vitamin D with the negative effects of too much exposure to solar UV-B are considered. Various strategies that can be adopted by the individual to protect against excessive exposure of the eye or the skin to sunlight are suggested. Finally, possible interactions between ozone depletion and climate warming are outlined briefly, as well as how these might influence human behaviour with regard to sun exposure.
Collapse
Affiliation(s)
- M Norval
- Medical Microbiology, University of Edinburgh Medical School, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Byrne SN, Spinks N, Halliday GM. The induction of immunity to a protein antigen using an adjuvant is significantly compromised by ultraviolet A radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 84:128-34. [PMID: 16563795 DOI: 10.1016/j.jphotobiol.2006.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 02/17/2006] [Indexed: 11/20/2022]
Abstract
Ultraviolet (UV) radiation from sunlight causes skin cancer and inhibits priming of the immune system during vaccination. However the dose related effects of the different components of sunlight (UVA and UVB) are complex and require further investigation. Using ovalbumin as a model protein vaccine with saponin as adjuvant we show that both UVA and UVB can suppress the DTH response to a poorly immunogenic protein. Increasing doses of UVB induced increased levels of immunosuppression and tolerance. UVA however, caused a bi-phasic dose response with intermediate but not low or high doses causing primary immunosuppression. No dose of UVA caused significant tolerance. Similar results were observed in both C57BL/6 and Balb/c mice. Our data confirms the complex immunomodulatory dose effects of UVA and UVB for a protein antigen, and shows that both UVB and UVA can suppress immunity induced by a protein with adjuvant. This highlights the importance of considering sun exposure patterns in the future success of both preventing skin cancer development and enhancing vaccination regimes.
Collapse
Affiliation(s)
- Scott N Byrne
- Department of Medicine, Dermatology Research Laboratories, Melanoma and Skin Cancer Research Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital at the University of Sydney, 2006, Australia
| | | | | |
Collapse
|
16
|
Termorshuizen F, Feltkamp MCW, Struijk L, de Gruijl FR, Bavinck JNB, van Loveren H. Sunlight exposure and (sero)prevalence of epidermodysplasia verruciformis-associated human papillomavirus. J Invest Dermatol 2004; 122:1456-62. [PMID: 15175037 DOI: 10.1111/j.0022-202x.2004.22617.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet radiation (UVR) is associated with an increased risk of squamous cell carcinoma (SCC), which is in part due to immunomodulation. In addition, human papilloma virus (HPV), especially the epidermodysplasia verruciformis (EV)-associated types, may be involved. In view of the capacity of UVR to impair host resistance to infections, we investigated the relationship between solar exposure and the prevalence of cutaneous HPV. In a case-control study on skin cancer (320 controls and 156 patients) a lifetime-retrospective questionnaire on sun exposure was administered. The presence of DNA of HPV types 5, 8, 15, 20, 24, and 38 in plucked eyebrow hair and type-specific seroreactivity were assessed and analyzed in relation to estimated exposure. Sunburn episodes in the past, especially at age 13-20 y, appeared to be associated with an enhanced risk of EV-HPV DNA positivity. In contrast, a higher lifetime sun exposure was associated with a lower risk of HPV infection. These results indicate that UVR at erythematogenic doses increases the risk of EV-HPV infection, possibly due to impaired host resistance to HPV and/or a direct effect of UVR on viral replication. The favorable association between lifetime sun exposure and HPV prevalence, however, underscores the enigmatic role of HPV in skin carcinogenesis.
Collapse
|
17
|
Sleijffers A, Garssen J, Van Loveren H. Ultraviolet radiation, resistance to infectious diseases, and vaccination responses. Methods 2002; 28:111-21. [PMID: 12231195 DOI: 10.1016/s1046-2023(02)00215-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Exposure to ultraviolet (UV) radiation, as in sunlight, can modulate immune responses in animals and humans. This immunomodulation can lead to positive health effects especially with respect to certain autoimmune diseases and allergies. However, UV-induced immunomodulation has also been shown to be deleterious. Experimental animal studies have revealed that UV exposure can impair resistance to many infectious agents, such as bacteria, parasites, viruses, and fungi. Importantly, these effects are not restricted to skin-associated infections, but also concern systemic infections. The real consequences of UV-induced immunomodulation on resistance to infectious diseases are not known for humans. Risk estimations have been performed through extrapolation of animal data, obtained from infection models, to the human situation. This estimation indicated that UV doses relevant to outdoor exposure can impair the human immune system sufficiently to have effects on resistance to infections. To further quantify and validate this risk estimation, data, e.g., from human volunteer studies, are necessary. Infection models in humans are not allowed for ethical reasons. However, vaccination against an infectious disease evokes a similar immune response as the pathogen and thereby provides an opportunity to measure the effect of UV radiation on the immune system and an estimate of the possible consequences of altered resistance to infectious agents. Effects of controlled UVB exposure on immune responses after hepatitis B vaccination have been established in mice and human volunteers. In mice, cellular and Th1-associated humoral immune responses to hepatitis B were significantly impaired, whereas in human volunteers no significant effect of UVB on these responses could be found. Preliminary data indicate that cytokine polymorphisms might be, at least in part, responsible for interindividual differences in immune responses and in susceptibility to UVB-induced immunomodulation. In addition, adaptation to UV exposure needs to be considered as a possible explanation for the difference between mice and humans that was observed in the hepatitis B vaccination model.
Collapse
Affiliation(s)
- Annemarie Sleijffers
- National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands.
| | | | | |
Collapse
|