1
|
Cesar PF, Miranda RBDP, Santos KF, Scherrer SS, Zhang Y. Recent advances in dental zirconia: 15 years of material and processing evolution. Dent Mater 2024; 40:824-836. [PMID: 38521694 PMCID: PMC11098698 DOI: 10.1016/j.dental.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVES The objective was to discuss the research on zirconia published in the past 15 years to help the dental materials community understand the key properties of the types of zirconia and their clinical applications. METHODS A literature search was performed in May/2023 using Web of Science Core Collection with the term "dental zirconia". The search returned 5102 articles, which were categorized into 31 groups according to the research topic. RESULTS The current approach to improving the translucency of zirconia is to decrease the alumina content while increasing the yttria content. The resulting materials (4Y-, 5Y-, and above 5 mol% PSZs) may contain more than 50% of cubic phase, with a decrease in mechanical properties. The market trend for zirconia is the production of CAD/CAM disks containing more fracture resistant 3Y-TZP at the bottom layers and more translucent 5Y-PSZ at the top. Although flaws located between layers in multilayered blocks might represent a problem, newer generations of zirconia layered blocks appear to have solved this problem with novel powder compaction technology. Significant advancements in zirconia processing technologies have been made, but there is still plenty of room for improvement, especially in the fields of high-speed sintering and additive manufacturing. SIGNIFICANCE The wide range of zirconia materials currently available in the market may cause confusion in materials selection. It is therefore imperative for dental clinicians and laboratory technicians to get the needed knowledge on zirconia material science, to follow manufacturers' instructions, and to optimize the design of the prosthetic restoration with a good understanding where to reinforce the structure with a tough and strong zirconia.
Collapse
Affiliation(s)
- Paulo Francisco Cesar
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| | | | - Karina Felix Santos
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Susanne S Scherrer
- Division of Fixed Prosthodontics and Biomaterials, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Yu Zhang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
2
|
Gul A, Papia E, Naimi-Akbar A, Ruud A, Vult von Steyern P. Zirconia dental implants; the relationship between design and clinical outcome: A systematic review. J Dent 2024; 143:104903. [PMID: 38437977 DOI: 10.1016/j.jdent.2024.104903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
OBJECTIVE To evaluate the clinical outcome of different designs of zirconia dental implants. DATA This systematic review adhered to the PRISMA checklist and followed the PICO framework. The protocol is registered in PROSPERO (CRD42022337228). SOURCES The search was conducted in March 2023 through four databases (PubMed, Web of Science, Cochrane Library, and Google Scholar) along with a search of references in the related reviews. Three authors reviewed on title, and abstract level and analysed the risk of bias, and all authors reviewed on a full-text level. STUDY SELECTION Clinical studies excluding case reports for patients treated with different designs of zirconia dental implants were included. From a total of 2728 titles, 71 full-text studies were screened, and 27 studies were included to assess the risk of bias (ROBINS-I tool) and data extraction. After quality assessment, four studies were included, and the remaining 23 excluded studies were narratively described. RESULT The included prospective studies with moderate risk of bias reported success and survival rates of one-piece implants that ranged between 95 and 98.4 % with no difference between different lengths and diameters. The acid-etched roughened surface showed higher clinical outcomes compared to other surface roughness designs. CONCLUSION Promising 5-year clinical outcomes were found for one-piece zirconia implants with no difference between different diameters and lengths. Concerning surface roughness, better outcomes were found when using the acid-etched implant surface. However, due to the limited available studies, further high-quality clinical studies comparing zirconia one-piece and two-piece implants with different diameters, lengths, and surface roughness are needed. CLINICAL SIGNIFICANCE Based on this systematic review, under suitable clinical situations, the one-piece zirconia implants with diameters of 4.0 mm, 4.5 mm, or 5.5 mm and lengths of 8 mm, 10 mm, 12 mm, or 14 mm have similar promising clinical outcomes. Additionally, the acid-etched roughened implant surface may be preferable.
Collapse
Affiliation(s)
- Abdulaziz Gul
- Department of Materials Science and Technology, Division 2, Faculty of Odontology, Malmö University, Malmö, Sweden; Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Evaggelia Papia
- Department of Materials Science and Technology, Division 2, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Aron Naimi-Akbar
- Health Technology Assessment-Odontology (HTA-O), Faculty of Odontology, Malmö University, Malmö, Sweden; Department of Oral and Maxillofacial Surgery and Oral Medicine, Division 2, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Amund Ruud
- Nordic Institute of Dental Materials, NIOM, Oslo, Norway
| | - Per Vult von Steyern
- Department of Materials Science and Technology, Division 2, Faculty of Odontology, Malmö University, Malmö, Sweden; Nordic Institute of Dental Materials, NIOM, Oslo, Norway
| |
Collapse
|
3
|
Khaledi AA, Shalileh S, Hejazi M, Giti R. Influence of screw channel angulation on reverse torque value and fracture resistance in monolithic zirconia restorations after thermomechanical cycling: an in-vitro study. BMC Oral Health 2024; 24:389. [PMID: 38532413 PMCID: PMC11289999 DOI: 10.1186/s12903-024-04171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND While the concept of angled screw channels has gained popularity, there remains a scarcity of research concerning the torque loss and fracture strength of monolithic zirconia restorations with various screw channel angulations when exposed to thermomechanical cycling. This in-vitro study aimed to evaluate the reverse torque value and fracture resistance of one-piece screw-retained hybrid monolithic zirconia restorations with angulated screw channels after thermomechanical cycling. METHODS One-piece monolithic zirconia restorations, with angulated screw channels set at 0°, 15°, and 25° (n = 6 per angulation) were fabricated and bonded to titanium inserts using a dual-cure adhesive resin cement. These assemblies were then screwed to implant fixtures embedded in acrylic resin using an omnigrip screwdriver, and reverse torque values were recorded before and after thermomechanical cycles. Additionally, fracture modes were assessed subsequent to the application of compressive load. One-way ANOVA and Bonferroni post hoc test were used to compare the groups (α = 0.05). RESULTS The study groups were significantly different regarding the fracture resistance (P = 0.0015), but only insignificantly different in the mean percentage torque loss (P = 0.4400). Specifically, the fracture resistance of the 15° group was insignificantly higher compared to the 0° group (P = 0.9037), but significantly higher compared to the 25° group (P = 0.0051). Furthermore, the fracture resistance of the 0° group was significantly higher than that of the 25° group (P = 0.0114). CONCLUSIONS One-piece hybrid monolithic zirconia restorations with angulated screw channels can be considered an acceptable choice for angulated implants in esthetic areas, providing satisfactory fracture strength and torque loss.
Collapse
Affiliation(s)
- Amir Alireza Khaledi
- Department of Prosthodontics, Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Shouka Shalileh
- Department of Prosthodontics, Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Maryam Hejazi
- Department of Prosthodontics, Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Rashin Giti
- Department of Prosthodontics, Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.
| |
Collapse
|
4
|
Alamoudi A. Nanoengineering and Surface Modifications of Dental Implants. Cureus 2024; 16:e51526. [PMID: 38304686 PMCID: PMC10833059 DOI: 10.7759/cureus.51526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 02/03/2024] Open
Abstract
Dental implants are one of the most important and successful advancements in modern dentistry. One aspect of dental implant design that influences the rate and degree of osseointegration is implant surface features. Nano-engineering techniques are anticipated to improve titanium dentistry implants' surface characteristics, which in turn promote peri-implant osteogenesis. In this paper, we review the recent advances in nanosurface engineering techniques for enhancing the bioactivity of dental implants.
Collapse
|
5
|
Rodríguez-Lozano FJ, López-García S, Sánchez-Bautista S, Pérez-López J, Raigrodski AJ, Revilla-León M. Effect of milled and lithography-based additively manufactured zirconia (3Y-TZP) on the biological properties of human osteoblasts. J Prosthet Dent 2023; 130:889-896. [PMID: 35264309 DOI: 10.1016/j.prosdent.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 10/18/2022]
Abstract
STATEMENT OF PROBLEM Lithography-based additively manufactured (AM) zirconia has been used to fabricate dental implants and custom barriers for guided bone regeneration procedures. However, studies on the effect of AM zirconia on the biological properties of human osteoblasts are lacking. PURPOSE The purpose of this in vitro study was to compare the effect of milled and lithography-based AM zirconia on the biological properties of normal human osteoblasts (NHOsts), as well as to compare the chemical composition between the milled and lithography-based AM 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) zirconia. MATERIAL AND METHODS Three mol percentage yttria-stabilized tetragonal zirconia polycrystal disks (Ø6×2-mm) were fabricated using subtractive milling (Priti multidisc ZrO2 monochrome) (M group) and lithography-based additive manufacturing methods (LithaCon 3Y 210) (AM group) (n=10). NHOsts were exposed to different material extracts (1:1, 1:2, and 1:4) and cytotoxicity, cell migration, cell morphology, and cell attachment biological tests were completed. Additionally, for morphological and chemical analysis, a scanning electronic microscopy with energy-dispersive X-ray analysis (SEM/EDX) evaluation was completed. Data were analyzed by using 1-way ANOVA and the Dunnett test (α=.05). RESULTS Substantial cell attachment and spreading were observed in both material surfaces. The presence of zirconium was evident in both groups, although the percentage of zirconium in the AM group (64.7%) was slightly higher than in the M group (52.6%). When NHOsts were cultured in the presence of the different material eluates, the M and AM groups exhibited similar NHOst viability and migration rates when compared with untreated cells; no significant differences were found (P>.05). CONCLUSIONS The lithography-based AM zirconia tested showed adequate cytocompatibility without differences when compared with the milled zirconia (M group) specimens. Slight chemical element composition differences were found between milled and lithography-based AM zirconia.
Collapse
Affiliation(s)
| | - Sergio López-García
- Researcher, Cellular Therapy and Hematopoietic Transplant Unit, Hematology Department, Virgen de la Arrixaca Clinical University Hospital, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Sonia Sánchez-Bautista
- Assistant Professor, Department of Health Sciences, Catholic University of Murcia, Murcia, Spain
| | | | - Ariel J Raigrodski
- Private practice, Lynnwood, Wash; Affiliate Professor, Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, Wash
| | - Marta Revilla-León
- Affiliate Assistant Professor Graduate Prosthodontics, Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, Wash; Director of Research and Digital Dentistry, Kois Center, Seattle, Wash; Adjunct Professor Graduate Prosthodontics, Department of Prosthodontics, School of Dental Medicine, Tufts University, Boston, Mass.
| |
Collapse
|
6
|
Ho KN, Chen LW, Kuo TF, Chen KS, Lee SY, Wang SF. Surface modification of zirconia ceramics through cold plasma treatment and the graft polymerization of biomolecules. J Dent Sci 2023; 18:73-80. [PMID: 36643227 PMCID: PMC9831855 DOI: 10.1016/j.jds.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/16/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Although zirconia ceramics were highly versatile as dental implants, their long-term presence in the human body may slow down healing and impede cell growth in the past. To enhance the cytocompatibility of zirconia ceramics, surface activation modification was used to immobilize biopolymers such that a biomimetic environment was created. Materials and methods Hexamethyldisilazane thin films were deposited onto the surface of inorganic zirconia through cold plasma treatment under various power and deposition time settings to form an organosilane interface layer. Next, oxygen plasma treatment was performed to activate the free radicals on the surface. Subsequently, ultraviolet light was employed to graft and polymerize acrylic acid for generating carboxyl groups on the surface. This was followed by a condensation reaction with biopolymers (chitosan, chitosan/poly-γ-glutamic acid, and gelatin). Results Under a 20-min deposition time at 40 W and 150 mTorr, the thin films had a maximum graft density of 2.1 mg/cm2. MG-63 cells (human osteosarcoma cells) were employed to evaluate cell compatibility. Chitosan and chitosan/poly-γ-glutamic acid promoted the compatibility of MG-63 cells (a human osteosarcoma cell line) with zirconia ceramics, whereas gelatin reduced this compatibility. Conclusion The findings confirm that cold plasma treatment and graft polymerization can promote the immobilization of biomolecules and improve the biocompatibility of zirconia ceramics. This approach can be applied to the modification of zirconia ceramic implants.
Collapse
Affiliation(s)
- Kuo-Ning Ho
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Liang-Wei Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Tzong-Fu Kuo
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Ko-Shao Chen
- Department of Mechanical and Materials Engineering, Tatung University, Taipei, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan,Corresponding author.School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 11031, Taiwan.
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan,Corresponding author.Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No.1, Sec 3., Chung-Hsiao East Rd., Taipei 10617, Taiwan.
| |
Collapse
|
7
|
Shokri A, Vafaee F, Haghighat L, Shahabi S, Farhadian M, Jamalpour MR. Comparison of the amount of artifacts induced by zirconium and titanium implants in cone-beam computed tomography images. BMC Med Imaging 2022; 22:156. [PMID: 36057551 PMCID: PMC9440550 DOI: 10.1186/s12880-022-00884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background This study aimed to compare the amount of artifacts induced by the titanium and zirconium implants on cone-beam computed tomography (CBCT) and assess the effect of different exposure settings on the image quality for both materials.
Methods In this experimental study, 30 zirconium and 30 titanium implants were placed in bovine rib bone blocks. CBCT images were taken in two different fields of view (FOV: 4 × 6 cm2 and 6 × 8 cm2) and at two resolutions (133 µ and 200 µ voxel size). Subsequently, two observers assessed the images and detected the amount of artifacts around the implants through gray values. Data were analyzed by paired t test and independent t test using SPSS 21 and the 0.05 significance level. Results The results showed that titanium implants caused lower amounts of artifacts than zirconium implants, which was statistically significant (P < 0.001). The larger FOV (6 × 8 cm2) resulted in a lower amount of artifacts in both groups, although the results were only statistically significant in the zirconium group (P < 0.001). The amount of artifacts was increased when using the 133 µ voxel size in both groups, which was only significant in the zirconium group (P < 0.001). Conclusion Our results suggest that zirconium implants induce higher amounts of artifacts than titanium ones. We also concluded that the artifacts could be minimized using the larger FOV and voxel size.
Collapse
Affiliation(s)
- Abbas Shokri
- Department of Oral and Maxillofacial Radiology, Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fariborz Vafaee
- Department of Prosthodontics, Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Shiva Shahabi
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Jamalpour
- Department of Oral and Maxillofacial Surgery, Dental Implants Research Center, Hamadan University of Medical Sciences, Shaheed Fahmideh Avenue, Hamadan, 6517838636, Iran.
| |
Collapse
|
8
|
Zirconia versus Titanium Implants: 8-Year Follow-Up in a Patient Cohort Contrasted with Histological Evidence from a Preclinical Animal Model. MATERIALS 2022; 15:ma15155322. [PMID: 35955254 PMCID: PMC9369473 DOI: 10.3390/ma15155322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023]
Abstract
Zirconia ceramic (ZC) implants are becoming more common, but comparisons between preclinical histology and long-term clinical trials are rare. This investigation comprised (1) 8-year clinical follow-up of one-piece ZC or titanium (Ti) implants supporting full overdentures and (2) histomorphometric analysis of the same implants in an animal model, comparing implants with various surface treatments. Methods: (1) Clinical trial: 24 completely edentulous participants (2 groups of N = 12) received 7 implants (one-piece ball-abutment ZC or Ti; maxilla N = 4, mandible N = 3) restored with implant overdentures. Outcomes after 8-years included survival, peri-implant bone levels, soft-tissue responses, and prosthodontic issues. (2) Preclinical trial: 10 New Zealand sheep received 4 implants bilaterally in the femoral condyle: Southern Implants ZC or Ti one-piece implants, identical to the clinical trial, and controls: Southern ITC® two-piece implants with the same surface or Nobel (NBC) anodised (TiUnite™) surface. %Bone-implant contact (%BIC) was measured after 12 weeks of unloaded healing. Results: 8 of 24 participants (33%) of an average age of 75 ± 8 years were recalled; 21% of original participants had died, and 46% could not be contacted. 80.4% of implants survived; excluding palatal sites, 87.5% of Ti and 79% of ZC implants survived. All failed implants were in the maxilla. Three ZC implants had fractured. Bone loss was similar for Ti vs. ZC; pocket depths (p = 0.04) and attachment levels (p = 0.02) were greater for Ti than ZC implants. (1.7 ± 1.6 mm vs. 1.6 ± 1.3 mm). All implants in sheep femurs survived. %BIC was not statistically different for one-piece blasted surface Ti (80 ± 19%) versus ZC (76 ± 20%) or ITC® (75 ± 16 mm); NBC had significantly higher %BIC than ITC (84 ± 17%, p = 0.4). Conclusion: Short-term preclinical results for ZC and Ti one-piece implants showed excellent bone-implant contact in unloaded femoral sites. This differed from the long-term clinical results in older-aged, edentulous participants. While ZC and Ti implants showed equivalent performance, the risks of peri-implantitis and implant loss in older, completely edentulous patients remain a significant factor.
Collapse
|
9
|
Tchinda A, Chézeau L, Pierson G, Kouitat-Njiwa R, Rihn BH, Bravetti P. Biocompatibility of ZrO2 vs. Y-TZP Alloys: Influence of Their Composition and Surface Topography. MATERIALS 2022; 15:ma15134655. [PMID: 35806779 PMCID: PMC9267226 DOI: 10.3390/ma15134655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022]
Abstract
The osseointegration of implants is defined as the direct anatomical and functional connection between neoformed living bone and the surface of a supporting implant. The biological compatibility of implants depends on various parameters, such as the nature of the material, chemical composition, surface topography, chemistry and loading, surface treatment, and physical and mechanical properties. In this context, the objective of this study is to evaluate the biocompatibility of rough (Ra = 1 µm) and smooth (Ra = 0 µm) surface conditions of yttria–zirconia (Y-TZP) discs compared to pure zirconia (ZrO2) discs by combining a classical toxicological test, morphological observations by SEM, and a transcriptomic analysis on an in vitro model of human Saos-2 bone cells. Similar cell proliferation rates were observed between ZrO2 and Y-TZP discs and control cells, regardless of the surface topography, at up to 96 h of exposure. Dense cell matting was similarly observed on the surfaces of both materials. Interestingly, only 110 transcripts were differentially expressed across the human transcriptome, consistent with the excellent biocompatibility of Y-TZP reported in the literature. These deregulated transcripts are mainly involved in two pathways, the first being related to “mineral uptake” and the second being the “immune response”. These observations suggest that Y-TZP is an interesting candidate for application in implantology.
Collapse
|
10
|
Modification of Zirconia Implant Surfaces by Nd:YAG Laser Grooves: Does It Change Cell Behavior? Biomimetics (Basel) 2022; 7:biomimetics7020049. [PMID: 35645176 PMCID: PMC9149890 DOI: 10.3390/biomimetics7020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of this study was to evaluate gingival fibroblasts and human osteoblasts’ response to textured Nd:YAG laser microgrooves, with different dimensions, on zirconia implant surfaces. A total of 60 zirconia disks (8 mm in diameter and 2 mm in thickness) were produced and divided between four study groups (N = 15): three laser-textured (widths between 125.07 ± 5.29 μm and 45.36 ± 2.37 μm and depth values from 50.54 ± 2.48 μm to 23.01 ± 3.79 μm) and a control group without laser treatment. Human osteoblasts and gingival fibroblasts were cultured on these surfaces for 14 days. FEG-SEM (Field Emission Gun–Scanning Electron Microscope) images showed cellular adhesion at 24 h, with comparable morphology in all samples for both cell types. A similar cell spreading within the grooves and in the space between them was observed. Cell viability increased over time in all study groups; however, no differences were found between them. Additionally, proliferation, ALP (Alkaline phosphatase) activity, collagen type I, osteopontin and interleukin levels were not significantly different between any of the study groups for any of the cell types. Analysis of variance to compare parameters effect did not reveal statistically significant differences when comparing all groups in the different tests performed. The results obtained revealed similar cell behavior based on cell viability and differentiation on different microtopographic laser grooves, compared to a microtopography only established by sandblasting and acid-etching protocol, the reference surface treatment on zirconia dental implants.
Collapse
|
11
|
Thomé G, Uhlendorf J, Vianna CP, Caldas W, Bernardes SR, Trojan LC. Clinical and radiographic success of injection-molded 2-piece zirconia implants submitted to immediate loading: A 12-month report of two cases. Clin Case Rep 2021; 9:e05118. [PMID: 34917363 PMCID: PMC8643492 DOI: 10.1002/ccr3.5118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 11/07/2022] Open
Abstract
This case report describes the treatment of two patients who presented with single edentulous sites in the region of upper premolars and were rehabilitated through the placement of injection-molded 2-piece zirconia implants and immediate single crowns. Three months after surgery, definitive prostheses were confectioned through digital workflow. Both patients were followed for 12 months during which clinical and radiographic implant success were observed, concerning implant stability, absence of peri-implantitis signs, complete implant osseointegration, good marginal bone-level maintenance, and excellent soft tissue esthetics. No biological or mechanical complications were observed within this period.
Collapse
Affiliation(s)
- Geninho Thomé
- Department of ImplantologyLatin American Institute for Research and Dental Education (ILAPEO); Scientific President of NeodentCuritibaBrazil
| | | | | | | | - Sergio Rocha Bernardes
- Department of ImplantologyLatin American Institute for Research and Dental Education (ILAPEO); Head of Global Research & Education of NeodentCuritibaBrazil
| | | |
Collapse
|
12
|
Biological activity of titania coating prepared with zirconium oxychloride and titania on zirconia surface. J Mech Behav Biomed Mater 2021; 123:104780. [PMID: 34416536 DOI: 10.1016/j.jmbbm.2021.104780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
Abstract
Zirconia is recognized as a promising dental implant material because of its good biocompatibility, sufficient mechanical strength, minimal ion release and aesthetic effects similar to natural teeth. However, the limitations of inert surface of zirconia affect the long-term efficacy of zirconia implants. To enhance the osseointegration of zirconia implants, titania (TiO2) coating is prepared on the zirconia surface by immersion in a mixed zirconium oxychloride (ZrOCl2) and TiO2 suspension in a water bath. The surface and longitudinal section morphology are observed by scanning electron microscopy (SEM). The chemical composition is evaluated through energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The roughness and hydrophilicity of zirconia surface are also examined. A three-point bending test is conducted on the samples to explore the effect of this surface treatment on the mechanical strength of zirconia. Vickers hardness measurements are performed to evaluate the gradient change of the longitudinal section of the zirconia substrate. The MC3T3-E1 cells are seeded on zirconia discs, and a LIVE/DEAD double-staining test is conducted to detect the cytotoxicity of the TiO2 coating. The cell morphology is studied through fluorescence microscope. The degrees of cell proliferation, mineralization and alkaline phosphatase (ALP) activity are calculated and compared. Detection of the mRNA expression of osteogenic differentiation-related markers is performed by RT-PCR. A TiO2 coating is generated on the zirconia surface and significantly improves the surface roughness and hydrophilicity while not adversely affecting the mechanical strength of zirconia. The hardness of the zirconia substrate shows a gradient change. The TiO2 coating can promote proliferation, spreading and osteogenic differentiation of MC3T3-E1 cells. These findings suggest that modifying the surface of zirconia with a TiO2 coating may have a favourable osteogenic effect.
Collapse
|
13
|
Maiborodin I, Shevela A, Matveeva V, Morozov V, Toder M, Krasil’nikov S, Koryakina A, Shevela A, Yanushevich O. First Experimental Study of the Influence of Extracellular Vesicles Derived from Multipotent Stromal Cells on Osseointegration of Dental Implants. Int J Mol Sci 2021; 22:ijms22168774. [PMID: 34445482 PMCID: PMC8395855 DOI: 10.3390/ijms22168774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Herein, the aim was to study the state of the bone tissue adjacent to dental implants after the use of extracellular vesicles derived from multipotent stromal cells (MSC EVs) of bone marrow origin in the experiment. In compliance with the rules of asepsis and antiseptics under general intravenous anesthesia with propofol, the screw dental implants were installed in the proximal condyles of the tibia of outbred rabbits without and with preliminary introduction of 19.2 μg MSC EVs into each bone tissue defect. In 3, 7, and 10 days after the operation, the density of bone tissue adjacent to different parts of the implant using an X-ray unit with densitometer was measured. In addition, the histological examinations of the bone site with the hole from the removed device and the soft tissues from the surface of the proximal tibial condyle in the area of intra-bone implants were made. It was found out that 3 days after implantation with the use of MSC EVs, the bone density was statistically significantly higher by 47.2% than after the same implantation, but without the injection of MSC EVs. It is possible that as a result of the immunomodulatory action of MSC EVs, the activity of inflammation decreases, and, respectively, the degree of vasodilation in bones and leukocyte infiltration of the soft tissues are lower, in comparison with the surgery performed in the control group. The bone fragments formed during implantation are mainly consolidated with each other and with the regenerating bone. Day 10 demonstrated that all animals with the use of MSC EVs had almost complete fusion of the screw device with the bone tissue, whereas after the operation without the application of MSC EVs, the heterogeneous histologic pattern was observed: From almost complete osseointegration of the implant to the absolute absence of contact between the foreign body and the new formed bone. Therefore, the use of MSC EVs during the introduction of dental implants into the proximal condyle of the tibia of rabbits contributes to an increase of the bone tissue density near the device after 3 days and to the achievement of consistently successful osseointegration of implants 10 days after the surgery.
Collapse
Affiliation(s)
- Igor Maiborodin
- Laboratory of Health Management Technologies, The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva Str., 8, 630090 Novosibirsk, Russia; (A.S.); (V.M.); (V.M.); (S.K.); (A.S.)
- Institute of Molecular Pathology and Pathomorphology, Federal State Budget Scientific Institution “Federal Research Center of Fundamental and Translational Medicine” of the Ministry of Science and Higher Education of the Russian Federation, Akademika Timakova Str., 2, 630117 Novosibirsk, Russia
- Correspondence:
| | - Aleksandr Shevela
- Laboratory of Health Management Technologies, The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva Str., 8, 630090 Novosibirsk, Russia; (A.S.); (V.M.); (V.M.); (S.K.); (A.S.)
- International Center of Dental Implantology iDent, Sibrevkoma Str., 9b, 630007 Novosibirsk, Russia; (M.T.); (A.K.)
| | - Vera Matveeva
- Laboratory of Health Management Technologies, The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva Str., 8, 630090 Novosibirsk, Russia; (A.S.); (V.M.); (V.M.); (S.K.); (A.S.)
| | - Vitaly Morozov
- Laboratory of Health Management Technologies, The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva Str., 8, 630090 Novosibirsk, Russia; (A.S.); (V.M.); (V.M.); (S.K.); (A.S.)
| | - Michael Toder
- International Center of Dental Implantology iDent, Sibrevkoma Str., 9b, 630007 Novosibirsk, Russia; (M.T.); (A.K.)
| | - Sergey Krasil’nikov
- Laboratory of Health Management Technologies, The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva Str., 8, 630090 Novosibirsk, Russia; (A.S.); (V.M.); (V.M.); (S.K.); (A.S.)
| | - Alina Koryakina
- International Center of Dental Implantology iDent, Sibrevkoma Str., 9b, 630007 Novosibirsk, Russia; (M.T.); (A.K.)
| | - Andrew Shevela
- Laboratory of Health Management Technologies, The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva Str., 8, 630090 Novosibirsk, Russia; (A.S.); (V.M.); (V.M.); (S.K.); (A.S.)
| | - Oleg Yanushevich
- Moscow State University of Medicine and Dentistry, The Ministry of Healthcare of the Russian Federation, Delegatskaya Str., 20, p. 1, 127473 Moscow, Russia;
| |
Collapse
|
14
|
Qu Y, Liu L. Zirconia Materials for Dental Implants: A Literature Review. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.687983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Titanium is currently the most commonly used material for manufacturing dental implants. However, its potential toxic effects and the gray color have resulted in increasing requests for metal-free treatment options. Zirconia is a type of ceramic materials that has been extensively used in medicine field, such as implant abutments and various joint replacement appliances. Amounts of clinical evaluations have indicated good biocompatibility for zirconia products. Besides, its toothlike color, low affinity for plaque and outstanding mechanical and chemical properties have made it an ideal candidate for dental implants. The aim of this study is to review the laboratory and clinical papers about several kinds of zirconia materials and zirconia surface modification techniques. Although there are plenty of literatures on these topics, most of the researches focused on the mechanical properties of the materials or based on cell and animal experiments. Randomized clinical trials on zirconia materials are still urgently needed to validate their application as dental implants.
Collapse
|
15
|
Abstract
This review aims to discuss the advantages and disadvantages of zirconia implants compared with titanium implants. Moreover, it intends to review the relevant available long-term literature of these two materials regarding osteointegration, soft-tissue, microbiota, and peri-implantitis, focusing on clinical results. Briefly, titanium implants are a reliable alternative for missing teeth; however, they are not incapable of failure. In an attempt to provide an alternative implant material, implants made from ceramic-derivate products were developed. Owing to its optimal osseointegration competence, biocompatibility, and esthetic proprieties, zirconium dioxide (ZrO2), also known as zirconia, has gained popularity among researchers and clinicians, being a metal-free alternative for titanium implants with its main use in the anterior esthetic zones. This type of implant may present similar osseointegration as those noted on titanium implants with a greater soft-tissue response. Furthermore, this material does not show corrosion as its titanium analog, and it is less susceptible to bacterial adhesion. Lastly, even presenting a similar inflammatory response to titanium, zirconia implants offer less biofilm formation, suggesting less susceptibility to peri-implantitis. However, it is a relatively new material that has been commercially available for a decade; consequently, the literature still lacks studies with long follow-up periods.
Collapse
|
16
|
da Cruz MB, Marques JF, Fernandes BF, Pinto P, Madeira S, Carvalho Ó, Silva FS, Caramês JMM, da Mata ADSP. Laser surface treatment on Yttria-stabilized zirconia dental implants: Influence on cell behavior. J Biomed Mater Res B Appl Biomater 2021; 110:249-258. [PMID: 34278714 DOI: 10.1002/jbm.b.34909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 11/08/2022]
Abstract
Yttria-stabilized zirconia (YSZ) is being proposed as an alternative material to Titanium for dental implants due to its aesthetic and biocompatibility properties. However, is it yet to define the optimal surface treatment to improve YSZ bioactivy. Texturization is a promising approach, but the biological role of patterned YSZ surfaces in cell cultures is yet to be determined. Thus, cellular behavior of osteoblasts and fibroblasts in contact with groove-texturized YSZ surfaces was investigated. YSZ discs were groove-textured by conventional milling and Nd:YAG laser. All samples including control were sandblasted and acid-etched. Human osteoblasts and fibroblasts were cultured on discs for 14 days. Morphology and cellular adhesion were observed. Cell viability, interleukin-1β, osteopontin, collagen type I prodution, alkaline phosphatase activity, and interleukin-8 were measured. YSZ texturization by conventional milling improved osteoblasts viability and differentiation when compared to laser texturization. Fibroblasts behavior did not seem to be influenced by the texturing technique. Compared to sandblasting and acid etching currently used as gold standard for zirconia dental implants no superiority of macrotexturization was found.
Collapse
Affiliation(s)
- Mariana Brito da Cruz
- Oral Biology and Biochemistry Research Group-UICOB, Faculdade de Medicina Dentária, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Faria Marques
- Oral Biology and Biochemistry Research Group-UICOB, Faculdade de Medicina Dentária, Universidade de Lisboa, Lisbon, Portugal
| | - Beatriz Ferreira Fernandes
- Oral Biology and Biochemistry Research Group-UICOB, Faculdade de Medicina Dentária, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo Pinto
- Center for Microelectromechanical Systems (CMEMS), Department of Mechanical Engineering, University of Minho, Guimarães, Portugal
| | - Sara Madeira
- Center for Microelectromechanical Systems (CMEMS), Department of Mechanical Engineering, University of Minho, Guimarães, Portugal
| | - Óscar Carvalho
- Center for Microelectromechanical Systems (CMEMS), Department of Mechanical Engineering, University of Minho, Guimarães, Portugal
| | - Filipe Samuel Silva
- Center for Microelectromechanical Systems (CMEMS), Department of Mechanical Engineering, University of Minho, Guimarães, Portugal
| | - João Manuel Mendez Caramês
- Implant & Tissue Regeneration Group-Unidade de Investigação em Ciências Orais e Biomédicas (UICOB); LIBPhys-FCT UID/FIS/04559/2013, Faculdade de Medicina Dentária, Universidade de Lisboa, Lisbon, Portugal
| | - António Duarte Sola Pereira da Mata
- Oral Biology and Biochemistry Research Group - UICOB; LIBPhys-FTC UID/FIS/04559/2013, Faculdade de Medina Dentária, Universidade de Lisboa, Lisbon, Portugal.,CEMDBE - Cochrane Portugal, Faculdade de Medicina Dentária, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Mestrinho LA, Santos RR. Translational oncotargets for immunotherapy: From pet dogs to humans. Adv Drug Deliv Rev 2021; 172:296-313. [PMID: 33705879 DOI: 10.1016/j.addr.2021.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Preclinical studies in rodent models have been a pivotal role in human clinical research, but many of them fail in the translational process. Spontaneous tumors in pet dogs have the potential to bridge the gap between preclinical models and human clinical trials. Their natural occurrence in an immunocompetent system overcome the limitations of preclinical rodent models. Due to its reasonable cellular, molecular, and genetic homology to humans, the pet dog represents a valuable model to accelerate the translation of preclinical studies to clinical trials in humans, actually with benefits for both species. Moreover, their unique genetic features of breeding and breed-related mutations have contributed to assess and optimize therapeutics in individuals with different genetic backgrounds. This review aims to outline four main immunotherapy approaches - cancer vaccines, adaptive T-cell transfer, antibodies, and cytokines -, under research in veterinary medicine and how they can serve the clinical application crosstalk with humans.
Collapse
|
18
|
Han J, Zhang F, Van Meerbeek B, Vleugels J, Braem A, Castagne S. Laser surface texturing of zirconia-based ceramics for dental applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112034. [PMID: 33812647 DOI: 10.1016/j.msec.2021.112034] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Laser surface texturing is widely explored for modifying the surface topography of various materials and thereby tuning their optical, tribological, biological, and other surface properties. In dentistry, improved osseointegration has been observed with laser textured titanium dental implants in clinical trials. Due to several limitations of titanium materials, dental implants made of zirconia-based ceramics are now considered as one of the best alternatives. Laser surface texturing of zirconia dental implants is therefore attracting increasing attention. However, due to the brittle nature of zirconia, as well as the metastable tetragonal ZrO2 phase, laser texturing in the case of zirconia is more challenging than in the case of titanium. Understanding these challenges requires different fields of expertise, including laser engineering, materials science, and dentistry. Even though much progress was made within each field of expertise, a comprehensive analysis of all the related factors is still missing. This review paper provides thus an overview of the common challenges and current status on the use of lasers for surface texturing of zirconia-based ceramics for dental applications, including texturing of zirconia implants for improving osseointegration, texturing of zirconia abutments for reducing peri-implant inflammation, and texturing of zirconia restorations for improving restoration retention by bonding.
Collapse
Affiliation(s)
- Jide Han
- KU Leuven, Department of Mechanical Engineering and Flanders Make@KU Leuven-MaPS, Celestijnenlaan 300, 3001 Leuven, Belgium
| | - Fei Zhang
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven, Belgium; KU Leuven, Department of Oral Health Sciences, BIOMAT, Kapucijnenvoer 7 Block A, 3000 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven, Department of Oral Health Sciences, BIOMAT, Kapucijnenvoer 7 Block A, 3000 Leuven, Belgium
| | - Jozef Vleugels
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Annabel Braem
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Sylvie Castagne
- KU Leuven, Department of Mechanical Engineering and Flanders Make@KU Leuven-MaPS, Celestijnenlaan 300, 3001 Leuven, Belgium.
| |
Collapse
|
19
|
Iftikhar S, Jahanzeb N, Saleem M, Ur Rehman S, Matinlinna JP, Khan AS. The trends of dental biomaterials research and future directions: A mapping review. Saudi Dent J 2021; 33:229-238. [PMID: 34194185 PMCID: PMC8236547 DOI: 10.1016/j.sdentj.2021.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/10/2020] [Accepted: 01/03/2021] [Indexed: 12/24/2022] Open
Abstract
Objective This literature research aimed to compare, contrast and quantify the innovations in the most commonly used dental biomaterials. Methodology Original research articles based on experimental dental biomaterials published between 2007 and 2019 were retrieved and reviewed. A search of electronic databases, PubMed, Scopus, and Web of Science indexed dental/biomaterials journals, has been conducted. The inclusion criteria in this research were: synthesis of experimental dental materials, whereas commercial dental materials, review articles, and clinical trials (case reports) were excluded. Results It was found that the amount of publications related to dental subgingival implants, computer-aided modeling ceramics, aesthetic restorative materials, adhesives cements, ceramics, bioceramics, endodontic materials, bioactive scaffolds, stem cells, and guided-tissue membranes had increased significantly from 2007. At the same time, the number of publications related to dental cements, silver amalgam, and dental alloys has decreased. For characterization of dental materials it was noted that mechanical properties were tested mostly for restorative materials. On the other hand, biological properties were most assessed for dental subgingival implants and endodontic materials, however, physical properties predominantly for bioceramics. Conclusion It is concluded that to meet clinical demands there was more focus on restorative materials that provided better aesthetics, including resin composites, adhesive resin composites (luting cements), zirconia, and other ceramics. The boost in laboratory and animal research related to bioceramics was attributed to their regenerative potential. This current literature study will help growing researchers to consider and judge the direction to which research might be guided in order to plan prospective research projects.
Collapse
Affiliation(s)
- Sundus Iftikhar
- Department of Medical Education, Shalamar Medical and Dental College, Lahore 54000, Pakistan
| | - Noureen Jahanzeb
- Department of Dental Materials, University of Health Sciences, Lahore 54000, Pakistan
| | - Mehvish Saleem
- Department of Dental Biomaterials, Bakhtawar Amin Medical and Dental College, Multan 66000, Pakistan
| | - Shafiq Ur Rehman
- Deanship of Library Affairs, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Jukka Pekka Matinlinna
- Dental Materials Science, Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, P. R. China
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
20
|
Cruz MBD, Marques JF, Fernandes BF, Costa M, Miranda G, Mata ADSPD, Carames JMM, Silva FS. Gingival fibroblasts behavior on bioactive zirconia and titanium dental implant surfaces produced by a functionally graded technique. J Appl Oral Sci 2020; 28:e20200100. [PMID: 32667382 PMCID: PMC7357876 DOI: 10.1590/1678-7757-2020-0100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/12/2020] [Indexed: 01/27/2023] Open
Abstract
Adding a biological apatite layer to the implant surface enhances bone healing around the implant.
Collapse
Affiliation(s)
| | - Joana Faria Marques
- LIBPhys, Faculdade de Medicina Dentária, Universidade de Lisboa, Lisboa, Portugal
| | | | - Mafalda Costa
- Departamento de Engenharia Mecânica, Centro para Sistemas Micro Eletromecânicos, Universidade do Minho, Guimarães, Portugal
| | - Georgina Miranda
- Departamento de Engenharia Mecânica, Centro para Sistemas Micro Eletromecânicos, Universidade do Minho, Guimarães, Portugal
| | | | | | - Filipe Samuel Silva
- Departamento de Engenharia Mecânica, Centro para Sistemas Micro Eletromecânicos, Universidade do Minho, Guimarães, Portugal
| |
Collapse
|
21
|
Jodha KS, Salazar Marocho SM, Scherrer SS, Griggs JA. Fractal analysis at varying locations of clinically failed zirconia dental implants. Dent Mater 2020; 36:1052-1058. [PMID: 32487485 DOI: 10.1016/j.dental.2020.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Previous studies have shown that the fracture toughness of ceramics can be determined from the fractal dimensions (D) of their fracture surfaces and that the surface should be leveled to obtain an accurate D measurement. This study was to determine the effects of leveling operations and distance from the failure origin on the D values. METHODS Twelve clinically failed zirconia implants from four different manufacturers: Axis Biodental (n=7), Z-Systems (n=3), Straumann (n=1), and Swiss Dental Solutions (n=1) were obtained from one of the authors and thoroughly cleaned. Epoxy replicas were made of three locations along the crack path in the center region of each fracture surface (near origin (O), hackle (H), and near compression curl (CC)) using a light body polyvinyl siloxane impression material. Surfaces were scanned in ScanAsyst mode with a scan size of 5μm×5μm and a scan rate of 0.592Hz using the atomic force microscope. The surface scans were then leveled using 1st order flattening operation in the AFM analysis software. The height data before and after the operation were imported into a custom MathCAD script, and FRACTALS software was used to determine the D value by Minkowski Cover algorithm, which was shown previously to be the algorithm with the highest precision. A Wilcoxon signed-rank test, two-way repeated-measures ANOVA, and one-way repeated-measures ANOVA were performed as detailed below. RESULTS The data were not normally distributed (S-W p≤0.05), so a non-parametric repeated measures test (Wilcoxon signed-rank test) was selected. The median D values before and after leveling were 2.161 and 2.174, respectively. There was a significant difference before and after leveling (p<0.001). The two-way repeated-measures ANOVA showed no significant difference among the D values for different implant brands (p=0.66) and scanning locations on the fracture surface (p=0.83). After eliminating the implant brand as a factor, the data passed normality and equal variance tests (S-W p=0.88, BF p=0.15). The mean D values and standard deviations from the three locations (O, H, CC) were 2.183±0.031, 2.179±0.024, and 2.175±0.018, respectively. One-way repeated measures ANOVA showed no significant effect of scanning location (p=0.74). SIGNIFICANCE The leveling operation successfully removed the tilt without decreasing surface tortuosity, as it increased the D values significantly. The fractal dimension was the same at the three locations on the fracture surfaces. This means that hackle and compression curl regions can be used to determine fracture toughness when the failure origin has been lost.
Collapse
Affiliation(s)
- Kartikeya S Jodha
- Department of Biomedical Materials Science, University of Mississippi Medical Center, MS, USA
| | - Susana M Salazar Marocho
- University Clinic of Dental Medicine, Division of Fixed Prosthodontics-Biomaterials, University of Geneva, Geneva, Switzerland
| | - Susanne S Scherrer
- University Clinic of Dental Medicine, Division of Fixed Prosthodontics-Biomaterials, University of Geneva, Geneva, Switzerland
| | - Jason A Griggs
- Department of Biomedical Materials Science, University of Mississippi Medical Center, MS, USA.
| |
Collapse
|
22
|
Gupta S, Noumbissi S, Kunrath MF. Nano modified zirconia dental implants: Advances and the frontiers for rapid osseointegration. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/mds3.10076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Saurabh Gupta
- Private Practise Dentistry Bangalore India
- International Academy of Ceramic Implantology Silver Spring MD USA
- Zirconia Implant Research Group (Z.I.R.G.) Silver Spring MD USA
| | - Sammy Noumbissi
- International Academy of Ceramic Implantology Silver Spring MD USA
- Zirconia Implant Research Group (Z.I.R.G.) Silver Spring MD USA
- Department of Oral Surgery University of Milan Milan Italy
| | - Marcel F. Kunrath
- Dentistry Department School of Health and Life Sciences Pontifical Catholic University of Rio Grande do Sul (PUCRS) Porto Alegre Brazil
| |
Collapse
|
23
|
Affiliation(s)
- Takao HANAWA
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
24
|
Williams DF. Specifications for Innovative, Enabling Biomaterials Based on the Principles of Biocompatibility Mechanisms. Front Bioeng Biotechnol 2019; 7:255. [PMID: 31649926 PMCID: PMC6794428 DOI: 10.3389/fbioe.2019.00255] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
In any engineering discipline, whenever products are designed, manufactured and ultimately utilized for the benefits of society, a series of specifications for the product are defined, and maybe refined, in order that they perform as effectively as possible, with due attention being paid to the safety, and economic aspects. These specifications are established with respect to all of the relevant properties, including those determined by mechanical, physical, chemical, manufacturing and environmental conditions, and the resulting design and materials selection reflects the optimal balance. In areas of medical technology, these specifications should be based on both functionality, which determines whether a device can actually perform as intended, and biocompatibility, which determines how the device interacts, both acutely and chronically, with the body. Unfortunately, whilst so much progress has been made with the development of superior functionality for the treatment and diagnosis of so many disease states, this is not the same for biocompatibility, where the single most-important currently adopted specification is that the device should do no harm, which falls far short of the ideal requirement. This paper addresses the profound need for biomaterials specifications to be based on the mechanisms of biocompatibility.
Collapse
Affiliation(s)
- David F. Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, United States
- Strait Access Technologies, Cape Town, South Africa
| |
Collapse
|
25
|
Clinical performance of zirconia implants: A meta-review. J Prosthet Dent 2019; 123:419-426. [PMID: 31451193 DOI: 10.1016/j.prosdent.2019.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
STATEMENT OF PROBLEM The clinical effectiveness of zirconia implants as an alternative to titanium implants is still controversial. PURPOSE The purpose of this analysis was to identify and evaluate systematic reviews reporting on the clinical outcomes of zirconia implants for oral rehabilitation. MATERIAL AND METHODS An electronic search was undertaken on MEDLINE, Embase, and the Cochrane Oral Health Reviews databases up to December 24, 2018, without language restriction. Eligible reviews were screened and assessed. The eligibility criteria were systematic reviews or meta-analyses, implant survival rate, implant success, marginal bone loss, peri-implant soft tissue status, and biologic and functional complications of zirconia implants. Two review authors independently evaluated the quality assessment of the secondary studies by applying the Assessing the Methodological Quality of Systematic Reviews (AMSTAR) tool. RESULTS Nine reviews fulfilled the inclusion criteria and were evaluated. Seven reviews were classified as moderate and 2 as high quality. The overall AMSTAR's quality of these reports was moderate. In the primary studies contained in these reviews, zirconia implant clinical outcomes were found to be similar or inferior to those for titanium implants. The few primary clinical studies contained in these reviews were not homogeneous among each other, presented poor methodology, and only offered promising short-term outcomes due to the lack of long-term follow-ups. CONCLUSIONS Based on this meta-review, in spite of short-term promising results of zirconia implants, evidence with long term is lacking.
Collapse
|
26
|
SHINOHARA R, UEDA K, WATANABE F. Influence of the difference between implant body and screw materials on abutment screw loosening. Dent Mater J 2019; 38:150-156. [DOI: 10.4012/dmj.2018-023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ryusuke SHINOHARA
- Functional Occlusal Treatment, Graduate School of Life Dentistry at Niigata, The Nippon Dental University
| | - Kazuhiko UEDA
- Department of Crown and Bridge Prosthodontics, School of Life Dentistry at Niigata, The Nippon Dental University
| | - Fumihiko WATANABE
- Functional Occlusal Treatment, Graduate School of Life Dentistry at Niigata, The Nippon Dental University
- Department of Crown and Bridge Prosthodontics, School of Life Dentistry at Niigata, The Nippon Dental University
| |
Collapse
|
27
|
Translational research on clinically failed zirconia implants. Dent Mater 2018; 35:368-388. [PMID: 30551804 DOI: 10.1016/j.dental.2018.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To provide fractographic analysis of clinically fractured zirconia implants recovered with their cemented crown. To calculate bending moments, corresponding stress and crack onset location on the implant's fracture surface using a mathematical model integrating spatial coordinates of the crown-implant part and occlusal loading obtained from 2D and 3D images. METHODS 15 fractured zirconia implants parts (11 posterior and 4 anterior) with their all- ceramic crowns still cemented on it were recovered. The implants were first generations from four manufacturers (AXIS Biodental, Z-Systems, Straumann, Swiss Dental Solutions). The time-to-failure varied between 2weeks and 9years. Fractography was performed identifying the failure origin and characteristic surface crack features. From 2D and 3D digital images of the crown-implant part, spatial coordinates anchoring the crown's occlusal contacts with the implant's central axis and reference plane were integrated in a mathematical model spreadsheet. Loads of 500 N in total were selectively distributed over identified occlusal contacts from wear patterns. The resultant bending and torsion moments, corresponding shear, tensile, maximum principal stress and von Mises stress were calculated. The fracture crack onset location on the implant's fracture surface was given by an angular position with respect to an occlusal reference and compared with the location of the fracture origin identified from fractographic analysis. RESULTS Implants fractured from the periphery of the smaller inner diameter between two threads at the bone-entrance level except for one implant which failed half-way within the bone. The porous coating (AXIS Biodental) and the large grit alumina sandblasting (Z-System) created surface defects directly related to the fracture origin. The model spreadsheet showed how occlusal loading with respect to the implant's central axis affects bending moments and crack onset. Dominant loads distributed on contacts with important wear pattern provided a calculated crack onset location in good agreement with the fractographic findings of the fracture origin. SIGNIFICANCE Recovered broken zirconia implant parts with their restorative crowns can provide not only information regarding the failure origin using fractography but also knowledge regarding occlusal crown loading with respect to the implant's axis. The mathematical model was helpful in showing how occlusal loading affects the location of the fracture initiation site on clinical zirconia implant fracture cases.
Collapse
|
28
|
Kozelskaya AI, Bolbasov EN, Golovkin AS, Mishanin AI, Viknianshchuk AN, Shesterikov EV, Ashrafov А, Novikov VA, Fedotkin AY, Khlusov IA, Tverdokhlebov SI. Modification of the Ceramic Implant Surfaces from Zirconia by the Magnetron Sputtering of Different Calcium Phosphate Targets: A Comparative Study. MATERIALS 2018; 11:ma11101949. [PMID: 30314394 PMCID: PMC6213365 DOI: 10.3390/ma11101949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 01/22/2023]
Abstract
In this study, thin calcium phosphate (Ca-P) coatings were deposited on zirconia substrates by radiofrequency (RF) magnetron sputtering using different calcium phosphate targets (calcium phosphate tribasic (CPT), hydroxyapatite (HA), calcium phosphate monobasic, calcium phosphate dibasic dehydrate (DCPD) and calcium pyrophosphate (CPP) powders). The sputtering of calcium phosphate monobasic and DCPD powders was carried out without an inert gas in the self-sustaining plasma mode. The physico-chemical, mechanical and biological properties of the coatings were investigated. Cell adhesion on the coatings was examined using mesenchymal stem cells (MSCs). The CPT coating exhibited the best cell adherence among all the samples, including the uncoated zirconia substrate. The cells were spread uniformly over the surfaces of all samples.
Collapse
Affiliation(s)
- Anna I Kozelskaya
- Laboratory for Plasma Hybrid Systems, The Weinberg Research Center, School of Nuclear Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Evgeny N Bolbasov
- Laboratory for Plasma Hybrid Systems, The Weinberg Research Center, School of Nuclear Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Alexey S Golovkin
- Institution of molecular biology and genetics, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia.
| | - Alexander I Mishanin
- Institution of molecular biology and genetics, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia.
| | - Alice N Viknianshchuk
- Institution of molecular biology and genetics, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia.
| | - Evgeny V Shesterikov
- Laboratory for Plasma Hybrid Systems, The Weinberg Research Center, School of Nuclear Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia.
- Laboratory of Lidar Methods, V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055 Tomsk, Russia.
| | - Аndrey Ashrafov
- Laboratory for Plasma Hybrid Systems, The Weinberg Research Center, School of Nuclear Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Vadim A Novikov
- Faculty of Physics, Department of Semiconductor Physics, Tomsk State University, 634050 Tomsk, Russia.
| | - Alexander Y Fedotkin
- Laboratory for Plasma Hybrid Systems, The Weinberg Research Center, School of Nuclear Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Igor A Khlusov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia.
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia.
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia.
| | - Sergey I Tverdokhlebov
- Laboratory for Plasma Hybrid Systems, The Weinberg Research Center, School of Nuclear Science & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia.
| |
Collapse
|
29
|
Maiborodin IV, Shevela AA, Toder MS, Shevela AI. [Current trends of the choice and processing of materials for dental implantation]. STOMATOLOGII︠A︡ 2018; 97:68-76. [PMID: 30199073 DOI: 10.17116/stomat20189704168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For assessment of the modern situation about the choice of materials for manufacture of dental implants and the processing of their surface the scientific literature for the last 2 years was study. On the basis of a large number of contradictory results of the researches devoted to each of dental implantation problems it is possible to draw a conclusion that any of primal problems of implantology is finally not solved. There is no unique opinion at the choice of optimum material for manufacture of dental implants, at the way of processing and modification of their surface. The problem of improvement of quality of dental implantation and fight against complications of this procedure cannot be solved simple drawing other substances on the implanted material surface, this task more easily and more successfully is solved via changes of product structure and various modification of implant surface. Up to the present the researches of an opportunity to influence on characteristics of the implanted materials, changing their structure and character of a surface, continue. And the publications reporting about the considerable positive effect of artificially created roughnesses on product surfaces, and the articles claiming that there are no big differences between the rough and polished implants are confirmed by objective measurements with statistical processing of the obtained data. It should be noted that among articles there are very many works of the doubtful plan or with insufficiently valid conclusions. This review leads to the conclusion that further clinical and experimental studies and about the choice of materials for manufacture of implants and at the ways of processing of their surface are necessary.
Collapse
Affiliation(s)
- I V Maiborodin
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Science, Siberian Branch, Novosibirsk, Russia
| | - A A Shevela
- International Center of Implantology of iDent, Novosibirsk, Russia
| | - M S Toder
- International Center of Implantology of iDent, Novosibirsk, Russia
| | - A I Shevela
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Science, Siberian Branch, Novosibirsk, Russia
| |
Collapse
|
30
|
Tosiriwatanapong T, Singhatanadgit W. Zirconia-Based Biomaterials for Hard Tissue Reconstruction. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/1179061x18767886] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Implantable biomaterials are increasingly important in the practice of modern medicine, including fixative, replacement, and regeneration therapies, for reconstruction of hard tissues in patients with pathologic osseous and dental conditions. A number of newly developed advanced biomaterials have been introduced as promising candidates for tissue reconstruction. Among these, zirconia-based biomaterials have gained attention as a biomaterial for hard tissue reconstruction due to superior mechanical properties and good chemical and biological compatibilities. This review summarizes the types of zirconia, advantages of zirconia-based biomaterials for hard tissue reconstruction including bone and dental tissues, responses of tissue and cells to zirconia, and surface modifications for enhanced bioactivity of zirconia. Current and future applications of zirconia-based biomaterials for bone and dental reconstruction, ie, medical implanted devices, dental prostheses, and biocompatible osteogenic scaffolds, are also discussed.
Collapse
|