1
|
Hiraku Y. Oxidative and nitrative DNA damage induced by industrial chemicals in relation to carcinogenesis. J Occup Health 2025; 67:uiaf003. [PMID: 39853239 DOI: 10.1093/joccuh/uiaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/26/2025] Open
Abstract
OBJECTIVES Many chemicals have been used for industrial purposes, and some of them are carcinogenic to humans. However, the molecular mechanisms of their carcinogenetic effects have not been well understood. Reactive oxygen species are generated from industrial chemicals and contribute to carcinogenesis. Particles and fibers are accumulated in respiratory systems by inhalation exposure and cause chronic inflammation. Under inflammatory conditions, reactive nitrogen species are generated from inflammatory and epithelial cells. These species cause oxidative and nitrative DNA damage, leading to carcinogenesis. We carried out experiments on DNA damage induced by various industrial chemicals and investigated their molecular mechanisms. METHODS We examined oxidative DNA damage induced by industrial chemicals using DNA fragments derived from human cancer-relevant genes by polyacrylamide gel electrophoresis. Using immunohistochemistry and immunocytochemistry we also examined the formation of 8-nitroguanine (8-nitroG), a DNA lesion formed under inflammatory conditions, in lung tissues and cultured cells exposed to industrial chemicals. RESULTS Benzene and o-toluidine metabolites caused oxidative damage to DNA fragments in the presence of Cu(II). H2O2 and Cu(I) were generated during oxidation of these chemicals and involved in DNA damage. 8-NitroG formation was observed in lung tissues of asbestos-exposed mice and humans. Carbon nanomaterials and indium compounds induced 8-nitroG formation in human lung epithelial cells via the release of damage-associated molecular patterns from exposed cells. CONCLUSIONS Various industrial chemicals are considered to induce carcinogenesis by causing oxidative and nitrative DNA damage. These findings provide an insight into risk assessment of industrial chemicals and prevention of carcinogenesis in workplaces.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental Health, University of Fukui School of Medical Science, Eiheiji, Fukui, Japan
| |
Collapse
|
2
|
Leontieva SV, Kostjukov VV. Theoretical analysis of photosensitization of DNA by thionine. J Mol Model 2024; 30:402. [PMID: 39556260 DOI: 10.1007/s00894-024-06206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
CONTEXT In this work, we are the first to perform a theoretical analysis of photoinduced charge transfer in the intercalation complex of thionine (TH) with double-stranded DNA, which was observed in experiments. Efficient DNA binding and long-wave absorption maximum make TH an attractive photosensitizer. d(CpG)2 tetranucleotide was used as a minimal model DNA fragment. Intercalation of TH between pairs of nucleobases causes the transfer of a small negative charge (0.24 e) from the tetranucleotide to the dye. S0 → S1 photoexcitation of their complex using visible light leads to the transfer in the same direction of a significant negative charge (0.9 e). This electronic transition has a HOMO → LUMO electronic configuration, with HOMO localized on one of the two phosphate groups of the tetranucleotide, and LUMO on TH; the latter has the same shape as the LUMO of free dye. In the complex, TH, by its amino groups, forms two intermolecular H-bonds: with the deoxyribose oxygen atom of one d(CpG)2 strand and with the non-bridging oxygen atom of the phosphate group of the other strand. In this case, the H-bond TH with the phosphate group is stronger than with the sugar, but the charge transfer is carried out from another phosphate group through the sugar to the dye. Thus, charge transfer occurs along the longer of the two paths. However, the path of charge transfer depends on the parameters of the excitation since higher electronic transitions also include the second phosphate group, i.e., a short way is also used. METHODS For the calculations of the excitation of the complex, TD-DFT was used in combination with a set of ten functionals (CAM-B3LYP + D3BJ, ωB97XD, LC-ωHPBE, M052X, M062X, M06HF, M08HX, M11, MN15, and SOGGA11X), which have proven themselves well in modeling the excitation of dimers of aromatic molecules. Of these, LC-ωHPBE, which gave the best agreement with the experiment, was selected for the final calculations. It was used in combination with the 6-31 + + G(d,p) basis set and the IEFPCM solvent model. The photoinduced charge redistribution was quantitatively estimated using natural population analysis, and visually by building the frontier molecular and natural transition orbitals.
Collapse
Affiliation(s)
- Svetlana V Leontieva
- Nakhimov Black Sea Higher Naval School, Dybenko Str., 1a, Crimea, 299028, Sevastopol, Ukraine
| | - Victor V Kostjukov
- Sevastopol State University, Universitetskaya Str., 33, Crimea, 299053, Sevastopol, Ukraine.
| |
Collapse
|
3
|
Uppinakudru AP, Martín-Sómer M, Reynolds K, Stanley S, Bautista LF, Pablos C, Marugán J. Wavelength synergistic effects in continuous flow-through water disinfection systems. WATER RESEARCH X 2023; 21:100208. [PMID: 38098879 PMCID: PMC10719571 DOI: 10.1016/j.wroa.2023.100208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
The past decade's development of UV LEDs has fueled significant research in water disinfection, with widespread debate surrounding the potential synergies of multiple UV wavelengths. This study analyses the use of three UV sources (265, 275, and 310 nm) on the inactivation of Escherichia coli bacteria in two water matrixes. At maximum intensity in wastewater, individual inactivation experiments in a single pass set-up (Flow rate = 2 L min-1, Residence time = 0.75 s) confirmed the 265 nm light source to be the most effective (2.2 ± 0.2 log units), while the 310 nm led to the lowest inactivation rate (0.0003 ± 7.03× 10-5 log units). When a combination of the three wavelengths was used, an average log reduction of 4.4 ± 0.2 was observed in wastewater. For combinations of 265 and 275 nm, the average log reductions were similar to the sum of individual log reductions. For combinations involving the use of 310 nm, a potential synergistic effect was investigated by the use of robust statistical analysis techniques. It is concluded that combinations of 310 nm with 265 nm or 275 nm devices, in sequential and simultaneous mode, present a significant synergy at both intensities due to the emission spectra of the selected LEDs, ensuring the possibility of two inactivation mechanisms. Finally, the electrical energy per order of inactivation found the three-wavelength combination to be the most energy efficient (0.39 ± 0.05, 0.36 ± 0.01 kWh m-3, at 50% and 100% dose, respectively, in wastewater) among the synergistic combinations.
Collapse
Affiliation(s)
- Adithya Pai Uppinakudru
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán S/n, 28933, Mostoles, Madrid, Spain
- ProPhotonix IRL LTD, 3020 Euro Business Park, Little Island, Cork, T45×211, Ireland
| | - Miguel Martín-Sómer
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán S/n, 28933, Mostoles, Madrid, Spain
| | - Ken Reynolds
- ProPhotonix IRL LTD, 3020 Euro Business Park, Little Island, Cork, T45×211, Ireland
| | - Simon Stanley
- ProPhotonix IRL LTD, 3020 Euro Business Park, Little Island, Cork, T45×211, Ireland
| | - Luis Fernando Bautista
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán S/n, 28933, Mostoles, Madrid, Spain
| | - Cristina Pablos
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán S/n, 28933, Mostoles, Madrid, Spain
| | - Javier Marugán
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, C/ Tulipán S/n, 28933, Mostoles, Madrid, Spain
| |
Collapse
|
4
|
Peng J, Pan Y, Zhou Y, Kong Q, Lei Y, Lei X, Cheng S, Zhang X, Yang X. Triplet Photochemistry of Effluent Organic Matter in Degradation of Extracellular Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7230-7239. [PMID: 37114949 DOI: 10.1021/acs.est.2c08036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Wastewater effluent is a major source of extracellular antibiotic resistance genes (eArGs) in the aquatic environment, a threat to human health and biosecurity. However, little is known about the extent to which organic matter in the wastewater effluent (EfOM) might contribute to photosensitized oxidation of eArGs. Triplet states of EfOM were found to dominate the degradation of eArGs (accounting for up to 85%). Photo-oxidation proceeded mainly via proton-coupled electron transfer reactions. They broke plasmid strands and damaged bases. O2•- was also involved, and it coupled with the reactions' intermediate radicals of eArGs. The second-order reaction rates of blaTEM-1 and tet-A segments (209-216 bps) with the triplet state of 4-carboxybenzophenone were calculated to be (2.61-2.75) × 108 M-1 s-1. Besides as photosensitizers, the antioxidant moieties in EfOM also acted as quenchers to revert intermediate radicals back to their original forms, reducing the rate of photodegradation. However, the terrestrial origin natural organic matter was unable to photosensitize because it formed less triplets, especially high-energy triplets, so its inhibitory effects predominated. This study advances our understanding of the role of EfOM in the photo-oxidation of eArGs and the difference between EfOM and terrestrial-origin natural organic matter.
Collapse
Affiliation(s)
- Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Baptista MS, Cadet J, Greer A, Thomas AH. Practical Aspects in the Study of Biological Photosensitization Including Reaction Mechanisms and Product Analyses: A Do's and Don'ts Guide †. Photochem Photobiol 2022; 99:313-334. [PMID: 36575651 DOI: 10.1111/php.13774] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The interaction of light with natural matter leads to a plethora of photosensitized reactions. These reactions cause the degradation of biomolecules, such as DNA, lipids, proteins, being therefore detrimental to the living organisms, or they can also be beneficial by allowing the treatment of several diseases by photomedicine. Based on the molecular mechanistic understanding of the photosensitization reactions, we propose to classify them in four processes: oxygen-dependent (type I and type II processes) and oxygen-independent [triplet-triplet energy transfer (TTET) and photoadduct formation]. In here, these processes are discussed by considering a wide variety of approaches including time-resolved and steady-state techniques, together with solvent, quencher, and scavenger effects. The main aim of this survey is to provide a description of general techniques and approaches that can be used to investigate photosensitization reactions of biomolecules together with basic recommendations on good practices. Illustration of the suitability of these approaches is provided by the measurement of key biomarkers of singlet oxygen and one-electron oxidation reactions in both isolated and cellular DNA. Our work is an educational review that is mostly addressed to students and beginners.
Collapse
Affiliation(s)
- Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
6
|
Jin SG, Padron F, Pfeifer GP. UVA Radiation, DNA Damage, and Melanoma. ACS OMEGA 2022; 7:32936-32948. [PMID: 36157735 PMCID: PMC9494637 DOI: 10.1021/acsomega.2c04424] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 05/05/2023]
Abstract
Melanoma is a lethal type of skin tumor that has been linked with sunlight exposure chiefly in fair-skinned human populations. Wavelengths from the sun that can reach the earth's surface include UVA radiation (320-400 nm) and UVB radiation (280-320 nm). UVB effectively induces the formation of dimeric DNA photoproducts, preferentially the cyclobutane pyrimidine dimers (CPDs). The characteristic UVB signature mutations in the form of C to T mutations at dipyrimidine sequences are prevalent in melanoma tumor genomes and have been ascribed to deamination of cytosines within CPDs before DNA polymerase bypass. However, evidence from epidemiological, animal, and other experimental studies also suggest that UVA radiation may participate in melanoma formation. The DNA damage relevant for UVA includes specific types of CPDs at TT sequences and perhaps oxidative DNA damage to guanine, both induced by direct or indirect, photosensitization-mediated chemical and biophysical processes. We summarize the evidence for a potential role of UVA in melanoma and discuss some of the mechanistic pathways of how UVA may induce mutagenesis in melanocytes.
Collapse
|
7
|
Zhao Z, Chen X, Shao Y, Shao T. Comparison of Corneal Collagen Cross-Linking and Voriconazole Treatments in Experimental Fungal Keratitis for Aspergillus fumigatus. Front Med (Lausanne) 2022; 9:869429. [PMID: 35836944 PMCID: PMC9273744 DOI: 10.3389/fmed.2022.869429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
AimsTo compare the antifungal efficacy of corneal cross-linking (CXL) and voriconazole in experimental Aspergillus keratitis models.MethodsThirty-nine New Zealand rabbits were divided into three groups: a control group, a voriconazole group (M group), and a voriconazole combined with CXL group (CXL-M group). The ulcer area was measured via slit lamp imaging, the corneal and corneal epithelial thickness, and ulcer depth was measured via anterior segment optical coherence tomography (AS-OCT). The existence time of the hyphae was observed via in vivo confocal microscopy (IVCM), and the cornea was taken for pathological examination after modeling and at the end of the study to determine the hyphae and corneal repair. The observation times were as follows: at successful modeling and at 1, 4, 7, 14, 21, and 28 days after intervention.ResultsIn the CXL-M group, ulcer area and depth decreased continuously from Day 4 to Day 28 after CXL (all P < 0.05). In the CXL-M group, ulcer area and depth were smaller than those in the other two groups from Day 4 to Day 21 after CXL (all P < 0.05, except ulcer area in the CXL-M vs. M group on Day 21). The duration of hyphae in the CXL-M group was significantly shorter than in the other two groups (P = 0.025). On Day 28, in CXL-M group, corneal thickness was thicker than baseline (P < 0.05). Meanwhile, in CXL-M group, corneal and corneal epithelial thickness were significantly thinner than in the other two groups (P < 0.001). The CXL-M group had no complications, such as corneal perforation, at the end of the study.ConclusionsVoriconazole combined with CXL is effective in treating Aspergillus-infected keratitis. Combined therapy could effectively inhibit Aspergillus, accelerate corneal repair, and shorten the course of the disease.
Collapse
Affiliation(s)
- Zhennan Zhao
- Eye Institute and Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia Fudan University, Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Xueli Chen
- Eye Institute and Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia Fudan University, Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Yi Shao
| | - Tingting Shao
- Eye Institute and Department of Ophthalmology, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia Fudan University, Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- *Correspondence: Tingting Shao
| |
Collapse
|
8
|
Matafonova G, Batoev V. Dual-wavelength light radiation for synergistic water disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151233. [PMID: 34715208 DOI: 10.1016/j.scitotenv.2021.151233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Development of the narrow-band mercury-free light sources, such as light emitting diodes (LEDs) and excilamps, has stimulated research on inactivation of pathogenic microorganisms by dual-wavelength light radiation. To date, dual-wavelength light radiation has emerged as an advanced tool for enhancing microbial inactivation in water in view of potential synergistic effect. This is the first review that aims at elucidating its mechanisms under dual-wavelength light exposure and surveying a body of related literature in terms of yes-or-no synergy. We have proposed three key inactivation mechanisms, which function in the estimated spectrum ranges I (190-254 nm), II (250-320 nm) and III (300-405 nm) and provide a synergistic effect when combined. These mechanisms involve proteins damage and DNA repair suppression (I), direct and indirect DNA damage (II) and generation of reactive oxygen species (ROS) by endogenous photosensitizers (III), such as porphyrins and flavins. A synergy under dual-wavelength light irradiation simultaneously or sequentially occurs if coupling two wavelengths of different ranges (I + II, I + III, II + III) in order to trigger different inactivation mechanisms. Recent advances of dual-wavelength light strategy in photodynamic therapy could be applied for water disinfection. They bring opportunities for applying the sources of near-UV and visible radiation and making the disinfection processes more energy- and cost-effective. From this standpoint, the synergistically efficient dual-wavelength combinations II + III and the combinations within the extended to 700 nm range III (near-UV + VIS) appear to be promising for developing novel advanced oxidation processes for disinfection of real turbid waters.
Collapse
Affiliation(s)
- Galina Matafonova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia.
| | - Valeriy Batoev
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russia
| |
Collapse
|
9
|
Wagenknecht H. Remote Photodamaging of DNA by Photoinduced Energy Transport. Chembiochem 2022; 23:e202100265. [PMID: 34569126 PMCID: PMC9292490 DOI: 10.1002/cbic.202100265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/14/2021] [Indexed: 12/11/2022]
Abstract
Local DNA photodamaging by light is well-studied and leads to a number of structurally identified direct damage, in particular cyclobutane pyrimidine dimers, and indirect oxidatively generated damage, such as 8-oxo-7,8-hydroxyguanine. Similar damages have now been found at remote sites, at least more than 105 Å (30 base pairs) away from the site of photoexcitation. In contrast to the established mechanisms of local DNA photodamaging, the processes of remote photodamage are only partially understood. Known pathways include those to remote oxidatively generated DNA photodamages, which were elucidated by studying electron hole transport through the DNA about 20 years ago. Recent studies with DNA photosensitizers and mechanistic proposals on photoinduced DNA-mediated energy transport are summarized in this minireview. These new mechanisms to a new type of remote DNA photodamaging provide an important extension to our general understanding to light-induced DNA damage and their mutations.
Collapse
Affiliation(s)
- Hans‐Achim Wagenknecht
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| |
Collapse
|
10
|
Abstract
To resolve the growing problem of drug resistance in the treatment of bacterial and fungal pathogens, specific cellular targets and pathways can be used as targets for new antimicrobial agents. Endogenous riboflavin biosynthesis is a conserved pathway that exists in most bacteria and fungi. In this review, the roles of endogenous and exogenous riboflavin in infectious disease as well as several antibacterial agents, which act as analogues of the riboflavin biosynthesis pathway, are summarized. In addition, the effects of exogenous riboflavin on immune cells, cytokines, and heat shock proteins are described. Moreover, the immune response of endogenous riboflavin metabolites in infectious diseases, recognized by MHC-related protein-1, and then presented to mucosal associated invariant T cells, is highlighted. This information will provide a strategy to identify novel drug targets as well as highlight the possible clinical use of riboflavin.
Collapse
Affiliation(s)
- Junwen Lei
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Caiyan Xin
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wei Xiao
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wenbi Chen
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| |
Collapse
|
11
|
Xiong L, Deng N, Zheng B, Li T, Liu RH. HSF-1 and SIR-2.1 linked insulin-like signaling is involved in goji berry (Lycium spp.) extracts promoting lifespan extension of Caenorhabditis elegans. Food Funct 2021; 12:7851-7866. [PMID: 34240728 DOI: 10.1039/d0fo03300f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The anti-cancer, vision-improving, and reproduction-enhancing effects of goji berry have been generally recognized, but its role in anti-aging is rarely studied in depth. Therefore, two widely-circulated goji berries, Lycium ruthenicum Murr. (LRM) and Lycium Barbarum. L (LB), were selected to explore their effects on extending lifespan and enhancing defense against extrinsic stress and to uncover the mechanism of action through genetic study. The results showed that supplementation with high-dose LRM (10 mg mL-1) and LB (100 mg mL-1) extracts significantly extended the lifespan of Caenorhabditis elegans (C. elegans) by 25.19% and 51.38%, respectively, accompanied by the improved stress tolerance of C. elegans to paraquat-induced oxidation, UV-B irradiation and heat shock. Furthermore, LRM and LB extracts remarkably enhanced the activities of antioxidant enzymes including SOD and CAT in C. elegans, while notably decreased the lipofuscin level. Further genetic research demonstrated that the expression levels of key genes daf-16, sod-2, sod-3, sir-2.1 and hsp-16.2 in C. elegans were up-regulated by the intervention with LRM and LB, while that of the age-1 level was down-regulated. Moreover, the daf-16 (mu86) I, sir-2.1 (ok434) IV and hsf-1 (sy441) I mutants reversed the longevity effect brought about by LRM or LB, which confirmed that these genes were required in goji berry-mediated lifespan extension. Therefore, we conclude that HSF-1 and SIR-2.1 act collaboratively with the insulin/IGF signaling pathway (IIS) in a daf-16-independent mode. The present study indicated goji berry as a potential functional food to alleviate the symptoms of aging.
Collapse
Affiliation(s)
- Lei Xiong
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | | | |
Collapse
|
12
|
Baptista MS, Cadet J, Greer A, Thomas AH. Photosensitization Reactions of Biomolecules: Definition, Targets and Mechanisms. Photochem Photobiol 2021; 97:1456-1483. [PMID: 34133762 DOI: 10.1111/php.13470] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
Photosensitization reactions have been demonstrated to be largely responsible for the deleterious biological effects of UV and visible radiation, as well as for the curative actions of photomedicine. A large number of endogenous and exogenous photosensitizers, biological targets and mechanisms have been reported in the past few decades. Evolving from the original definitions of the type I and type II photosensitized oxidations, we now provide physicochemical frameworks, classifications and key examples of these mechanisms in order to organize, interpret and understand the vast information available in the literature and the new reports, which are in vigorous growth. This review surveys in an extended manner all identified photosensitization mechanisms of the major biomolecule groups such as nucleic acids, proteins, lipids bridging the gap with the subsequent biological processes. Also described are the effects of photosensitization in cells in which UVA and UVB irradiation triggers enzyme activation with the subsequent delayed generation of superoxide anion radical and nitric oxide. Definitions of photosensitized reactions are identified in biomolecules with key insights into cells and tissues.
Collapse
Affiliation(s)
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, NY, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
13
|
Gunter NV, Teh SS, Lim YM, Mah SH. Natural Xanthones and Skin Inflammatory Diseases: Multitargeting Mechanisms of Action and Potential Application. Front Pharmacol 2020; 11:594202. [PMID: 33424605 PMCID: PMC7793909 DOI: 10.3389/fphar.2020.594202] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of skin inflammatory diseases such as atopic dermatitis, acne, psoriasis, and skin cancers generally involve the generation of oxidative stress and chronic inflammation. Exposure of the skin to external aggressors such as ultraviolet (UV) radiation and xenobiotics induces the generation of reactive oxygen species (ROS) which subsequently activates immune responses and causes immunological aberrations. Hence, antioxidant and anti-inflammatory agents were considered to be potential compounds to treat skin inflammatory diseases. A prime example of such compounds is xanthone (xanthene-9-one), a class of natural compounds that possess a wide range of biological activities including antioxidant, anti-inflammatory, antimicrobial, cytotoxic, and chemotherapeutic effects. Many studies reported various mechanisms of action by xanthones for the treatment of skin inflammatory diseases. These mechanisms of action commonly involve the modulation of various pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor α (TNF-α), as well as anti-inflammatory cytokines such as IL-10. Other mechanisms of action include the regulation of NF-κB and MAPK signaling pathways, besides immune cell recruitment via modulation of chemokines, activation, and infiltration. Moreover, disease-specific activity contributed by xanthones, such as antibacterial action against Propionibacterium acnes and Staphylococcus epidermidis for acne treatment, and numerous cytotoxic mechanisms involving pro-apoptotic and anti-metastatic effects for skin cancer treatment have been extensively elucidated. Furthermore, xanthones have been reported to modulate pathways responsible for mediating oxidative stress and inflammation such as PPAR, nuclear factor erythroid 2-related factor and prostaglandin cascades. These pathways were also implicated in skin inflammatory diseases. Xanthones including the prenylated α-mangostin (2) and γ-mangostin (3), glucosylated mangiferin (4) and the caged xanthone gambogic acid (8) are potential lead compounds to be further developed into pharmaceutical agents for the treatment of skin inflammatory diseases. Future studies on the structure-activity relationships, molecular mechanisms, and applications of xanthones for the treatment of skin inflammatory diseases are thus highly recommended.
Collapse
Affiliation(s)
| | - Soek Sin Teh
- Engineering and Processing Division, Energy and Environment Unit, Malaysian Palm Oil Board, Kajang, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia.,Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Siau Hui Mah
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
14
|
Decanal Protects against UVB-Induced Photoaging in Human Dermal Fibroblasts via the cAMP Pathway. Nutrients 2020; 12:nu12051214. [PMID: 32344925 PMCID: PMC7282267 DOI: 10.3390/nu12051214] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/02/2023] Open
Abstract
Solar ultraviolet (UV) radiation is the primary factor of cutaneous aging, resulting in coarse wrinkles and dryness. In this study, we aimed to test whether decanal, an aromatic compound found mainly in citrus fruits, inhibits UVB-mediated photoaging in human dermal fibroblasts and to explore whether its anti-photoaging effect occurs via cyclic adenosine monophosphate (cAMP) signaling. We found that decanal promotes collagen production dose-dependently. Meanwhile, it also increased the intracellular cAMP levels and decreased the number of molecules involved in the mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) pathway, downregulating the collagen genes and upregulating the matrix metalloproteinase (MMP) genes in UVB-exposed dermal fibroblasts. Furthermore, it enhanced hyaluronic acid levels and hyaluronic acid synthase mRNA expression. Notably, the beneficial effects of decanal were lost in the presence of a cAMP inhibitor. Our results revealed the potential of decanal for preventing photoaging and suggested that its effects are cAMP-mediated in human dermal fibroblasts.
Collapse
|
15
|
Kang W, Choi D, Park T. Dietary Suberic Acid Protects Against UVB-Induced Skin Photoaging in Hairless Mice. Nutrients 2019; 11:nu11122948. [PMID: 31817085 PMCID: PMC6950119 DOI: 10.3390/nu11122948] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet (UV) radiation is a major cause of skin photoaging, which is mainly characterized by dryness and wrinkle formation. In the current study, we investigated the anti-photoaging effects of dietary suberic acid, a naturally occurring photochemical, using UVB-irradiated hairless mice. Mice were exposed to UVB three times weekly and fed diets containing three different suberic acid concentrations (0.05%, 0.1% and 0.2%) for 10 weeks. It was found that suberic acid inhibited UVB-induced skin dryness, wrinkle formation, and epidermal thickness in hairless mice. In parallel with phenotypic changes, suberic acid attenuated UVB-induced matrix metalloproteinase (MMP) genes (MMP1a, MMP1b, MMP3, and MMP9), while accelerating collagen genes including collagen type I alpha 1 chain (COL1A1), COL1A2, and COL3A1 and hyaluronic acid synthases genes (HAS1, HAS2 and HAS3). We further demonstrated that suberic acid upregulated the molecules involved in the transforming growth factor-β (TGF-β)/SMAD pathway, but downregulated the molecules participating in the mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling in UVB-irritated hairless mice. Collectively, we propose that suberic acid may be a promising agent for treating skin photoaging.
Collapse
Affiliation(s)
| | | | - Taesun Park
- Correspondence: ; Tel.: +82-2-2123-3123; Fax: +82-2-365-3118
| |
Collapse
|
16
|
Wang X, Yu Y, Zhou Z, Liu Y, Yang Y, Xu J, Chen J. Ultrafast Intersystem Crossing in Epigenetic DNA Nucleoside 2′-Deoxy-5-formylcytidine. J Phys Chem B 2019; 123:5782-5790. [DOI: 10.1021/acs.jpcb.9b04361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yang Yu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yangyi Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Youjun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
17
|
α-Ionone Protects Against UVB-Induced Photoaging in Human Dermal Fibroblasts. Molecules 2019; 24:molecules24091804. [PMID: 31075987 PMCID: PMC6539661 DOI: 10.3390/molecules24091804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Ultraviolet (UV) light-induced wrinkle formation is a major dermatological problem and is associated with alteration in collagen. Here, we investigated the potential of α-ionone, a naturally occurring aromatic compound, in regulation of UVB-induced photoaging in human Hs68 dermal fibroblasts and identified the mechanisms involved. We found that in human dermal fibroblasts, α-ionone inhibited UVB-induced loss of collagen. α-Ionone upregulated the molecules participating in the TGF-β–SMAD pathway (TGF-β1, phospho-SMAD2/3, Col1A1, and Col1A2), but downregulated the molecules involved in the MAPK–AP-1 signaling pathway (phospho-p38, phospho-JNK, phospho-ERK, phospho-c-Fos, phospho-c-Jun, MMP1, MMP3, and MMP9), in human dermal fibroblasts. α-Ionone treatment also increased hyaluronic acid contents, and this effect was accompanied by an upregulation of mRNA expression of genes (HAS1 and HAS2) involved in hyaluronic acid synthesis. Thus, α-ionone is effective in the prevention of UVB-induced decrease of collagen and hyaluronic acid in human dermal fibroblasts. We propose that α-ionone may prove beneficial for the prevention of UV-induced wrinkle formation and skin damage.
Collapse
|
18
|
Wei A, Wang K, Wang Y, Gong L, Xu J, Shao T. Evaluation of corneal cross-linking as adjuvant therapy for the management of fungal keratitis. Graefes Arch Clin Exp Ophthalmol 2019; 257:1443-1452. [PMID: 31041523 DOI: 10.1007/s00417-019-04314-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/27/2019] [Accepted: 04/01/2019] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To evaluate the efficacy of corneal cross-linking (CXL) as adjuvant therapy for the treatment of fungal ulcerative keratitis. METHODS Forty-one patients with fungal ulcerative keratitis were recruited and assigned into two randomized controlled groups. These groups were treated with CXL combined with antifungal medications (CXL-M) or antifungal medications alone (M). The ulcers were assessed by slit-lamp biomicroscopy, slit-lamp images, in vivo confocal microscopy (IVCM), and anterior segment optical coherence tomography (AS-OCT). The patients were followed up before surgery/first visit (FV), 1 day after surgery, 1 and 2 weeks, and 1, 2, 3, 4, 5, and 6 months after surgery/FV. RESULTS In the cured patients, the area of corneal ulcers, the duration of ulcer healing, the time to non-observed fungal hyphae by IVCM, the number of antifungal medications, the frequency of administered medications, and the maximum ulcer depth decreased significantly after CXL (all P < 0.05) compared with the M group. There were no significant differences in either corneal thickness or epithelial thickness of ulcers after healing between 5 and 6 months after surgery in the CXL-M group, while these were increased significantly at 6 months compared with 5 months after FV in the M group (both P < 0.05). CONCLUSIONS In our study, CXL accelerated healing of the fungal ulcers, shortened the treatment duration, and minimized the need for medications and surgery. It appears that CXL is an effective procedure and adjuvant therapy for managing fungal keratitis.
Collapse
Affiliation(s)
- Anji Wei
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, School of Shanghai Medicine, Fudan University, 83 Fenyang Road, Shanghai, 20003, China
| | - Kaidi Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, School of Shanghai Medicine, Fudan University, 83 Fenyang Road, Shanghai, 20003, China
| | - Yan Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, School of Shanghai Medicine, Fudan University, 83 Fenyang Road, Shanghai, 20003, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, School of Shanghai Medicine, Fudan University, 83 Fenyang Road, Shanghai, 20003, China
| | - Jianjiang Xu
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, School of Shanghai Medicine, Fudan University, 83 Fenyang Road, Shanghai, 20003, China
| | - Tingting Shao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital, School of Shanghai Medicine, Fudan University, 83 Fenyang Road, Shanghai, 20003, China.
| |
Collapse
|
19
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev 2019; 119:2043-2086. [DOI: 10.1021/acs.chemrev.8b00554] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Glaucia R. Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, 81531-990 Curitiba, PR, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
20
|
Gwynne PJ, Gallagher MP. Light as a Broad-Spectrum Antimicrobial. Front Microbiol 2018; 9:119. [PMID: 29456527 PMCID: PMC5801316 DOI: 10.3389/fmicb.2018.00119] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/18/2018] [Indexed: 01/05/2023] Open
Abstract
Antimicrobial resistance is a significant and growing concern. To continue to treat even simple infections, there is a pressing need for new alternative and complementary approaches to antimicrobial therapy. One possible addition to the current range of treatments is the use of narrow-wavelength light as an antimicrobial, which has been shown to eliminate a range of common pathogens. Much progress has already been made with blue light but the potential of other regions of the electromagnetic spectrum is largely unexplored. In order that the approach can be fully and most effectively realized, further research is also required into the effects of energy dose, the harmful and beneficial impacts of light on eukaryotic tissues, and the role of oxygen in eliciting microbial toxicity. These and other topics are discussed within this perspective.
Collapse
Affiliation(s)
- Peter J Gwynne
- School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
21
|
Bhattacharya P, Basak A, Campbell A, Alabugin IV. Photochemical Activation of Enediyne Warheads: A Potential Tool for Targeted Antitumor Therapy. Mol Pharm 2018; 15:768-797. [DOI: 10.1021/acs.molpharmaceut.7b00911] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Adam Campbell
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Igor V. Alabugin
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
22
|
Toutfaire M, Bauwens E, Debacq-Chainiaux F. The impact of cellular senescence in skin ageing: A notion of mosaic and therapeutic strategies. Biochem Pharmacol 2017; 142:1-12. [PMID: 28408343 DOI: 10.1016/j.bcp.2017.04.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
Abstract
Cellular senescence is now recognized as one of the nine hallmarks of ageing. Recent data show the involvement of senescent cells in tissue ageing and some age-related diseases. Skin represents an ideal model for the study of ageing. Indeed, skin ageing varies between individuals depending on their chronological age but also on their exposure to various exogenous factors (mainly ultraviolet rays). If senescence traits can be detected with ageing in the skin, the senescent phenotype varies among the various skin cell types. Moreover, the origin of cellular senescence in the skin is still unknown, and multiple origins are possible. This reflects the mosaic of skin ageing. Senescent cells can interfere with their microenvironment, either via the direct secretion of factors (the senescence-associated secretory phenotype) or via other methods of communication, such as extracellular vesicles. Knowledge regarding the impact of cellular senescence on skin ageing could be integrated into dermatology research, especially to limit the appearance of senescent cells after photo(chemo)therapy or in age-related skin diseases. Therapeutic approaches include the clearance of senescent cells via the use of senolytics or via the cooperation with the immune system.
Collapse
Affiliation(s)
- Marie Toutfaire
- URBC, NAmur Research Institute for LIfe Science (NARILIS), University of Namur, Namur, Belgium
| | - Emilie Bauwens
- URBC, NAmur Research Institute for LIfe Science (NARILIS), University of Namur, Namur, Belgium
| | | |
Collapse
|
23
|
Ye Y, Sun-Waterhouse D, You L, Abbasi AM. Harnessing food-based bioactive compounds to reduce the effects of ultraviolet radiation: a review exploring the link between food and human health. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yuhui Ye
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Lijun You
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Arshad Mehmood Abbasi
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Department of Environmental Sciences; COMSATS Institute of Information Technology (CIIT); Park Road ChakShahzad Islamabad 22060 Pakistan
| |
Collapse
|
24
|
Kaya K, Roy S, Nogues JC, Rojas JC, Sokolikj Z, Zorio DAR, Alabugin IV. Optimizing Protonation States for Selective Double-Strand DNA Photocleavage in Hypoxic Tumors: pH-Gated Transitions of Lysine Dipeptides. J Med Chem 2016; 59:8634-47. [DOI: 10.1021/acs.jmedchem.6b01164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kemal Kaya
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
- Department
of Chemistry, Dumlupınar University, Kütahya, 43100 Turkey
| | - Saumya Roy
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Juan Carlos Nogues
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Juan Camilo Rojas
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Zlatko Sokolikj
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Diego A. R. Zorio
- Department of Biomedical Sciences, College
of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
25
|
Klein‐Bosgoed C, Schubert P, Devine DV. Riboflavin and ultraviolet illumination affects selected platelet mRNA transcript amounts differently. Transfusion 2016; 56:2286-95. [DOI: 10.1111/trf.13715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/17/2016] [Accepted: 05/31/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Christa Klein‐Bosgoed
- Department of Pathology and Laboratory Medicine and Centre for Blood ResearchUniversity of British Columbia
| | - Peter Schubert
- Department of Pathology and Laboratory Medicine and Centre for Blood ResearchUniversity of British Columbia
- Canadian Blood Services Centre for InnovationVancouver BC Canada
| | - Dana V. Devine
- Department of Pathology and Laboratory Medicine and Centre for Blood ResearchUniversity of British Columbia
- Canadian Blood Services Centre for InnovationVancouver BC Canada
| |
Collapse
|
26
|
Gattuso H, Besancenot V, Grandemange S, Marazzi M, Monari A. From non-covalent binding to irreversible DNA lesions: nile blue and nile red as photosensitizing agents. Sci Rep 2016; 6:28480. [PMID: 27329409 PMCID: PMC4916457 DOI: 10.1038/srep28480] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022] Open
Abstract
We report a molecular modeling study, coupled with spectroscopy experiments, on the behavior of two well known organic dyes, nile blue and nile red, when interacting with B-DNA. In particular, we evidence the presence of two competitive binding modes, for both drugs. However their subsequent photophysical behavior is different and only nile blue is able to induce DNA photosensitization via an electron transfer mechanism. Most notably, even in the case of nile blue, its sensitization capabilities strongly depend on the environment resulting in a single active binding mode: the minor groove. Fluorescence spectroscopy confirms the presence of competitive interaction modes for both sensitizers, while the sensitization via electron transfer, is possible only in the case of nile blue.
Collapse
Affiliation(s)
- Hugo Gattuso
- Université de Lorraine – Nancy, Theory-Modeling-Simulation SRSMC, Vandoeuvre-lès-Nancy, France
- CNRS, Theory-Modeling-Simulation SRSMC, Vandoeuvre-lès-Nancy, France
| | - Vanessa Besancenot
- Université de Lorraine – Nancy Santé, Biologie, Signal - CRAN, Vandoeuvre-lès-Nancy, France
- CNRS, Santé, Biologie, Signal, CRAN, Vandoeuvre-lès-Nancy, France
| | - Stéphanie Grandemange
- Université de Lorraine – Nancy Santé, Biologie, Signal - CRAN, Vandoeuvre-lès-Nancy, France
- CNRS, Santé, Biologie, Signal, CRAN, Vandoeuvre-lès-Nancy, France
| | - Marco Marazzi
- Université de Lorraine – Nancy, Theory-Modeling-Simulation SRSMC, Vandoeuvre-lès-Nancy, France
- CNRS, Theory-Modeling-Simulation SRSMC, Vandoeuvre-lès-Nancy, France
| | - Antonio Monari
- Université de Lorraine – Nancy, Theory-Modeling-Simulation SRSMC, Vandoeuvre-lès-Nancy, France
- CNRS, Theory-Modeling-Simulation SRSMC, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
27
|
Quantitative PCR for detection of DNA damage in mitochondrial DNA of the fission yeast Schizosaccharomyces pombe. J Microbiol Methods 2016; 127:77-81. [PMID: 27236021 DOI: 10.1016/j.mimet.2016.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 11/24/2022]
Abstract
Quantitative polymerase chain reaction (QPCR) has been employed to detect DNA damage and repair in mitochondrial DNA (mtDNA) of human and several model organisms. The assay also permits the quantitation of relative mtDNA copy number in cells. Here, we developed the QPCR assay primers and reaction conditions for the fission yeast Schizosaccharomyces pombe, an important model of eukaryote biology, not previously described. Under these conditions, long targets (approximately 10kb) in mtDNA were quantitatively amplified using 0.1ng of crude DNA templates without isolation of mitochondria and mtDNA. Quantitative detection of oxidative DNA damage in mtDNA was illustrated by using a DNA template irradiated with UVA in the presence of riboflavin. The damage to mtDNA in S. pombe cells treated with hydrogen peroxide and paraquat was also quantitatively measured. Finally, we found that mtDNA copy number in S. pombe cells increased after transition into a stationary phase and that the damage to mtDNA due to endogenous cellular processes accumulated during chronological aging.
Collapse
|
28
|
Hirakawa K, Yoshioka T. Photoexcited riboflavin induces oxidative damage to human serum albumin. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Abstract
Photosensitization, subsequent to photon absorption by chromophores present in the human skin, appears to be a key mechanism of UV-induced oxidative stress. The tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ), an aryl hydrocarbon receptor ligand, has been found to be a potent UVA photosensitizer, effective at nanomolar concentrations. A novel addition to the family of endogenous photosensitizers, the precise mechanism(s) through which it mediates oxidative stress in UVA exposed skin and its response to the UVB spectrum of the solar UV flux remains unexplored. Further studies related to its functionality in the human skin, its utility as a tool against UV-induced adverse effects, and its role in inflammatory skin diseases will have the potential to open up new avenues in the realms of human skin photobiology.
Collapse
|
30
|
Zamani M, Panahi-Bazaz M, Assadi M. Corneal Collagen Cross-linking for Treatment of Non-healing Corneal Ulcers. J Ophthalmic Vis Res 2015; 10:16-20. [PMID: 26005547 PMCID: PMC4424712 DOI: 10.4103/2008-322x.156087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 05/26/2014] [Indexed: 11/10/2022] Open
Abstract
Purpose: To evaluate the efficacy of corneal collagen cross-linking (CXL) for treatment of corneal ulcers not responding to antimicrobial therapy. Methods: Eight patients with corneal ulcers associated with corneal melting, not responding to conventional antibiotic therapy, were treated with CXL. The procedure was performed according to the standardized protocol for keratoconus. Preoperative medications were continued after CXL in all cases. Microbiological exams revealed Pseudomonas aeruginosa in 3 cases. Follow up continued from 1 to 10 months. Results: In 6 of 8 eyes, progression of corneal melting was halted and complete epithelialization occurred. In one eye emergency keratoplasty was needed due to corneal perforation. A conjunctival flap was performed to treat severe localized corneal thinning in one of the patients a few days after CXL. Significant clinical improvement occurred in all cases of Pseudomonas aeruginosa keratitis. Conclusion: CXL can be considered as a promising new treatment in the management of refractory non-healing corneal ulcers, including Pseudomonas aeruginosa keratitis.
Collapse
Affiliation(s)
- Mitra Zamani
- Ophthalmic Infections Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoodreza Panahi-Bazaz
- Ophthalmic Infections Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Assadi
- Ophthalmic Infections Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
31
|
Sedlačková E, Bábelová A, Kozics K, Šelc M, Srančíková A, Frecer V, Gábelová A. Ultraviolet A radiation potentiates the cytotoxic and genotoxic effects of 7 H-dibenzo[c,g]carbazole and its methyl derivatives. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:388-403. [PMID: 25421724 DOI: 10.1002/em.21927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
7H-Dibenzo[c,g]carbazole (DBC) is a heterocyclic aromatic hydrocarbon that is carcinogenic in many species and tissues. DBC is a common environmental pollutant, and is therefore constantly exposed to sunlight. However, there are limited data exploring the toxicity of DBC photoexcitation products. Here, we investigated the impact of ultraviolet (UV) A radiation on the biological activity of DBC and its methyl derivatives, 5,9-dibenzo[c,g]carbazole and N-methyl dibenzo[c,g]carbazole, on human skin HaCaT keratinocytes. Co-exposure of HaCaT cells to UVA and DBC derivatives resulted in a sharp dose-dependent decrease in cell survival and apparent changes in cell morphology. Under the same treatment conditions, significant increases in DNA strand breaks, intracellular reactive oxygen species, and oxidative damage to DNA were observed in HaCaT cells. Consistent with these results, an apparent inhibition in superoxide dismutase, but not glutathione peroxidase activity, was detected in cells treated with DBC and its derivatives under UVA irradiation. The photoactivation-induced toxicity of individual DBC derivatives correlated with the electron excitation energies approximately expressed as the energy difference between the highest occupied and the lowest vacant molecular orbital. Our data provide the first evidence that UVA can enhance the toxicity of DBC and its derivatives. Photoactivation-induced conversion of harmless chemical compounds to toxic photoproducts associated with reactive oxygen species generation may substantially amplify the adverse health effects of UVA radiation and contribute to increased incidence of skin cancer.
Collapse
Affiliation(s)
- Eva Sedlačková
- Laboratory of Mutagenesis and Carcinogenesis, Cancer Research Institute, SAS, Vlarska 7, Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
32
|
Rananaware A, Bhosale RS, Ohkubo K, Patil H, Jones LA, Jackson SL, Fukuzumi S, Bhosale SV, Bhosale SV. Tetraphenylethene-based star shaped porphyrins: synthesis, self-assembly, and optical and photophysical study. J Org Chem 2015; 80:3832-40. [PMID: 25822257 DOI: 10.1021/jo502760e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Supramolecular self-assembly and self-organization are simple and convenient ways to design and create controlled assemblies with organic molecules, and they have provoked great interest due to their potential applications in various fields, such as electronics, photonics, and light-energy conversion. Herein, we describe the synthesis of two π-conjugated porphyrin molecules bearing tetraphenylethene moieties with high fluorescence quantum yield. Photophysical and electrochemical studies were conducted to understand the physical and redox properties of these new materials, respectively. Furthermore, these derivatives were used to investigate self-assembly via the solvophobic effect. The self-assembled aggregation was performed in nonpolar and polar organic solvents and forms nanospheres and ring-like nanostructures, respectively. The solution based aggregation was studied by means of UV-vis absorption, emission, XRD, and DLS analyses. Self-assembled ring-shape structures were visualized by SEM and TEM imaging. This ring-shape morphology of nanosized macromolecules might be a good candidate for the creation of artificial light-harvesting nanodevices.
Collapse
Affiliation(s)
- Anushri Rananaware
- †School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne VIC-3001, Australia
| | - Rajesh S Bhosale
- ‡Polymers and Functional Material Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana India.,∥RMIT-IICT Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
| | - Kei Ohkubo
- §Department of Material and Life Science Graduate School of Engineering, Osaka University, GSE Common East 12F, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hemlata Patil
- †School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne VIC-3001, Australia
| | - Lathe A Jones
- †School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne VIC-3001, Australia.,⊥Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Sam L Jackson
- †School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne VIC-3001, Australia
| | - Shunichi Fukuzumi
- §Department of Material and Life Science Graduate School of Engineering, Osaka University, GSE Common East 12F, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Sidhanath V Bhosale
- ‡Polymers and Functional Material Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana India
| | - Sheshanath V Bhosale
- †School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne VIC-3001, Australia
| |
Collapse
|
33
|
Ultraviolet A/Riboflavin Collagen Cross-Linking for Treatment of Moderate Bacterial Corneal Ulcers. Cornea 2015; 34:402-6. [DOI: 10.1097/ico.0000000000000375] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Kaya K, Johnson M, Alabugin IV. Opening Enediyne Scissors Wider: pH-Dependent DNA Photocleavage by meta-Diyne Lysine Conjugates. Photochem Photobiol 2015; 91:748-58. [PMID: 25545396 DOI: 10.1111/php.12412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
Abstract
Photochemical activation of meta-diynes incapable of Bergman and C1-C5 cyclizations still leads to efficient double-strand DNA cleavage. Spatial proximity of the two arylethynyl groups is not required for efficient DNA photocleavage by the enediyne-lysine conjugates. Efficiency of the cleavage is a function of the external pH and DNA damage is strongly enhanced at pH < 7. The pH-dependence of the DNA photocleavage activity stems from the protonation states of lysine amino groups, the internal electron donors responsible for intramolecular PET quenching and deactivation of the photoreactive excited states. DNA-binding analysis suggests intercalative DNA binding for phenyl substituted conjugate and groove binding for TFP-substituted conjugate. Additional insights in the possible mechanism for DNA damage from the ROS (Reactive Oxygen Species) scavenger experiments found that generation of singlet oxygen is partially involved in the DNA damage.
Collapse
Affiliation(s)
- Kemal Kaya
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL
| | | | | |
Collapse
|
35
|
Letsch J, Abou-Bacar A, Candolfi E, Bourcier T, Sauer A. [Evaluation of in vitro efficacy of combined riboflavin and ultraviolet-A (365 nm) for Acanthamoeba]. J Fr Ophtalmol 2015; 38:213-9. [PMID: 25637236 DOI: 10.1016/j.jfo.2014.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Acanthamoeba keratitis is a rare but serious disease and is particularly difficult to treat when the diagnosis is delayed, partly because of the limitations of current therapies. The purpose of our study is to evaluate the anti-amoebic effectiveness of riboflavin and UV-A on Acanthamoeba castellani. MATERIALS AND METHODS We tested the effect of 0.02% chlorhexidine alone (C), the combination of riboflavin 1% and UV-A (UV-A+R), and the combination of the two treatments (R+C+UV-A) on cultures of vegetative and cystic forms of A. castellani. We conducted a parasite count under optical microscopy for each treated area at day 1, 4 and 8. RESULTS There was a decrease in the number of cysts for all three treatments (C, UV-A+R, R+C+UV-A). This reduction was greater for the plates treated with R+UV-A (P <0.01 at D8) and those treated with C+R+UV-A (P<0.001 at D8) compared to those exposed to chlorhexidine alone (C). There was no decrease in the number of amoebic trophozoites for the three treatments (C, UV-A+R, R+C+UV-A), but encystment was observed. DISCUSSION Given the in vitro efficacy of riboflavin combined with UV-A against cystic forms of A. castellani and excellent in vivo tolerance of the procedure, the treatment of acanthamoeba keratitis might be improved by this new therapeutic approach.
Collapse
Affiliation(s)
- J Letsch
- Centre ophtalmologique Malraux, 32, rue du bassin d'Austerlitz, Presqu'île André-Malraux, 67100 Strasbourg, France
| | - A Abou-Bacar
- Institut de parasitologie et de maladies tropicales, hôpitaux universitaires de Strasbourg, 1, rue Koeberlé, 67000 Strasbourg, France
| | - E Candolfi
- Institut de parasitologie et de maladies tropicales, hôpitaux universitaires de Strasbourg, 1, rue Koeberlé, 67000 Strasbourg, France
| | - T Bourcier
- Service d'ophtalmologie, hôpitaux universitaires de Strasbourg, Nouvel Hôpital Civil, 67091 Strasbourg cedex, France
| | - A Sauer
- Service d'ophtalmologie, hôpitaux universitaires de Strasbourg, Nouvel Hôpital Civil, 67091 Strasbourg cedex, France.
| |
Collapse
|
36
|
González-Rojo S, Fernández-Díez C, Guerra SM, Robles V, Herraez MP. Differential gene susceptibility to sperm DNA damage: analysis of developmental key genes in trout. PLoS One 2014; 9:e114161. [PMID: 25479606 PMCID: PMC4257556 DOI: 10.1371/journal.pone.0114161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 11/04/2014] [Indexed: 11/21/2022] Open
Abstract
Sperm chromatin in mammals is packaged in different blocks associated to protamines (PDNA), histones (HDNA), or nuclear matrix proteins. Differential packaging has been related to early or late transcription and also to differential susceptibility to genotoxic damage. Genes located in the more accessible HDNA could be more susceptible to injuries than those located in PDNA, being potential biomarkers of paternal DNA damage. Fish sperm chromatin organization is much diversified, some species lacking protamines and some others totally depleted of histones. Analyzing genotoxic damage in a species homogeneously compacted with some sperm nuclear basic protein type, could help in deciphering the clues of differential susceptibility to damage. In the present study we analyzed in rainbow trout the differential susceptibility of nine genes to UV irradiation and H2O2 treatment. The absence of histones in the sperm nuclei was confirmed by Western blot. The chromatin fractionation in sensitive and resistant regions to PvuII (presumably HDNA-like and PDNA-like, respectively) revealed that the nine genes locate in the same resistant region. The number of lesions promoted was quantified using a qPCR approach. Location of 8-hydroxyguanosine (8-OHdG) was analyzed by immunocytochemistry and confocal microscopy. UV irradiation promoted similar number of lesions in all the analyzed genes and a homogenous distribution of 8-OHdG within the nuclei. 8-OHdG was located in the peripheral area of the nucleus after H2O2 treatment, which promoted a significantly higher number of lesions in developmental-related genes (8.76–10.95 lesions/10 kb) than in rDNA genes (1.05–1.67 lesions/10 kb). We showed for the first time, that differential susceptibility to damage is dependent on the genotoxic mechanism and relies on positional differences between genes. Sensitive genes were also analyzed in cryopreserved sperm showing a lower number of lesions than the previous treatments and a predominant peripheral distribution of oxidative damage (8-OHdG).
Collapse
Affiliation(s)
| | | | - Susana M. Guerra
- Department of Molecular Biology, University of León, León, Spain
| | - Vanesa Robles
- Department of Molecular Biology, University of León, León, Spain
| | - Maria Paz Herraez
- Department of Molecular Biology, University of León, León, Spain
- * E-mail:
| |
Collapse
|
37
|
Chung CH, Kim JH, Chung BH. Detection of UV-induced mutagenic thymine dimer using graphene oxide. Anal Chem 2014; 86:11586-91. [PMID: 25375800 DOI: 10.1021/ac503577t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we report for the first time that graphene oxide (GO) can interact with mutagenic DNA but not intact DNA. After UV-irradiated fluorophore-linked DNA containing thymine repeats was mixed with GO, a decrease in fluorescence was observed in a time-dependent manner. In contrast, no fluorescence change was observed with intact DNA, indicating that UV irradiation of DNA resulted in the formation of mutagenic bases. Because GO is known to act as a fluorescence quencher, the decreased fluorescence implies adsorption of the UV-irradiated DNA onto GO. It appears that the decreased fluorescence might result from the greater accessibility of hydrophobic methyl groups and phenyl rings of thymine dimers to GO and from deformed DNA structures with less effective charge shielding under salt-containing conditions. Using this affinity of GO for mutagenic DNA, we could detect UV-irradiated DNA at concentrations as low as 100 pM. We were also able to analyze the ability of phototoxic drugs to catalyze the formation of mutagens under UV irradiation with GO. Because our method is highly sensitive and feasible and does not require the pretreatment of DNA, we propose that it could accelerate the screening of potential phototoxic drug candidates that would be able to sensitize mutagenic dsDNA.
Collapse
Affiliation(s)
- Chan Ho Chung
- BioNano Health Guard Research Center, Korea Research Institute of Bioscience and Biotechnology , 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, South Korea
| | | | | |
Collapse
|
38
|
Joshi PC, Li HH, Merchant M, Keane TC. Total inhibition of 1O2-induced oxidative damage to guanine bases of DNA/RNA by turmeric extracts. Biochem Biophys Res Commun 2014; 452:515-9. [DOI: 10.1016/j.bbrc.2014.08.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|
39
|
Metal-mediated oxidative DNA damage induced by methylene blue. Biochim Biophys Acta Gen Subj 2014; 1840:2776-82. [DOI: 10.1016/j.bbagen.2014.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/29/2023]
|
40
|
Sheraz MA, Kazi SH, Ahmed S, Anwar Z, Ahmad I. Photo, thermal and chemical degradation of riboflavin. Beilstein J Org Chem 2014; 10:1999-2012. [PMID: 25246959 PMCID: PMC4168737 DOI: 10.3762/bjoc.10.208] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 08/14/2014] [Indexed: 02/02/2023] Open
Abstract
Riboflavin (RF), also known as vitamin B2, belongs to the class of water-soluble vitamins and is widely present in a variety of food products. It is sensitive to light and high temperature, and therefore, needs a consideration of these factors for its stability in food products and pharmaceutical preparations. A number of other factors have also been identified that affect the stability of RF. These factors include radiation source, its intensity and wavelength, pH, presence of oxygen, buffer concentration and ionic strength, solvent polarity and viscosity, and use of stabilizers and complexing agents. A detailed review of the literature in this field has been made and all those factors that affect the photo, thermal and chemical degradation of RF have been discussed. RF undergoes degradation through several mechanisms and an understanding of the mode of photo- and thermal degradation of RF may help in the stabilization of the vitamin. A general scheme for the photodegradation of RF is presented.
Collapse
Affiliation(s)
- Muhammad Ali Sheraz
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, 51, Deh Tor, Toll Plaza, Super Highway, Gadap Road, Karachi 74600, Pakistan
| | - Sadia Hafeez Kazi
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, 51, Deh Tor, Toll Plaza, Super Highway, Gadap Road, Karachi 74600, Pakistan
| | - Sofia Ahmed
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, 51, Deh Tor, Toll Plaza, Super Highway, Gadap Road, Karachi 74600, Pakistan
| | - Zubair Anwar
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, 51, Deh Tor, Toll Plaza, Super Highway, Gadap Road, Karachi 74600, Pakistan
| | - Iqbal Ahmad
- Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, 51, Deh Tor, Toll Plaza, Super Highway, Gadap Road, Karachi 74600, Pakistan
| |
Collapse
|
41
|
Schmocker A, Khoushabi A, Schizas C, Bourban PE, Pioletti DP, Moser C. Photopolymerizable hydrogels for implants: Monte-Carlo modeling and experimental in vitro validation. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:35004. [PMID: 24615642 DOI: 10.1117/1.jbo.19.3.035004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
Photopolymerization is commonly used in a broad range of bioapplications, such as drug delivery, tissue engineering, and surgical implants, where liquid materials are injected and then hardened by means of illumination to create a solid polymer network. However, photopolymerization using a probe, e.g., needle guiding both the liquid and the curing illumination, has not been thoroughly investigated. We present a Monte Carlo model that takes into account the dynamic absorption and scattering parameters as well as solid-liquid boundaries of the photopolymer to yield the shape and volume of minimally invasively injected, photopolymerized hydrogels. In the first part of the article, our model is validated using a set of well-known poly(ethylene glycol) dimethacrylate hydrogels showing an excellent agreement between simulated and experimental volume-growth-rates. In the second part, in situ experimental results and simulations for photopolymerization in tissue cavities are presented. It was found that a cavity with a volume of 152 mm3 can be photopolymerized from the output of a 0.28-mm2 fiber by adding scattering lipid particles while only a volume of 38 mm3 (25%) was achieved without particles. The proposed model provides a simple and robust method to solve complex photopolymerization problems, where the dimension of the light source is much smaller than the volume of the photopolymerizable hydrogel.
Collapse
Affiliation(s)
- Andreas Schmocker
- Swiss Federal Institute of Technology Lausanne, Microengineering Institute, Laboratory of Applied Photonics Devices, station 17, Lausanne 1015, SwitzerlandbSwiss Federal Institute of Technology Lausanne, Institute of Bioengineering, Laboratory of Biomecha
| | - Azadeh Khoushabi
- Swiss Federal Institute of Technology Lausanne, Institute of Bioengineering, Laboratory of Biomechanical Orthopedics, station 19, Lausanne 1015, SwitzerlandcSwiss Federal Institute of Technology Lausanne, Institute of Materials, Laboratory of Polymer and
| | - Constantin Schizas
- Centre Hospitalier Universitaire Vaudois, Orthopedic Department, Avenue P. Decker 4, Lausanne 1011, Switzerland
| | - Pierre-Etienne Bourban
- Swiss Federal Institute of Technology Lausanne, Institute of Materials, Laboratory of Polymer and Composite Technology, station 12, Lausanne 1015, Switzerland
| | - Dominique P Pioletti
- Swiss Federal Institute of Technology Lausanne, Institute of Bioengineering, Laboratory of Biomechanical Orthopedics, station 19, Lausanne 1015, Switzerland
| | - Christophe Moser
- Swiss Federal Institute of Technology Lausanne, Microengineering Institute, Laboratory of Applied Photonics Devices, station 17, Lausanne 1015, Switzerland
| |
Collapse
|
42
|
Jockusch S, Bonda C, Hu S. Photostabilization of endogenous porphyrins: excited state quenching by fused ring cyanoacrylates. Photochem Photobiol Sci 2014; 13:1180-4. [DOI: 10.1039/c4pp00090k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tricyclic cyanoacrylates quench singlet and triplet excited states of the endogenous chromophore protoporphyrin IX to prevent harmful singlet oxygen generation.
Collapse
|
43
|
Quinones M, Zhang Y, Riascos P, Hwang HM, Aker WG, He X, Gao R. Effects of light energy and reducing agents on C60-mediated photosensitizing reactions. Photochem Photobiol 2013; 90:374-9. [PMID: 24188530 DOI: 10.1111/php.12206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 10/28/2013] [Indexed: 01/31/2023]
Abstract
Many biomolecules contain photoactive reducing agents, such as reduced nicotinamide adenine dinucleotide (NADH) and 6-thioguanine (6-TG) incorporated into DNA through drug metabolism. These reducing agents may produce reactive oxygen species under UVA irradiation or act as electron donors in various media. The interactions of C60 fullerenes with biological reductants and light energy, especially via the Type-I electron-transfer mechanism, are not fully understood although these factors are often involved in toxicity assessments. The two reductants employed in this work were NADH for aqueous solutions and 6-TG for organic solvents. Using steady-state photolysis and electrochemical techniques, we showed that under visible light irradiation, the presence of reducing agents enhanced C60 -mediated Type-I reactions that generate superoxide anion (O2(.-)) at the expense of singlet oxygen ((1)O2) production. The quantum yield of O2(.-) production upon visible light irradiation of C60 is estimated below 0.2 in dipolar aprotic media, indicating that the majority of triplet C60 deactivate via Type-II pathway. Upon UVA irradiation, however, both C60 and NADH undergo photochemical reactions to produce O2(.-), which could lead to a possible synergistic toxicity effects. C60 photosensitization via Type-I pathway is not observed in the absence of reducing agents.
Collapse
Affiliation(s)
- Michael Quinones
- Chemistry and Physics Department, SUNY College at Old Westbury, Old Westbury, NY
| | | | | | | | | | | | | |
Collapse
|
44
|
β-pyrrole substituted porphyrin–pyrene dyads using vinylene spacer: Synthesis, characterization and photophysical properties. J CHEM SCI 2013. [DOI: 10.1007/s12039-013-0390-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Abstract
Skin is a model of choice in studies on aging. Indeed, skin aging can be modulated by internal and external factors, reflecting its complexity. Two types of skin aging have been identified: intrinsic, mainly genetically determined and extrinsic—also called "photo-aging"—resulting on the impact of environmental stress and more precisely of UV rays. Simplified in vitro models, based on cellular senescence, have been developed to study the relationship between UV and aging. These models vary on the cell type (fibroblasts or keratinocytes, normal or immortalized) and the type of UV used (UVA or UVB).
Collapse
|
46
|
Cadet J, Mouret S, Ravanat JL, Douki T. Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 2012; 88:1048-65. [PMID: 22780837 DOI: 10.1111/j.1751-1097.2012.01200.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The survey focuses on recent aspects of photochemical reactions to cellular DNA that are implicated through the predominant formation of mostly bipyrimidine photoproducts in deleterious effects of human exposure to sunlight. Recent developments in analytical methods have allowed accurate and quantitative measurements of the main DNA photoproducts in cells and human skin. Highly mutagenic CC and CT bipyrimidine photoproducts, including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are generated in low yields with respect to TT and TC photoproducts. Another striking finding deals with the formation of Dewar valence isomers, the third class of bipyrimidine photoproducts that is accounted for by UVA-mediated isomerization of initially UVB generated 6-4PPs. Cyclobutadithymine (T<>T) has been unambiguously shown to be involved in the genotoxicity of UVA radiation. Thus, T<>T is formed in UVA-irradiated cellular DNA according to a direct excitation mechanism with a higher efficiency than oxidatively generated DNA damage that arises mostly through the Type II photosensitization mechanism. C<>C and C<>T are repaired at rates intermediate between those of T<>T and 6-4TT. Evidence has been also provided for the occurrence of photosensitized reactions mediated by exogenous agents that act either in an independent way or through photodynamic effects.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire Lésions des Acides Nucléiques, SCIB-UMR-E n°3, CEA/UJF, Institut Nanosciences et Cryogénie, CEA/Grenoble, Grenoble Cedex, France
| | | | | | | |
Collapse
|
47
|
Li K, Wang M, Wang J, Zhu R, Sun D, Sun X, Wang SL. Photoionization of Oxidized Coenzyme Q in Microemulsion: Laser Flash Photolysis Study in Biomembrane-like System. Photochem Photobiol 2012; 89:61-7. [DOI: 10.1111/j.1751-1097.2012.01180.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Lim KS, Taghizadeh K, Wishnok JS, Babu IR, Shafirovich V, Geacintov NE, Dedon PC. Sequence-dependent variation in the reactivity of 8-Oxo-7,8-dihydro-2'-deoxyguanosine toward oxidation. Chem Res Toxicol 2011; 25:366-73. [PMID: 22103813 DOI: 10.1021/tx200422g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The goal of this study was to define the effect of DNA sequence on the reactivity of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) toward oxidation. To this end, we developed a quadrupole/time-of-flight (QTOF) mass spectrometric method to quantify the reactivity of site specifically modified oligodeoxyribonucleotides with two model oxidants: nitrosoperoxycarbonate (ONOOCO(2)(-)), a chemical mediator of inflammation, and photoactivated riboflavin, a classical one-electron oxidant widely studied in mutagenesis and charge transport in DNA. In contrast to previous observations with guanine [ Margolin , Y. , ( 2006 ) Nat. Chem. Biol. 2 , 365 ], sequence context did not affect the reactivity of ONOOCO(2)(-) with 8-oxodG, but photosensitized riboflavin showed a strong sequence preference in its reactivity with the following order (8-oxodG = O): COA ≈ AOG > GOG ≥ COT > TOC > AOC. That the COA context was the most reactive was unexpected and suggests a new sequence context where mutation hotspots might occur. These results point to both sequence- and agent-specific effects on 8-oxodG oxidation.
Collapse
Affiliation(s)
- Kok Seong Lim
- Department of Biological Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Singlet oxygen is the primary agent of photooxidative stress in microorganisms. In photosynthetic microorganisms, sensitized generation by pigments of the photosystems is the main source of singlet oxygen and, in nonphotosynthetic microorganisms, cellular cofactors such as flavins, rhodopsins, quinones, and porphyrins serve as photosensitizer. Singlet oxygen rapidly reacts with a wide range of cellular macromolecules including proteins, lipids, DNA, and RNA, and thereby further reactive substances including organic peroxides and sulfoxides are formed. Microorganisms that face high light intensities or exhibit potent photosensitizers have evolved specific mechanisms to prevent photooxidative stress. These mechanisms include the use of quenchers, such as carotenoids, which interact either with excited photosensitizer molecules or singlet oxygen itself to prevent damage of cellular molecules. Scavengers like glutathione react with singlet oxygen. Despite those protection mechanisms, damage by reactions with singlet oxygen on cellular macromolecules disturbs cellular functions. Microorganisms that regularly face photooxidative stress have evolved specific systems to sense singlet oxygen and tightly control the removal of singlet oxygen reaction products. Responses to photooxidative stress have been investigated in a range of photosynthetic and nonphotosynthetic microorganisms. However, detailed knowledge on the regulation of this response has only been obtained for the phototrophic alpha-proteobacterium Rhodobacter sphaeroides. In this organism and in related proteobacteria, the extracytoplasmic function (ECF) sigma factor RpoE is released from the cognate antisigma factor ChrR in the presence of singlet oxygen and triggers the expression of genes providing protection against photooxidative stress. Recent experiments show that singlet oxygen acts as a signal, which is sensed by yet unknown components and leads to proteolysis of ChrR. RpoE induces expression of a second alternative sigma factor, RpoH(II), which controls a large set of genes that partially overlaps with the heat-shock response controlled by RpoH(I). In addition to the transcriptional control of gene regulation by alternative sigma factors, a set of noncoding small RNAs (sRNAs) appear to affect the synthesis of several proteins involved in the response to photooxidative stress. The interaction of mRNA targets with those sRNAs is usually mediated by the RNA chaperone Hfq. Deletion of the gene encoding Hfq leads to a singlet oxygen-sensitive phenotype, which underlines the control of gene regulation on the posttranscriptional level by sRNAs in R. sphaeroides. Hence, a complex network of different regulatory components controls the defense against photooxidative stress in anoxygenic photosynthetic bacteria.
Collapse
Affiliation(s)
- J Glaeser
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | | | | |
Collapse
|
50
|
Anwar HM, El-Danasoury AM, Hashem AN. Corneal collagen crosslinking in the treatment of infectious keratitis. Clin Ophthalmol 2011; 5:1277-80. [PMID: 21966201 PMCID: PMC3180498 DOI: 10.2147/opth.s24532] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose To report the use of corneal collagen crosslinking in the treatment of infective keratitis not responding to antimicrobial therapy. Methods Two retrospective case reports of infective keratitis treated with corneal collagen crosslinking. Results In both cases, corneal collagen crosslinking caused a rapid resolution of the infective keratitis, leaving residual stromal scarring. Due to the density of scarring, one case required subsequent penetrating keratoplasty for visual rehabilitation. Conclusion Corneal collagen crosslinking is a promising new technique for the management of infective keratitis not responding to antimicrobial therapy. Further elucidation of its safety and role in management of infectious keratitis is needed by way of future studies.
Collapse
|