1
|
Etemadi A, Karimi MA, Karimi M, Hodjat M, Pour MS, Karimi A, Chiniforush N. A comparative evaluation of the effects of 635 nm laser on cell proliferation and osteogenic differentiation of buccal fat pad mesenchymal stem cells. Photochem Photobiol 2024. [PMID: 38940369 DOI: 10.1111/php.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
The purpose of this study was to evaluate the effects of 635 nm diode laser with different powers on undifferentiated mesenchymal stem cells obtained from buccal fat pad. Human buccal fat stem cells were cultured in DMEM containing 10% FBS, penicillin, and streptomycin under 5% CO2 and 95% humidity. Cells were cultured in 96-well plate and 24 h later, laser irradiation with 635 nm diode laser was performed in four groups of 200, 300, 400, and 500 mW powers in addition to the control group with the same energy density of 4 J/cm2. MTT and flow cytometry assay was performed to evaluate cell proliferation and viability on 2 and 4 days after irradiation. Alizarin red assay and real-time PCR (OPN, OCN, ALP, and RUNX-2 genes) was performed to evaluate osteogenic differentiation. According to the MTT assay, none of the mentioned powers of 635 nm diode laser had significant effect on cell proliferation. Cells irradiated with power of 400 mW and 500 mW significantly showed a greater number of necrotic cells compared to the control group in Day 4. Cells irradiated with 300 mW power significantly exhibited a greater amount of nodule formation compared to all groups. Results of this study indicated that 635 nm diode laser with energy density of 4 J/cm2 has a positive effect inducing osteogenic differentiation when applying with a power of 300 mW in buccal fat pad mesenchymal stem cells.
Collapse
Affiliation(s)
- Ardavan Etemadi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Karimi
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Karimi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Sheibani Pour
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Karimi
- Department of Preventive and Restorative Dental Sciences, University of California San Francisco (UCSF) School of Dentistry, California, USA
| | - Nasim Chiniforush
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
2
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
3
|
Arpornmaeklong P, Boonyuen S, Apinyauppatham K, Pripatnanont P. Effects of Oral Cavity Stem Cell Sources and Serum-Free Cell Culture on Hydrogel Encapsulation of Mesenchymal Stem Cells for Bone Regeneration: An In Vitro Investigation. Bioengineering (Basel) 2024; 11:59. [PMID: 38247936 PMCID: PMC10812978 DOI: 10.3390/bioengineering11010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION To develop a stem cell delivery model and improve the safety of stem cell transplantation for bone regeneration, this study aimed to determine the effects of stem cell sources, serum-free cell culture, and hydrogel cell encapsulation on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs) from the oral cavity. METHODS The study groups were categorized according to stem cell sources into buccal fat pad adipose (hBFP-ADSCs) (Groups 1, 4, and 7), periodontal ligament (hPDLSCs) (Groups 2, 5, and 8), and dental pulp-derived stem cells (hDPSCs) (Groups 3, 6, and 9). MSCs from each source were isolated and expanded in three types of sera: fetal bovine serum (FBS) (Groups 1-3), human serum (HS) (Groups 4-6), and synthetic serum (SS) (StemPro™ MSC SFM) (Groups 7-9) for monolayer (m) and hydrogel cell encapsulation cultures (e). Following this, the morphology, expression of MSC cell surface antigens, growth, and osteogenic differentiation potential of the MSCs, and the expression of adhesion molecules were analyzed and compared. RESULTS SS decreased variations in the morphology and expression levels of cell surface antigens of MSCs from three cell sources (Groups 7m-9m). The levels of osteoblastic differentiation of the hPDLSCs and hBFP-ADSCs were increased in SS (Groups 8m and 7m) and the cell encapsulation model (Groups 1e, 4e, 7e-9e), but the promoting effects of SS were decreased in a cell encapsulation model (Groups 7e-9e). The expression levels of the alpha v beta 3 (ITG-αVβ3) and beta 1 (ITG-β1) integrins in the encapsulated cells in FBS (Group 1e) were higher than those in the SS (Group 7e). CONCLUSIONS Human PDLSCs and BFP-ADSCs were the optimum stem cell source for stem cell encapsulation by using nanohydroxyapatite-calcium carbonate microcapsule-chitosan/collagen hydrogel in serum-free conditions.
Collapse
Affiliation(s)
- Premjit Arpornmaeklong
- Faculty of Dentistry, Thammasat University-Rangsit Campus, Pathum Thani 12121, Thailand;
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University-Rangsit Campus, Pathum Thani 12121, Thailand;
| | - Komsan Apinyauppatham
- Faculty of Dentistry, Thammasat University-Rangsit Campus, Pathum Thani 12121, Thailand;
| | | |
Collapse
|
4
|
Alghfeli L, Parambath D, Tag Eldeen LA, El-Serafi I, El-Serafi AT. Non-additive effect of the DNA methylation inhibitor, 5-Aza-dC, and glass as a culture surface on osteogenic differentiation. Heliyon 2022; 8:e12433. [PMID: 36590514 PMCID: PMC9794900 DOI: 10.1016/j.heliyon.2022.e12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/31/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The clinical need for bone regenerative solutions is expanding with increasing life expectancy and escalating incidence of accidents. Several strategies are being investigated to enhance the osteogenic differentiation of stem cells. We previously reported two different approaches for this purpose, in monolayer and three-dimensional cell culture. The first approach was based on pretreating cells with 5-Aza-dC, a DNA methylation inhibitor, before the applying the differentiation media. The second approach was based on culturing cells on a glass surface during differentiation. In this study, we investigated the potential effect of combining both methods. Our results suggested that both approaches were associated with decreasing global DNA methylation levels. Cells cultured as a monolayer on glass surface showed enhancement in alkaline phosphatase activity at day 10, while 5-Aza-dC pretreatment enhanced the activity at day 5, irrespective of the culture surface. In three-dimensional pellet culture, 5-Aza-dC pretreatment enhanced osteogenesis through Runx-2 and TGF-β1 upregulation while the glass surface induced Osterix. Furthermore, pellets cultured on glass showed upregulation of a group of miRNAs, including pro-osteogenesis miR- 20a and miR -148b and anti-osteogenesis miR -125b, miR -31, miR -138, and miR -133a. Interestingly, 5-Aza-dC was not associated with a change of miRNAs in cells cultured on tissue culture plastic but reverted the upregulated miRNAs on the glass to the basal level. This study confirms the two approaches for enhancing osteogenic differentiation and contradicts their combination.
Collapse
Affiliation(s)
- Latifa Alghfeli
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
| | - Divyasree Parambath
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
| | - Loaa A. Tag Eldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Egypt
| | - Ibrahim El-Serafi
- Basic Medical Sciences Department, College of Medicine, Ajman University, United Arab Emirates,Department of Biochemistry, Faculty of Medicine, Port-Said University, Egypt
| | - Ahmed T. El-Serafi
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates,Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Egypt,Department of Biomedical and Clinical Sciences, Linköping University, Sweden,Corresponding author.
| |
Collapse
|
5
|
Gallo S, Pascadopoli M, Pellegrini M, Pulicari F, Manfredini M, Zampetti P, Spadari F, Maiorana C, Scribante A. Latest Findings of the Regenerative Materials Application in Periodontal and Peri-Implant Surgery: A Scoping Review. Bioengineering (Basel) 2022; 9:594. [PMID: 36290567 PMCID: PMC9598513 DOI: 10.3390/bioengineering9100594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Regenerative dentistry represents a therapeutic modern approach involving biomaterials and biologics such as mesenchymal stem cells. The role of regenerative dentistry is promising in all branches of dentistry, especially in periodontology and implantology for the treatment of bony defects around teeth and implants, respectively. Due to the number of different materials that can be used for this purpose, the aim of the present review is to evidence the regenerative properties of different materials both in periodontitis and peri-implantitis as well as to compare their efficacy. Clinical trials, case-control studies, cross-sectional studies, and cohort studies have been considered in this review. The outcome assessed is represented by the regenerative properties of bone grafts, barrier membranes, and biological materials in the treatment of intrabony and furcation defects, peri-implantitis sites, alveolar ridge preservation, and implant site development. Based on the studies included, it can be stated that in the last years regenerative materials in periodontal and peri-implant defects treatments have shown excellent results, thus providing valuable support to surgical therapy. To achieve optimal and predictable results, clinicians should always consider factors like occlusal load control, prevention of microbial contamination, and wound dehiscence. Further evidence is required about the use of enamel matrix derivative in alveolar ridge preservation, as well as of stem cells and bone morphogenetic proteins-2 in furcation defects and peri-implantitis sites. Considering the high amount of research being conducted in this field, further evidence is expected to be obtained soon.
Collapse
Affiliation(s)
- Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Matteo Pellegrini
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Federica Pulicari
- Maxillo-Facial and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Mattia Manfredini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paolo Zampetti
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Francesco Spadari
- Maxillo-Facial and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Carlo Maiorana
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Scribante
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
Camacho-Alonso F, Tudela-Mulero MR, Navarro JA, Buendía AJ, Mercado-Díaz AM. Use of buccal fat pad-derived stem cells cultured on bioceramics for repair of critical-sized mandibular defects in healthy and osteoporotic rats. Clin Oral Investig 2022; 26:5389-5408. [PMID: 35524820 PMCID: PMC9381637 DOI: 10.1007/s00784-022-04506-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To compare new bone formation in mandibular symphysis critical-sized bone defects (CSBDs) in healthy and osteoporotic rats filled with bioceramics (BCs) with or without buccal fat pad mesenchymal stem cells (BFPSCs). MATERIALS AND METHODS Thirty-two adult female Sprague-Dawley rats were randomized to two groups (n = 16 per group): group 1 healthy and group 2 osteoporotic (with bilateral ovariectomy). The central portion of the rat mandibular symphysis was used as a physiological CSBD. In each group, eight defects were filled with BC (hydroxyapatite 60% and β-tricalcium phosphate 40%) alone and eight with BFPSCs cultured on BC. The animals were sacrificed at 4 and 8 weeks, and the mandibles were processed for micro-computed tomography to analyze radiological union and bone mineral density (BMD); histological analysis of the bone union; and immunohistochemical analysis, which included immunoreactivity of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2). RESULTS In both groups, CSBDs filled with BC + BFPSCs showed greater radiological bone union, BMD and histological bone union, and more VEGF and BMP-2 positivity, compared with CSBDs treated with BC alone at 4 and 8 weeks. CONCLUSIONS The application of BFPSCs cultured on BCs improves bone regeneration in CSBDs compared with BCs alone in healthy and osteoporotic rats. CLINICAL RELEVANCE Our results may aid bone regeneration of maxillofacial CSBDs of both healthy and osteoporotic patients, but further studies are necessary.
Collapse
Affiliation(s)
- Fabio Camacho-Alonso
- Department of Oral Surgery, University of Murcia, Murcia, Spain.
- Oral Surgery Teaching Unit, University Dental Clinic, Morales Meseguer Hospital (2Nd Floor), Marqués de los Vélez s/n, 30008, Murcia, Spain.
| | | | - J A Navarro
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - A J Buendía
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | | |
Collapse
|
7
|
Liu T, Xu J, Pan X, Ding Z, Xie H, Wang X, Xie H. Advances of adipose-derived mesenchymal stem cells-based biomaterial scaffolds for oral and maxillofacial tissue engineering. Bioact Mater 2021; 6:2467-2478. [PMID: 33553828 PMCID: PMC7850942 DOI: 10.1016/j.bioactmat.2021.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 02/05/2023] Open
Abstract
The management of oral and maxillofacial tissue defects caused by tumors, trauma, and congenital or acquired deformities has been a major challenge for surgeons over the last few decades. Autologous tissue transplantation, the gold standard of tissue reconstruction, is a valid method for repairing the oral and maxillofacial functions and aesthetics. However, several limitations hinder its clinical applications including complications of donor sites, limited tissue volume, and uncertain long-term outcomes. Adipose-derived mesenchymal stem cells (ADMSCs) widely exist in adipose tissue and can be easily obtained through liposuction. Like the bone marrow-derived mesenchymal stem cells (BMSCs), ADMSCs also have the multi-pluripotent potencies to differentiate into osteoblasts, chondrocytes, neurons, and myocytes. Therefore, the multilineage capacity of ADMSCs makes them valuable for cell-based medical therapies. In recent years, researchers have developed many candidates of ADMSCs-based biomaterial scaffolds to cater for the needs of oral and maxillofacial tissue engineering due to their superior performance. This review presents the advances and applications of ADMSCs-based biomaterial scaffolds, and explores their tissue engineering prospects in oral and maxillofacial reconstructions.
Collapse
Affiliation(s)
- Tong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jia Xu
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, School of Stomatology, Nanchang University, Nanchang, 330006, China
| | - Xun Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhangfan Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hao Xie
- General Surgery Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241000, China
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Dziedzic DSM, Francisco JC, Mogharbel BF, Irioda AC, Stricker PEF, Floriano J, de Noronha L, Abdelwahid E, Franco CRC, de Carvalho KAT. Combined Biomaterials: Amniotic Membrane and Adipose Tissue to Restore Injured Bone as Promoter of Calcification in Bone Regeneration: Preclinical Model. Calcif Tissue Int 2021; 108:667-679. [PMID: 33420810 PMCID: PMC8064990 DOI: 10.1007/s00223-020-00793-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Discarded tissues, like human amniotic membranes and adipose tissue, were investigated for the application of Decellularized Human Amniotic Membrane (DAM) as a viable scaffold for transplantation of Adipose-derived stromal cells (ASCs) in bone regeneration of non-healing calvarial defects in rats. Amniotic membrane was decellularized to provide a scaffold for male Wistar rats ASCs expansion and transplantation. ASCs osteoinduction in vitro promoted the deposition of a mineralized bone-like matrix by ASCs, as calcified globular accretions associated with the cells on the DAM surface and inside the collagenous matrix. Non-healing calvarial defects on male Wistar rats were randomly divided in control without treatment, treatment with four layers of DAM, or four layers of DAM associated with ASCs. After 12 weeks, tissue blocks were examined by micro-computed tomography and histology. DAM promoted osteoconduction by increasing the collagenous matrix on both DAM treatments. DAM with ASCs stimulated bone deposition, demonstrated by a higher percentage of bone volume and trabecular bone number, compared to control. Besides the osteogenic capacity in vitro, ASCs stimulated the healing of calvarial defects with significant DAM graft incorporation concomitant with higher host bone deposition. The enhanced in vivo bone regeneration by undifferentiated ASCs loaded onto DAM confirmed the potential of an easily collected autologous cell source associated with a broadly available collagenous matrix in tissue engineering.
Collapse
Affiliation(s)
- Dilcele Silva Moreira Dziedzic
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Ave. Silva Jardim, no. 1632, Box 80240-020, Curitiba, Paraná Brazil
| | - Júlio César Francisco
- Positivo University, St.Professor Pedro Viriato Parigot de Souza, Box 80710-570, Curitiba, Paraná 5300 Brazil
| | - Bassam Felipe Mogharbel
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Ave. Silva Jardim, no. 1632, Box 80240-020, Curitiba, Paraná Brazil
| | - Ana Carolina Irioda
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Ave. Silva Jardim, no. 1632, Box 80240-020, Curitiba, Paraná Brazil
| | - Priscila Elias Ferreira Stricker
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Ave. Silva Jardim, no. 1632, Box 80240-020, Curitiba, Paraná Brazil
| | - Juliana Floriano
- Physics Department, São Paulo State University (UNESP), Ave. Eng. Luís Edmundo Carrijo Coube, 2085 - Núcleo Res. Pres. Geisel, Box 17033-360, Bauru, São Paulo Brazil
| | - Lúcia de Noronha
- Pathology Department, The Institute of Biological and Health Sciences of the Pontifical Catholic University, Ave. Imaculada Conceição, 1155, Box 80215-901, Curitiba, Brazil
| | - Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, 303 E. Chicago Ave., Tarry 14–725, Chicago, IL 60611 USA
| | - Célia Regina Cavichiolo Franco
- Cell Biology Department, Federal University of Paraná, Ave. Coronel Francisco Heráclito dos Santos 210, Box 81531-970, Curitiba, Paraná Brazil
| | - Katherine Athayde Teixeira de Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Ave. Silva Jardim, no. 1632, Box 80240-020, Curitiba, Paraná Brazil
| |
Collapse
|
9
|
Mende W, Götzl R, Kubo Y, Pufe T, Ruhl T, Beier JP. The Role of Adipose Stem Cells in Bone Regeneration and Bone Tissue Engineering. Cells 2021; 10:cells10050975. [PMID: 33919377 PMCID: PMC8143357 DOI: 10.3390/cells10050975] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bone regeneration is a complex process that is influenced by tissue interactions, inflammatory responses, and progenitor cells. Diseases, lifestyle, or multiple trauma can disturb fracture healing, which might result in prolonged healing duration or even failure. The current gold standard therapy in these cases are bone grafts. However, they are associated with several disadvantages, e.g., donor site morbidity and availability of appropriate material. Bone tissue engineering has been proposed as a promising alternative. The success of bone-tissue engineering depends on the administered cells, osteogenic differentiation, and secretome. Different stem cell types offer advantages and drawbacks in this field, while adipose-derived stem or stromal cells (ASCs) are in particular promising. They show high osteogenic potential, osteoinductive ability, and immunomodulation properties. Furthermore, they can be harvested through a noninvasive process in high numbers. ASCs can be induced into osteogenic lineage through bioactive molecules, i.e., growth factors and cytokines. Moreover, their secretome, in particular extracellular vesicles, has been linked to fracture healing. The aim of this review is a comprehensive overview of ASCs for bone regeneration and bone tissue engineering.
Collapse
Affiliation(s)
- Wolfgang Mende
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Rebekka Götzl
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Tim Ruhl
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Justus P Beier
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
10
|
Nokhbatolfoghahaei H, Bohlouli M, Adavi K, Paknejad Z, Rezai Rad M, Khani MM, Salehi-Nik N, Khojasteh A. Computational modeling of media flow through perfusion-based bioreactors for bone tissue engineering. Proc Inst Mech Eng H 2020; 234:1397-1408. [PMID: 32692276 DOI: 10.1177/0954411920944039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bioreactor system has been used in bone tissue engineering in order to simulate dynamic nature of bone tissue environments. Perfusion bioreactors have been reported as the most efficient types of shear-loading bioreactor. Also, combination of forces, such as rotation plus perfusion, has been reported to enhance cell growth and osteogenic differentiation. Mathematical modeling using sophisticated infrastructure processes could be helpful and streamline the development of functional grafts by estimating and defining an effective range of bioreactor settings for better augmentation of tissue engineering. This study is aimed to conduct computational modeling for newly designed bioreactors in order to alleviate the time and material consuming for evaluating bioreactor parameters and effect of fluid flow hydrodynamics (various amounts of shear stress) on osteogenesis. Also, biological assessments were performed in order to validate similar parameters under implementing the perfusion or rotating and perfusion fluid motions in bioreactors' prototype. Finite element method was used to investigate the effect of hydrodynamic of fluid flow inside the bioreactors. The equations used in the simulation to calculate the velocity values and consequently the shear stress values include Navier-Stokes and Brinkman equations. It has been shown that rotational fluid motion in rotating and perfusion bioreactor produces more velocity and shear stress compared with perfusion bioreactor. Moreover, implementing the perfusion together with rotational force in rotating and perfusion bioreactors has been shown to have more cell proliferation and higher activity of alkaline phosphatase enzyme as well as formation of extra cellular matrix sheet, as an indicator of bone-like tissue formation.
Collapse
Affiliation(s)
- Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Adavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahrasadat Paknejad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Salehi-Nik
- Department of Biomechanical Engineering, Faulty of Engineering Technology, University of Twente, Enschede, The Netherlands
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Monika K, Sunkala L, Sandeep N, Keerthi K, Bharathi BV, Madhav GV. Evaluation of root coverage with pedicled buccal fat pad in class III and class IV gingival recession defects. J Family Med Prim Care 2020; 9:1656-1661. [PMID: 32509667 PMCID: PMC7266237 DOI: 10.4103/jfmpc.jfmpc_1104_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 02/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Gingival recession (GR) is a common clinical feature of periodontal disease and is an undesirable condition. More than 50% of the population has one or more sites with GR ≥ 1 mm. Material and Methods: In this study 15 subjects were subjected to initial periodontal therapy such as ultrasonic scaling and root planning with hand instruments and curettes. Patient is motivated for home care. The buccal fat pad is harvested and sutured in the gingival recession area and followed up for 6 months and root coverage was calculated. Results: At baseline mean recession of 5.60 ± 1.18 mm, probing depth of 0.73 ± 0.59 mm, clinical attachment loss of 6.40 ± 1.18 mm were recorded. At the end of 6 months, the mean recession was reduced from 5.60 ± 1.18 mm to 2.87 ± 0.74 mm, probing depth was increased from 0.73 ± 0.59 mm to 1.73 ± 0.70 mm and clinical attachment loss was decreased from 6.40 ± 1.18 mm to 4.53 ± 0.83 mm.The difference between baseline score and six months score for all three parameters are statistically significant. Conclusion: Buccal fat pad is a predictable procedure to cover Miller's class III and class IV gingival recession defects. There was a definitive improvement in clinical parameters (reduction in gingival recession, increased probing depth, gain in clinical attachment) after 6 months. There was 46.78% improvement in root coverage which was statistically significant.
Collapse
Affiliation(s)
- K Monika
- Private Practitioner, Department of Periodontics, Panineeniya Institute of Dental Sciences, Hyderabad, India
| | - Lokesh Sunkala
- Department of Prosthodontics Crown and Bridge, Army College of Dental Sciences, Secunderabad, Telangana, India
| | - N Sandeep
- Private Practitioner, Department of Periodontics, Panineeniya Institute of Dental Sciences, Hyderabad, India
| | - K Keerthi
- Private Practitioner, General Dentistry, Hyderabad, India
| | - B Vimal Bharathi
- Department of Prosthodontics Crown and Bridge, Panineeniya Institute of Dental Sciences, Hyderabad, India
| | - Gajula Venu Madhav
- Department of Prosthodontics Crown and Bridge, Army College of Dental Sciences, Secunderabad, Telangana, India
| |
Collapse
|
12
|
Shafaei H, Kalarestaghi H. Adipose-derived stem cells: An appropriate selection for osteogenic differentiation. J Cell Physiol 2020; 235:8371-8386. [PMID: 32239731 DOI: 10.1002/jcp.29681] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are a major component of various forms of tissue engineering. MSCs have self-renewal and multidifferential potential. Osteogenic differentiation of MSCs is an area of attention in bone regeneration. One form of MSCs are adipose-derived stem cells (ASCs), which can be simply harvested and differentiated into several cell lineages, such as chondrocytes, adipocytes, or osteoblasts. Due to special properties, ASCs are frequently used in vitro and in vivo bone regeneration. Identifying factors involved in osteogenic differentiation of ASCs is important for better understanding the mechanism of osteogenic differentiation. Different methods are used to stimulate osteogenesis of ASCs in literature, including common osteogenic media, growth factors, hormones, hypoxia, mechanical and chemical stimuli, genetic modification, and nanotechnology. This review article provides an overview describing the isolation procedure, characterization, properties, current methods for osteogenic differentiation of ASCs, and their basic biological mechanism.
Collapse
Affiliation(s)
- Hajar Shafaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Kalarestaghi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
13
|
Oral stem cells in intraoral bone formation. J Oral Biosci 2020; 62:36-43. [DOI: 10.1016/j.job.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023]
|
14
|
Akhlaghi F, Hesami N, Rad MR, Nazeman P, Fahimipour F, Khojasteh A. Improved bone regeneration through amniotic membrane loaded with buccal fat pad-derived MSCs as an adjuvant in maxillomandibular reconstruction. J Craniomaxillofac Surg 2019; 47:1266-1273. [PMID: 31337570 DOI: 10.1016/j.jcms.2019.03.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/29/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Human amniotic membranes (HAMs), as a biological membrane with healing, osteogenic, and cell therapy potential, has been in the spotlight to enhance the outcomes of treating bone defects. Present study aims to clinically assess the potential of HAM loaded with buccal fat pad-derived stem cells (BFSCs) as an osteogenic coverage for onlay bone grafts to maxillomandibular bone defects. MATERIALS AND METHODS Nine patients with jaw bone defects were enrolled in the present study. The patients were allocated to two study groups: Iliac crest bone graft with HAM coverage (n = 5), and Iliac bone grafts covered with HAM loaded with BFSCs (n = 4). Five months following the grafting and prior to implant placement, cone beam computed tomography was performed for radiomorphometric analysis. RESULTS The mean increase in bone width was found to be significantly greater in the HAM + BFSCs group (4.42 ± 1.03 mm versus 3.07 ± 0.73 mm, p < 0.05). Further, the changes in vertical dimension were greater in the HAM + BFSCs group (4.66 ± 1.06 mm versus 4.14 ± 1.03 mm, p > 0.05). CONCLUSION Combined use of HAM with mesenchymal stem cells may enhance bone regeneration specifically in the horizontal dimension. Moreover, this methodology reduces the amount of harvested autogenous bone and diminish secondary bone resorption.
Collapse
Affiliation(s)
- Fahimeh Akhlaghi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Hesami
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pantea Nazeman
- Department of Periodontics, University of Washington, Seattle, WA, USA
| | - Farahnaz Fahimipour
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Arash Khojasteh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|