1
|
Chen A, Gibney PA. Disruption of GRR1 in Saccharomyces cerevisiae rescues tps1Δ growth on fermentable carbon sources. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000927. [PMID: 37602281 PMCID: PMC10436075 DOI: 10.17912/micropub.biology.000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
In Saccharomyces cerevisiae , trehalose-6-phosphate synthase (Tps1) catalyzes the formation of trehalose-6-phophate in trehalose synthesis. Deletion of the TPS1 gene is associated with phenotypes including inability to grow on fermentable carbon sources, survive at elevated temperatures, or sporulate. To further understand these pleiotropic phenotypes, we conducted a genetic suppressor screen and identified a novel suppressor, grr1 Δ, able to restore tps1 Δ growth on rapidly fermentable sugars. However, disruption of GRR1 did not rescue tps1 Δ thermosensitivity. These results support the model that trehalose metabolism has important roles in regulating glucose sensing and signaling in addition to regulating stress resistance.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, Ithaca, New York, United States
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China
| | - Patrick A. Gibney
- Department of Food Science, Cornell University, Ithaca, New York, United States
| |
Collapse
|
2
|
Wang Y, Zhu X, Wang J, Shen C, Wang W. Identification of Mycoparasitism-Related Genes against the Phytopathogen Botrytis cinerea via Transcriptome Analysis of Trichoderma harzianum T4. J Fungi (Basel) 2023; 9:jof9030324. [PMID: 36983492 PMCID: PMC10055783 DOI: 10.3390/jof9030324] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Trichoderma harzianum is a well-known biological control agent (BCA) that is effective against a variety of plant pathogens. In previous studies, we found that T. harzianum T4 could effectively control the gray mold in tomatoes caused by Botrytis cinerea. However, the research on its biocontrol mechanism is not comprehensive, particularly regarding the mechanism of mycoparasitism. In this study, in order to further investigate the mycoparasitism mechanism of T. harzianum T4, transcriptomic sequencing and real-time fluorescence quantitative PCR (RT-qPCR) were used to identify the differentially expressed genes (DEGs) of T. harzianum T4 at 12, 24, 48 and 72 h of growth in the cell wall of B. cinerea (BCCW) or a sucrose medium. A total of 2871 DEGs and 2148 novel genes were detected using transcriptome sequencing. Through GO and KEGG enrichment analysis, we identified genes associated with mycoparasitism at specific time periods, such as encoding kinases, signal transduction proteins, carbohydrate active enzymes, hydrolytic enzymes, transporters, antioxidant enzymes, secondary metabolite synthesis, resistance proteins, detoxification genes and genes associated with extended hyphal longevity. To validate the transcriptome data, RT-qCPR was performed on the transcriptome samples. The RT-qPCR results show that the expression trend of the genes was consistent with the RNA-Seq data. In order to validate the screened genes associated with mycoparasitism, we performed a dual-culture antagonism test on T. harzianum and B. cinerea. The results of the dual-culture RT-qPCR showed that 15 of the 24 genes were upregulated during and after contact between T. harzianum T4 and B. cinerea (the same as BCCW), which further confirmed that these genes were involved in the mycoparasitism of T. harzianum T4. In conclusion, the transcriptome data provided in this study will not only improve the annotation information of gene models in T. harzianum T4 genome, but also provide important transcriptome information regarding the process of mycoparasitism at specific time periods, which can help us to further understand the mechanism of mycoparasitism, thus providing a potential molecular target for T. harzianum T4 as a biological control agent.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaochong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Kong L, Liu J, Zhang W, Li X, Zhang Y, Chen X, Zhan Z, Piao Z. Genome-Wide Identification and Characterization of the Trehalose-6-Phosphate Synthetase Gene Family in Chinese Cabbage ( Brassica rapa) and Plasmodiophora brassicae during Their Interaction. Int J Mol Sci 2023; 24:929. [PMID: 36674458 PMCID: PMC9864397 DOI: 10.3390/ijms24020929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Trehalose is a nonreducing disaccharide that is widely distributed in various organisms. Trehalose-6-phosphate synthase (TPS) is a critical enzyme responsible for the biosynthesis of trehalose, which serves important functions in growth and development, defense, and stress resistance. Although previous studies have found that the clubroot pathogen Plasmodiophora brassicae can lead to the accumulation of trehalose in infected Arabidopsis organs, it has been proposed that much of the accumulated trehalose is derived from the pathogen. At present, there is very little evidence to verify this view. In this study, a comprehensive analysis of the TPS gene family was conducted in Brassica rapa and Plasmodiophora brassicae. A total of 14 Brassica rapa TPS genes (BrTPSs) and 3 P. brassicae TPS genes (PbTPSs) were identified, and the evolutionary characteristics, functional classification, and expression patterns were analyzed. Fourteen BrTPS genes were classified into two distinct classes according to phylogeny and gene structure. Three PbTPSs showed no significant differences in gene structure and protein conserved motifs. However, evolutionary analysis showed that the PbTPS2 gene failed to cluster with PbTPS1 and PbTPS3. Furthermore, cis-acting elements related to growth and development, defense and stress responsiveness, and hormone responsiveness were predicted in the promoter region of the BrTPS genes. Expression analysis of most BrTPS genes at five stages after P. brassicae interaction found no significant induction. Instead, the expression of the PbTPS genes of P. brassicae was upregulated, which was consistent with the period of trehalose accumulation. This study deepens our understanding of the function and evolution of BrTPSs and PbTPSs. Simultaneously, clarifying the biosynthesis of trehalose in the interaction between Brassica rapa and P. brassicae is also of great significance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zongxiang Zhan
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhongyun Piao
- Molecular Biology of Vegetable Laboratory, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Borgström C, Persson VC, Rogova O, Osiro KO, Lundberg E, Spégel P, Gorwa-Grauslund M. Using phosphoglucose isomerase-deficient (pgi1Δ) Saccharomyces cerevisiae to map the impact of sugar phosphate levels on D-glucose and D-xylose sensing. Microb Cell Fact 2022; 21:253. [PMID: 36456947 PMCID: PMC9713995 DOI: 10.1186/s12934-022-01978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Despite decades of engineering efforts, recombinant Saccharomyces cerevisiae are still less efficient at converting D-xylose sugar to ethanol compared to the preferred sugar D-glucose. Using GFP-based biosensors reporting for the three main sugar sensing routes, we recently demonstrated that the sensing response to high concentrations of D-xylose is similar to the response seen on low concentrations of D-glucose. The formation of glycolytic intermediates was hypothesized to be a potential cause of this sensing response. In order to investigate this, glycolysis was disrupted via the deletion of the phosphoglucose isomerase gene (PGI1) while intracellular sugar phosphate levels were monitored using a targeted metabolomic approach. Furthermore, the sugar sensing of the PGI1 deletants was compared to the PGI1-wildtype strains in the presence of various types and combinations of sugars. RESULTS Metabolomic analysis revealed systemic changes in intracellular sugar phosphate levels after deletion of PGI1, with the expected accumulation of intermediates upstream of the Pgi1p reaction on D-glucose and downstream intermediates on D-xylose. Moreover, the analysis revealed a preferential formation of D-fructose-6-phosphate from D-xylose, as opposed to the accumulation of D-fructose-1,6-bisphosphate that is normally observed when PGI1 deletants are incubated on D-fructose. This may indicate a role of PFK27 in D-xylose sensing and utilization. Overall, the sensing response was different for the PGI1 deletants, and responses to sugars that enter the glycolysis upstream of Pgi1p (D-glucose and D-galactose) were more affected than the response to those entering downstream of the reaction (D-fructose and D-xylose). Furthermore, the simultaneous exposure to sugars that entered upstream and downstream of Pgi1p (D-glucose with D-fructose, or D-glucose with D-xylose) resulted in apparent synergetic activation and deactivation of the Snf3p/Rgt2p and cAMP/PKA pathways, respectively. CONCLUSIONS Overall, the sensing assays indicated that the previously observed D-xylose response stems from the formation of downstream metabolic intermediates. Furthermore, our results indicate that the metabolic node around Pgi1p and the level of D-fructose-6-phosphate could represent attractive engineering targets for improved D-xylose utilization.
Collapse
Affiliation(s)
- Celina Borgström
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden ,grid.17063.330000 0001 2157 2938Present Address: BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Viktor C. Persson
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Oksana Rogova
- grid.4514.40000 0001 0930 2361Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Karen O. Osiro
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden ,Present Address: Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília, DF 70770-901 Brazil
| | - Ester Lundberg
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Peter Spégel
- grid.4514.40000 0001 0930 2361Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Marie Gorwa-Grauslund
- grid.4514.40000 0001 0930 2361Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Chen A, Smith JR, Tapia H, Gibney PA. Characterizing phenotypic diversity of trehalose biosynthesis mutants in multiple wild strains of Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:jkac196. [PMID: 35929793 PMCID: PMC9635654 DOI: 10.1093/g3journal/jkac196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
In the yeast Saccharomyces cerevisiae, trehalose-6-phospahte synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2) are the main proteins catalyzing intracellular trehalose production. In addition to Tps1 and Tps2, 2 putative regulatory proteins with less clearly defined roles also appear to be involved with trehalose production, Tps3 and Tsl1. While this pathway has been extensively studied in laboratory strains of S. cerevisiae, we sought to examine the phenotypic consequences of disrupting these genes in wild strains. Here we deleted the TPS1, TPS2, TPS3, and TSL1 genes in 4 wild strains and 1 laboratory strain for comparison. Although some tested phenotypes were not shared between all strains, deletion of TPS1 abolished intracellular trehalose, caused inability to grow on fermentable carbon sources and resulted in severe sporulation deficiency for all 5 strains. After examining tps1 mutant strains expressing catalytically inactive variants of Tps1, our results indicate that Tps1, independent of trehalose production, is a key component for yeast survival in response to heat stress, for regulating sporulation, and growth on fermentable sugars. All tps2Δ mutants exhibited growth impairment on nonfermentable carbon sources, whereas variations were observed in trehalose synthesis, thermosensitivity and sporulation efficiency. tps3Δ and tsl1Δ mutants exhibited mild or no phenotypic disparity from their isogenic wild type although double mutants tps3Δ tsl1Δ decreased the amount of intracellular trehalose production in all 5 strains by 17-45%. Altogether, we evaluated, confirmed, and expanded the phenotypic characteristics associated trehalose biosynthesis mutants. We also identified natural phenotypic variants in multiple strains that could be used to genetically dissect the basis of these traits and then develop mechanistic models connecting trehalose metabolism to diverse cellular processes.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy R Smith
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Hugo Tapia
- Biology Program, California State University—Channel Islands, Camarillo, CA 93012, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Trehalose biosynthetic pathway regulates filamentation response in Saccharomyces cerevisiae. Mol Biol Rep 2022; 49:9387-9396. [PMID: 35908239 DOI: 10.1007/s11033-022-07792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Diploid cells of Saccharomyces cerevisiae undergo either pseudohyphal differentiation or sporulation in response to depletion of carbon and nitrogen sources. Distinct signaling pathways regulate filamentation and sporulation in response to nutrient limitation. How these pathways are coordinated for implementing distinct cell fate decisions in response to similar nutritional cues is an enigma. Although the role of trehalose pathway in sporulation has been extensively studied, it's possible role in pseudohyphal differentiation has been unexplored. METHODS AND RESULTS Briefly, tps1 and tps2 mutants were tested for their ability to form pseudohyphae independently as well as in the background of GPR1 and RAS2 mutations. Here, we demonstrate that disruption of TPS1 but not TPS2 inhibits pseudohyphae formation. Interestingly, deletion of GPR1 suppresses the above defect. Further genetic analysis revealed that TPS1 and TPS2 exert opposing effects in triggering filamentation. CONCLUSION We provide new insights into the role of an otherwise well-known pathway of trehalose biosynthesis in pseudohyphal differentiation. Based on additional data we propose that downstream signaling, mediated by cAMP may be modulated by nutrient mediated differential regulation of RAS2 by TPS1 and TPS2.
Collapse
|
7
|
Bartolec TK, Hamey JJ, Keller A, Chavez JD, Bruce JE, Wilkins MR. Differential Proteome and Interactome Analysis Reveal the Basis of Pleiotropy Associated With the Histidine Methyltransferase Hpm1p. Mol Cell Proteomics 2022; 21:100249. [PMID: 35609787 PMCID: PMC9234706 DOI: 10.1016/j.mcpro.2022.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 10/31/2022] Open
Abstract
The methylation of histidine is a post-translational modification whose function is poorly understood. Methyltransferase histidine protein methyltransferase 1 (Hpm1p) monomethylates H243 in the ribosomal protein Rpl3p and represents the only known histidine methyltransferase in Saccharomyces cerevisiae. Interestingly, the hpm1 deletion strain is highly pleiotropic, with many extraribosomal phenotypes including improved growth rates in alternative carbon sources. Here, we investigate how the loss of histidine methyltransferase Hpm1p results in diverse phenotypes, through use of targeted mass spectrometry (MS), growth assays, quantitative proteomics, and differential crosslinking MS. We confirmed the localization and stoichiometry of the H243 methylation site, found unreported sensitivities of Δhpm1 yeast to nonribosomal stressors, and identified differentially abundant proteins upon hpm1 knockout with clear links to the coordination of sugar metabolism. We adapted the emerging technique of quantitative large-scale stable isotope labeling of amino acids in cell culture crosslinking MS for yeast, which resulted in the identification of 1267 unique in vivo lysine-lysine crosslinks. By reproducibly monitoring over 350 of these in WT and Δhpm1, we detected changes to protein structure or protein-protein interactions in the ribosome, membrane proteins, chromatin, and mitochondria. Importantly, these occurred independently of changes in protein abundance and could explain a number of phenotypes of Δhpm1, not addressed by expression analysis. Further to this, some phenotypes were predicted solely from changes in protein structure or interactions and could be validated by orthogonal techniques. Taken together, these studies reveal a broad role for Hpm1p in yeast and illustrate how crosslinking MS will be an essential tool for understanding complex phenotypes.
Collapse
Affiliation(s)
- Tara K Bartolec
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Randwick, New South Wales, Australia
| | - Joshua J Hamey
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Randwick, New South Wales, Australia
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Randwick, New South Wales, Australia.
| |
Collapse
|
8
|
Verhagen KJA, Eerden SA, Sikkema BJ, Wahl SA. Predicting Metabolic Adaptation Under Dynamic Substrate Conditions Using a Resource-Dependent Kinetic Model: A Case Study Using Saccharomyces cerevisiae. Front Mol Biosci 2022; 9:863470. [PMID: 35651815 PMCID: PMC9149170 DOI: 10.3389/fmolb.2022.863470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022] Open
Abstract
Exposed to changes in their environment, microorganisms will adapt their phenotype, including metabolism, to ensure survival. To understand the adaptation principles, resource allocation-based approaches were successfully applied to predict an optimal proteome allocation under (quasi) steady-state conditions. Nevertheless, for a general, dynamic environment, enzyme kinetics will have to be taken into account which was not included in the linear resource allocation models. To this end, a resource-dependent kinetic model was developed and applied to the model organism Saccharomyces cerevisiae by combining published kinetic models and calibrating the model parameters to published proteomics and fluxomics datasets. Using this approach, we were able to predict specific proteomes at different dilution rates under chemostat conditions. Interestingly, the approach suggests that the occurrence of aerobic fermentation (Crabtree effect) in S. cerevisiae is not caused by space limitation in the total proteome but rather an effect of constraints on the mitochondria. When exposing the approach to repetitive, dynamic substrate conditions, the proteome space was allocated differently. Less space was predicted to be available for non-essential enzymes (reserve space). This could indicate that the perceived “overcapacity” present in experimentally measured proteomes may very likely serve a purpose in increasing the robustness of a cell to dynamic conditions, especially an increase of proteome space for the growth reaction as well as of the trehalose cycle that was shown to be essential in providing robustness upon stronger substrate perturbations. The model predictions of proteome adaptation to dynamic conditions were additionally evaluated against respective experimentally measured proteomes, which highlighted the model’s ability to accurately predict major proteome adaptation trends. This proof of principle for the approach can be extended to production organisms and applied for both understanding metabolic adaptation and improving industrial process design.
Collapse
Affiliation(s)
- K. J. A. Verhagen
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - S. A. Eerden
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - B. J. Sikkema
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - S. A. Wahl
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
- Lehrstuhl für Bioverfahrenstechnik, FAU Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: S. A. Wahl,
| |
Collapse
|
9
|
Elsaba YM, Boroujerdi A, Abdelsalam A. Isolation, Characterization, and Metabolic Profiling of Ceratorhiza hydrophila from the Aquatic Plant Myriophyllum spicatum. MYCOBIOLOGY 2022; 50:110-120. [PMID: 35571857 PMCID: PMC9068000 DOI: 10.1080/12298093.2022.2059889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
The goal of the present study was to investigate the antibacterial properties, enzyme production, and metabolic profiling of a new Ceratorhiza hydrophila strain isolated from the submerged aquatic plant Myriophyllum spicatum. Furthermore, the fungus' morphological characterization and DNA sequencing have been described. The fungus has been identified and submitted to the GenBank as Ceratorhiza hydrophila isolate EG19 and the fungus ID is MK387081. The enzyme analyses showed its ability to produce protease and cellulase enzymes. According to the CSLI standard, the ethyl acetate extract of C. hydrophila showed intermediate antibacterial activity against Streptococcus pneumonia, Micrococcus luteus, and Staphylococcus aureus. Metabolic profiling has been carried out using 700 MHz NMR spectroscopy. Based on the 1H and 1H-13C heteronuclear single quantum coherence (HSQC) NMR data and NMR databases, 23 compounds have been identified. The identified metabolites include 31% amino acids, 9% sugars, 9% amines, 4% sugar alcohols, and 4% alkaloids. This is the first report for the metabolic characterization of C. hydrophila, which gave preliminary information about the fungus. It is expected that our findings not only will pave the way to other perspectives in enormous applications using C. hydrophila as a new promising source of antimicrobial agents and essential metabolites, but also it will be valuable in the classification and chemotaxonomy of the species.
Collapse
Affiliation(s)
- Yasmin M. Elsaba
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Asmaa Abdelsalam
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
10
|
Gambacorta FV, Dietrich JJ, Yan Q, Pfleger BF. Corrigendum to "Rewiring yeast metabolism to synthesize products beyond ethanol" [Curr Opin Chem Biol 59 (December 2020) 182-192]. Curr Opin Chem Biol 2020; 59:202-204. [PMID: 33199243 PMCID: PMC9744135 DOI: 10.1016/j.cbpa.2020.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Francesca V. Gambacorta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA,DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison
| | - Joshua J. Dietrich
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA,DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison
| | - Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA,DOE Center for Advanced Bioenergy and Bioproducts Innovation, Univ. of Wisconsin-Madison
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA,DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison,DOE Center for Advanced Bioenergy and Bioproducts Innovation, Univ. of Wisconsin-Madison,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA,corresponding author
| |
Collapse
|
11
|
Gambacorta FV, Dietrich JJ, Yan Q, Pfleger BF. Rewiring yeast metabolism to synthesize products beyond ethanol. Curr Opin Chem Biol 2020; 59:182-192. [PMID: 33032255 DOI: 10.1016/j.cbpa.2020.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
Saccharomyces cerevisiae, Baker's yeast, is the industrial workhorse for producing ethanol and the subject of substantial metabolic engineering research in both industry and academia. S. cerevisiae has been used to demonstrate production of a wide range of chemical products from glucose. However, in many cases, the demonstrations report titers and yields that fall below thresholds for industrial feasibility. Ethanol synthesis is a central part of S. cerevisiae metabolism, and redirecting flux to other products remains a barrier to industrialize strains for producing other molecules. Removing ethanol producing pathways leads to poor fitness, such as impaired growth on glucose. Here, we review metabolic engineering efforts aimed at restoring growth in non-ethanol producing strains with emphasis on relieving glucose repression associated with the Crabtree effect and rewiring metabolism to provide access to critical cellular building blocks. Substantial progress has been made in the past decade, but many opportunities for improvement remain.
Collapse
Affiliation(s)
- Francesca V Gambacorta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison, USA
| | - Joshua J Dietrich
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison, USA
| | - Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, Univ. of Wisconsin-Madison, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, Univ. of Wisconsin-Madison, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Hubloher JJ, Zeidler S, Lamosa P, Santos H, Averhoff B, Müller V. Trehalose-6-phosphate-mediated phenotypic change in Acinetobacter baumannii. Environ Microbiol 2020; 22:5156-5166. [PMID: 32618111 DOI: 10.1111/1462-2920.15148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
The stress protectant trehalose is synthesized in Acinetobacter baumannii from UPD-glucose and glucose-6-phosphase via the OtsA/OtsB pathway. Previous studies proved that deletion of otsB led to a decreased virulence, the inability to grow at 45°C and a slight reduction of growth at high salinities indicating that trehalose is the cause of these phenotypes. We have questioned this conclusion by producing ∆otsA and ∆otsBA mutants and studying their phenotypes. Only deletion of otsB, but not deletion of otsA or otsBA, led to growth impairments at high salt and high temperature. The intracellular concentrations of trehalose and trehalose-6-phosphate were measured by NMR or enzymatic assay. Interestingly, none of the mutants accumulated trehalose any more but the ∆otsB mutant with its defect in trehalose-6-phosphate phosphatase activity accumulated trehalose-6-phosphate. Moreover, expression of otsA in a ∆otsB background under conditions where trehalose synthesis is not induced led to growth inhibition and the accumulation of trehalose-6-phosphate. Our results demonstrate that trehalose-6-phosphate affects multiple physiological activities in A. baumannii ATCC 19606.
Collapse
Affiliation(s)
- Josephine Joy Hubloher
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Sabine Zeidler
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Pedro Lamosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Beate Averhoff
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| |
Collapse
|
13
|
Malaka R, Maruddin F, Dwyana Z, Vargas MV. Assessment of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus ropy strain in different substrate media. Food Sci Nutr 2020; 8:1657-1664. [PMID: 32180973 PMCID: PMC7063361 DOI: 10.1002/fsn3.1452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of this research was to determine the optimal medium for Exopolysaccharides (EPS) production by a Lactobacillus delbrueckii subsp. bulgaricus ropy strain isolated from a locally produced commercial fermented milk, in reconstituted skim milk (RSM) 10% (w/v), milk whey (MW), and soy milk whey (SMW), under optimal growth conditions for this strain. Milk whey was made by coagulating fresh milk using papaya latex 3% (v/v); soy milk whey was obtained from tofu household industry. The chemical composition of the substrate media was determined by proximate analysis, and sterilization was accomplished in an autoclave at 121°C for 15 min. Culture media were inoculated with 1% (v/v) of a starter culture of L. delbrueckii subsp. bulgaricus and then incubated at 30°C for 16 hr. EPS production, lactic acid content, cell counting, and pH were determined after the media were cooled at 5°C. Findings showed that on the basis of the growth characteristics of L. delbrueckii subsp. bulgaricus, the best medium for EPS production was RSM 10% (258.60 ± 26.86 mg/L) compared to the milk whey (69.60 ± 9.48 mg/L) and soy milk whey (49.80 ± 9.04 mg/L).
Collapse
Affiliation(s)
- Ratmawati Malaka
- Laboratory of Biotechnology of Milk Processing Department of Animal Science Faculty of Animal Science Hasanuddin University Makassar Indonesia
| | - Fatma Maruddin
- Laboratory of Biotechnology of Milk Processing Department of Animal Science Faculty of Animal Science Hasanuddin University Makassar Indonesia
| | - Zaraswati Dwyana
- Laboratory of Microbiology Department of Biology Faculty of Mathematic and Natural Sciences Hasanuddin University Makassar Indonesia
| | - Maynor V Vargas
- Laboratory of Chemistry and Applied Biosciences National Technical University (UTN) Alajuela Costa Rica
| |
Collapse
|
14
|
Joshi R, Sahoo KK, Singh AK, Anwar K, Pundir P, Gautam RK, Krishnamurthy SL, Sopory SK, Pareek A, Singla-Pareek SL. Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:653-668. [PMID: 31626290 PMCID: PMC6946002 DOI: 10.1093/jxb/erz462] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/25/2019] [Indexed: 05/04/2023]
Abstract
Edaphic factors such as salinity, sodicity, and drought adversely affect crop productivity, either alone or in combination. Despite soil sodicity being reported as an increasing problem worldwide, limited efforts have been made to address this issue. In the present study, we aimed to generate rice with tolerance to sodicity in conjunction with tolerance to salinity and drought. Using a fusion gene from E. coli coding for trehalose-6-phosphate synthase/phosphatase (TPSP) under the control of an ABA-inducible promoter, we generated marker-free, high-yielding transgenic rice (in the IR64 background) that can tolerate high pH (~9.9), high EC (~10.0 dS m-1), and severe drought (30-35% soil moisture content). The transgenic plants retained higher relative water content (RWC), chlorophyll content, K+/Na+ ratio, stomatal conductance, and photosynthetic efficiency compared to the wild-type under these stresses. Positive correlations between trehalose overproduction and high-yield parameters were observed under drought, saline, and sodic conditions. Metabolic profiling using GC-MS indicated that overproduction of trehalose in leaves differently modulated other metabolic switches, leading to significant changes in the levels of sugars, amino acids, and organic acids in transgenic plants under control and stress conditions. Our findings reveal a novel potential technological solution to tackle multiple stresses under changing climatic conditions.
Collapse
Affiliation(s)
- Rohit Joshi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Khirod Kumar Sahoo
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Anil Kumar Singh
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Pundir
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - Raj Kumar Gautam
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - S L Krishnamurthy
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| | - S K Sopory
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Correspondence: or
| |
Collapse
|