1
|
YANIK H, EKİNEKER G. Novel Functional Axially Substituted Silicon (IV) Phthalocyanine Derivative and its Photochemical Properties. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.995902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
2
|
Miscevic D, Mao JY, Kefale T, Abedi D, Moo-Young M, Perry Chou C. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli. Biotechnol Bioeng 2020; 118:30-42. [PMID: 32860420 DOI: 10.1002/bit.27547] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
Herein, we report the development of a microbial bioprocess for high-level production of 5-aminolevulinic acid (5-ALA), a valuable non-proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5-ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5-ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl-CoA for enhanced 5-ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high-level 5-ALA biosynthesis from glycerol (~30 g L-1 ) under both microaerobic and aerobic conditions, achieving up to 5.95 g L-1 (36.9% of the theoretical maximum yield) and 6.93 g L-1 (50.9% of the theoretical maximum yield) 5-ALA, respectively. This study represents one of the most effective bio-based production of 5-ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio-based production.
Collapse
Affiliation(s)
- Dragan Miscevic
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Canada
| | - Teshager Kefale
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Daryoush Abedi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.,Department of Drug & Food Control, Tehran University of Medical Sciences, Tehran, Iran
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
González-Delgado JA, Kennedy PJ, Ferreira M, Tomé JPC, Sarmento B. Use of Photosensitizers in Semisolid Formulations for Microbial Photodynamic Inactivation. J Med Chem 2015; 59:4428-42. [PMID: 26569024 DOI: 10.1021/acs.jmedchem.5b01129] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Semisolid formulations, such as gels, creams and ointments, have recently contributed to the progression of photodynamic therapy (PDT) and microbial photodynamic inactivation (PDI) in clinical applications. The most important challenges facing this field are the physicochemical properties of photosensitizers (PSs), optimal drug release profiles, and the photosensitivity of surrounding tissues. By further integration of nanotechnology with semisolid formulations, very promising pharmaceuticals have been generated against several dermatological diseases (PDT) and (antibiotic-resistant) pathogenic microorganisms (PDI). This review focuses on the different PSs and their associated semisolid formulations currently found in both the market and clinical trials that are used in PDT/PDI. Special emphasis is placed on the advantages that the semisolid formulations bring to drug delivery in PDI. Lastly, some potential considerations for improvement in this field are also discussed.
Collapse
Affiliation(s)
- José A González-Delgado
- Inovapotek, Pharmaceutical Research & Development , Edifício Inovar e Crescer, Salas 23 e 39, Rua Alfredo Allen, 455/461, 4200-135 Porto, Portugal.,QOPNA and Department of Chemistry, University of Aveiro , 3810-193 Aveiro, Portugal
| | - Patrick J Kennedy
- ICBAS-Instituto Ciências Biomédicas Abel Salazar, University of Porto, 4150-180 Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Marta Ferreira
- Inovapotek, Pharmaceutical Research & Development , Edifício Inovar e Crescer, Salas 23 e 39, Rua Alfredo Allen, 455/461, 4200-135 Porto, Portugal
| | - João P C Tomé
- QOPNA and Department of Chemistry, University of Aveiro , 3810-193 Aveiro, Portugal.,Department of Organic and Macromolecular Chemistry, Ghent University , B-9000 Gent, Belgium
| | - Bruno Sarmento
- Inovapotek, Pharmaceutical Research & Development , Edifício Inovar e Crescer, Salas 23 e 39, Rua Alfredo Allen, 455/461, 4200-135 Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.,CESPU-Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
4
|
Menezes PFC, Requena MB, Bagnato VS. Optimization of photodynamic therapy using negative pressure. Photomed Laser Surg 2014; 32:296-301. [PMID: 24730611 DOI: 10.1089/pho.2013.3670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The goal of this study is to demonstrate an alternative procedure to perform topical photodynamic therapy (PDT). Here, we propose the combined use of negative pressure and a 5-Aminolevulinic acid (5-ALA) cream occlusion to increase protoporphyrin IX (PPIX) formation. BACKGROUND DATA PDT using topical 5-ALA as a prodrug and precursor of PPIX has been used in the treatment and diagnosis of different types of cancer and skin diseases. The use of 5-ALA offers many advantages as a localized and non-systemic application, but it shows limitations in relation to skin penetration. Many authors have discussed the limitations of 5-ALA penetration through the skin. The skin penetration of 5-ALA can be optimized using mechanical devices associated with typical PDT procedure. METHODS For this study, 20% 5-ALA cream was applied to a 9 cm(2) area of skin, and an occlusive dressing was placed. The PPIX production was collected at the skin surface, using fluorescence spectroscopy and widefield fluorescence imaging, for 7 h, and after 24 h. RESULTS We observed that in the presence of negative pressure therapy, the PPIX production, distribution, and elimination are greater and faster than in the control group. The PPIX formation was ∼30% in deeper skin layers, quantified by fluorescence spectroscopy analysis, and ∼20% in surface skin layers, quantified by widefield fluorescence imaging analysis. CONCLUSIONS Negative pressure induction can also help PDT application in the case of inefficient PPIX production. These results can be useful for optimizing the PDT.
Collapse
|
5
|
Klein A, Babilas P, Karrer S, Landthaler M, Szeimies RM. Photodynamic therapy in dermatology--an update 2008. J Dtsch Dermatol Ges 2008; 6:839-45, 839-46. [PMID: 18400022 DOI: 10.1111/j.1610-0387.2008.06697.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SUMMARY Photodynamic therapy (PDT) is used for the prevention and treatment of non-melanoma skin cancer. Until recently, clinically approved indications have been restricted to actinic keratoses, nodular and superficial basal cell carcinoma, and--since 2006--Bowen disease. However, the range of indications has been expanding continuously. PDT is also used for the treatment of non-malignant conditions such as acne vulgaris and leishmaniasis, as well as for treating premature skin aging due to sun exposure. Here, PDT is used for the stimulation of immunomodulatory effects in contrast to the induction of necrosis and apoptosis as produced in the treatment of skin tumors. The porphyrin precursor 5-aminolevulinic acid (ALA) or its methyl ester (MAL, so far the only approved formulation in Europe) is applied topically as photosensitizer to exclude systemic reactions. Possible light sources include lasers as well as incoherent light sources; irradiation with incoherent light sources is cheaper and more appropriate for large treatment areas. The main advantages of PDT in comparison to other treatment modalities are its excellent cosmetic results and its high remission rates despite low invasiveness.This article provides up-to-date information about PDT with focus on recently published studies.
Collapse
Affiliation(s)
- Annette Klein
- Clinic and Polyclinic for Dermatology, University of Regensburg, Regensburg.
| | | | | | | | | |
Collapse
|
6
|
Stritt A, Merk HF, Braathen LR, von Felbert V. Photodynamic therapy in the treatment of actinic keratosis. Photochem Photobiol 2008; 84:388-98. [PMID: 18221454 DOI: 10.1111/j.1751-1097.2007.00276.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The efficacy of photodynamic therapy (PDT) with 5-aminolevulinate and methyl aminolevulinate in the treatment of actinic keratosis has been demonstrated in a large number of clinical studies over the last several years. Here, we recapitulate the major findings, comparing the various photosensitizers, light sources and therapeutic regimens, and present a retrospective analysis of 142 own cases treated with 259 PDTs. In addition, we also discuss the value of PDT in comparison with cryotherapy or 5-fluorouracil. The efficacy and the low risk of side effects of PDT have resulted in a high patient preference in clinical trials.
Collapse
Affiliation(s)
- Andrea Stritt
- Department of Dermatology, Inselspital, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|