1
|
Hatiboglu MA, Karacam B, Khan I, Akdur K, Elbasan EB, Mahfooz S, Seyithanoglu MH, Cetin G, Papaker MG, Oztanir MN. Liquid biopsy for CNS lymphoma: CSF exosomes and CSF exosomal miR-15a, miR-21, miR-155, miR-210, and miR-19b are promising biomarkers for diagnosis. Mol Biol Rep 2024; 51:1035. [PMID: 39361107 DOI: 10.1007/s11033-024-09967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Central nervous system lymphoma (CNSL) is a devastating disease with a poor prognosis. Early diagnosis, monitoring of the treatment response, and outcome prediction carry the utmost importance in the management of patients with CNSL. Surgical biopsy is the gold standard for tissue diagnosis, however, this procedure has potential complications. Therefore, there is a need for a method that provides information about diagnosis and patient monitoring to avoid surgical risks. The study aimed to investigate potential diagnostic biomarkers for patients with CNSL. METHODS AND RESULTS Patients with secondary CNSL were included in this study. Serum and cerebrospinal fluid (CSF) samples were collected before treatment and after completion of the treatment. Cell-free DNA (cfDNA), exosomes, free and exosomal microRNA (miR)-15a, miR-21, miR-155, miR-210, and miR-19b in both serum and CSF were examined, and they were compared with the controls. Also, their levels before and after treatment were compared. Nine patients with the diagnosis of secondary CNSL were reviewed. cfDNA, miR-15a, and miR-155 in serum, and exosome in CSF were found to be significantly higher in CNSL patients compared to the controls. Exosomal miR-15a, miR-21, miR-155, miR-210, and miR-19b in CSF were found to be significantly higher in CNSL patients compared to controls, whereas their levels in serum were not significantly high. CONCLUSIONS Our findings suggested that exosomes and exosomal miR-15a, miR-21, miR-155, miR-210 and miR-19b in CSF would be promising biomarkers for the diagnosis of patients with CNSL. Further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Mustafa Aziz Hatiboglu
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey.
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey.
| | - Busra Karacam
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kerime Akdur
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Elif Burce Elbasan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalikoy, Beykoz, Istanbul, Turkey
| | - Mehmet Hakan Seyithanoglu
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Guven Cetin
- Department of Hematology, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Meliha Gundag Papaker
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Mustafa Namik Oztanir
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| |
Collapse
|
2
|
Golara A, Kozłowski M, Cymbaluk-Płoska A. The Role of Circulating Tumor DNA in Ovarian Cancer. Cancers (Basel) 2024; 16:3117. [PMID: 39335089 PMCID: PMC11430586 DOI: 10.3390/cancers16183117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Ovarian cancer is the deadliest of all gynecological diseases because its diagnosis and treatment still pose many problems. Surgical excision, hormone therapy, radiation, chemotherapy, or targeted therapy for eradicating the main tumor and halting the spread of metastases are among the treatment options available to individuals with ovarian cancer, depending on the disease's stage. Tumor DNA that circulates in a patient's bodily fluids has been studied recently as a possible novel biomarker for a number of cancers, as well as a means of quantifying tumor size and evaluating the efficacy of cancer therapy. The most significant alterations that we could find in the ctDNA of ovarian cancer patients-such as chromosomal instability, somatic mutations, and methylation-are discussed in this review. Additionally, we talk about the utility of ctDNA in diagnosis, prognosis, and therapy response prediction for these patients.
Collapse
Affiliation(s)
- Anna Golara
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | | |
Collapse
|
3
|
Slusher N, Jones N, Nonaka T. Liquid biopsy for diagnostic and prognostic evaluation of melanoma. Front Cell Dev Biol 2024; 12:1420360. [PMID: 39156972 PMCID: PMC11327088 DOI: 10.3389/fcell.2024.1420360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Melanoma is the most aggressive form of skin cancer, and the majority of cases are associated with chronic or intermittent sun exposure. The incidence of melanoma has grown exponentially over the last 50 years, especially in populations of fairer skin, at lower altitudes and in geriatric populations. The gold standard for diagnosis of melanoma is performing an excisional biopsy with full resection or an incisional tissue biopsy. However, due to their invasiveness, conventional biopsy techniques are not suitable for continuous disease monitoring. Utilization of liquid biopsy techniques represent substantial promise in early detection of melanoma. Through this procedure, tumor-specific components shed into circulation can be analyzed for not only diagnosis but also treatment selection and risk assessment. Additionally, liquid biopsy is significantly less invasive than tissue biopsy and offers a novel way to monitor the treatment response and disease relapse, predicting metastasis.
Collapse
Affiliation(s)
- Nicholas Slusher
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Nicholas Jones
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
4
|
Yang Z, Zeng J, Chen Y, Wang M, Luo H, Huang AL, Deng H, Hu Y. Detection of HBV DNA integration in plasma cell-free DNA of different HBV diseases utilizing DNA capture strategy. Virol Sin 2024; 39:655-666. [PMID: 38852920 PMCID: PMC11401475 DOI: 10.1016/j.virs.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
The landscape of hepatitis B virus (HBV) integration in the plasma cell-free DNA (cfDNA) of HBV-infected patients with different stages of liver diseases [chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC)] remains unclear. In this study, we developed an improved strategy for detecting HBV DNA integration in plasma cfDNA, based on DNA probe capture and next-generation sequencing. Using this optimized strategy, we successfully detected HBV integration events in chimeric artificial DNA samples and HBV-infected HepG2-NTCP cells at day one post infection, with high sensitivity and accuracy. The characteristics of HBV integration events in the HBV-infected HepG2-NTCP cells and plasma cfDNA from HBV-infected individuals (CHB, LC, and HCC) were further investigated. A total of 112 and 333 integration breakpoints were detected in the HepG2-NTCP cells and 22 out of 25 (88%) clinical HBV-infected samples, respectively. In vivo analysis showed that the normalized number of support unique sequences (nnsus) in HCC was significantly higher than in CHB or LC patients (P values < 0.05). All integration breakpoints are randomly distributed on human chromosomes and are enriched in the HBV genome around nt 1800. The majority of integration breakpoints (61.86%) are located in the gene-coding region. Both non-homologous end-joining (NHEJ) and microhomology-mediated end-joining (MMEJ) interactions occurred during HBV integration across the three different stages of liver diseases. Our study provides evidence that HBV DNA integration can be detected in the plasma cfDNA of HBV-infected patients, including those with CHB, LC, or HCC, using this optimized strategy.
Collapse
Affiliation(s)
- Zerui Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jingyan Zeng
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yueyue Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Mengchun Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hongchun Luo
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Haijun Deng
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Yuan Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Panettieri E, Campisi A, De Rose AM, Mele C, Giuliante F, Vauthey JN, Ardito F. Emerging Prognostic Markers in Patients Undergoing Liver Resection for Hepatocellular Carcinoma: A Narrative Review. Cancers (Basel) 2024; 16:2183. [PMID: 38927889 PMCID: PMC11201456 DOI: 10.3390/cancers16122183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
In patients with hepatocellular carcinoma (HCC), liver resection is potentially curative. Nevertheless, post-operative recurrence is common, occurring in up to 70% of patients. Factors traditionally recognized to predict recurrence and survival after liver resection for HCC include pathologic factors (i.e., microvascular and capsular invasion) and an increase in alpha-fetoprotein level. During the past decade, many new markers have been reported to correlate with prognosis after resection of HCC: liquid biopsy markers, gene signatures, inflammation markers, and other biomarkers, including PIVKA-II, immune checkpoint molecules, and proteins in urinary exosomes. However, not all of these new markers are readily available in clinical practice, and their reproducibility is unclear. Liquid biopsy is a powerful and established tool for predicting long-term outcomes after resection of HCC; the main limitation of liquid biopsy is represented by the cost related to its technical implementation. Numerous patterns of genetic expression capable of predicting survival after curative-intent hepatectomy for HCC have been identified, but published findings regarding these markers are heterogenous. Inflammation markers in the form of prognostic nutritional index and different blood cell ratios seem more easily reproducible and more affordable on a large scale than other emerging markers. To select the most effective treatment for patients with HCC, it is crucial that the scientific community validate new predictive markers for recurrence and survival after resection that are reliable and widely reproducible. More reports from Western countries are necessary to corroborate the evidence.
Collapse
Affiliation(s)
- Elena Panettieri
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Andrea Campisi
- Hepatobiliary Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.C.); (A.M.D.R.); (C.M.); (F.G.); (F.A.)
| | - Agostino M. De Rose
- Hepatobiliary Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.C.); (A.M.D.R.); (C.M.); (F.G.); (F.A.)
| | - Caterina Mele
- Hepatobiliary Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.C.); (A.M.D.R.); (C.M.); (F.G.); (F.A.)
| | - Felice Giuliante
- Hepatobiliary Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.C.); (A.M.D.R.); (C.M.); (F.G.); (F.A.)
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Francesco Ardito
- Hepatobiliary Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.C.); (A.M.D.R.); (C.M.); (F.G.); (F.A.)
| |
Collapse
|
6
|
Fu S, Debes JD, Boonstra A. DNA methylation markers in the detection of hepatocellular carcinoma. Eur J Cancer 2023; 191:112960. [PMID: 37473464 DOI: 10.1016/j.ejca.2023.112960] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and has a poor prognosis. Epigenetic modification has been shown to be deregulated during HCC development by dramatically impacting the differentiation, proliferation, and function of cells. One important epigenetic modification is DNA methylation during which methyl groups are added to cytosines without changing the DNA sequence itself. Studies found that methylated DNA markers can be specific for detection of HCC. On the basis of these findings, the utility of methylated DNA markers as novel biomarkers for early-stage HCC has been measured in blood, and indeed superior sensitivity and specificity have been found in several studies when compared to current surveillance methods. However, a variety of factors currently limit the immediate application of these exciting biomarkers. In this review, we provide a detailed rationalisation of the approach and basis for the use of methylation biomarkers for HCC detection and summarise recent studies on methylated DNA markers in HCC focusing on the importance of the aetiological cause of liver disease in the mechanisms leading to cancer.
Collapse
Affiliation(s)
- Siyu Fu
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands
| | - José D Debes
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands; Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - André Boonstra
- Erasmus MC University Medical Center, Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Anzinger I, Nagel D, De Toni EN, Ofner A, Philipp AB, Holdt LM, Teupser D, Kolligs FT, Herbst A. Cell-free circulating ALU repeats in serum have a prognostic value for colorectal cancer patients. Cancer Biomark 2023:CBM210536. [PMID: 37302022 DOI: 10.3233/cbm-210536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Carcinoembryonic antigen (CEA) is the only established serum biomarker for colorectal cancer (CRC). To facilitate therapy decisions and improve the overall survival of CRC patients, prognostic biomarkers are required. OBJECTIVE We studied the prognostic value of five different cell free circulating DNA (fcDNA) fragments. The potential markers were ALU115, ALU247, LINE1-79, LINE1-300 and ND1-mt. METHODS The copy numbers of the DNA fragments were measured in the peripheral blood serum of 268 CRC patients using qPCR, the results were compared to common and previously described markers. RESULTS We found that ALU115 and ALU247 fcDNA levels correlate significantly with several clinicopathological parameters. An increased amount of ALU115 and ALU247 fcDNA fragments coincides with methylation of HPP1 (P< 0.001; P< 0.01), which proved to be a prognostic marker itself in former studies and also with increased CEA level (P< 0.001). ALU115 and ALU247 can define patients with poor survival in UICC stage IV (Alu115: HR = 2.9; 95% Cl 1.8-4.8, P< 0.001; Alu247: HR = 2.2; 95% Cl 1.3-3.6; P= 0.001). Combining ALU115 and HPP1, the prognostic value in UICC stage IV is highly significant (P< 0.001). CONCLUSIONS This study shows that an increased level of ALU fcDNA is an independent prognostic biomarker for advanced colorectal cancer disease.
Collapse
Affiliation(s)
- Isabel Anzinger
- Department of Urology, St. Elisabeth Hospital, Straubing, Germany
| | - Dorothea Nagel
- Institute of Laboratory Medicine, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Enrico N De Toni
- Medical Department 2, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Andrea Ofner
- Medical Department 2, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Alexander B Philipp
- Medical Department 2, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Lesca M Holdt
- Institute of Laboratory Medicine, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | | | - Andreas Herbst
- Medical Department 2, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
8
|
Metastatic Melanoma: Liquid Biopsy as a New Precision Medicine Approach. Int J Mol Sci 2023; 24:ijms24044014. [PMID: 36835424 PMCID: PMC9962821 DOI: 10.3390/ijms24044014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Precision medicine has driven a major change in the treatment of many forms of cancer. The discovery that each patient is different and each tumor mass has its own characteristics has shifted the focus of basic and clinical research to the singular individual. Liquid biopsy (LB), in this sense, presents new scenarios in personalized medicine through the study of molecules, factors, and tumor biomarkers in blood such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes and circulating tumor microRNAs (ct-miRNAs). Moreover, its easy application and complete absence of contraindications for the patient make this method applicable in a great many fields. Melanoma, given its highly heterogeneous characteristics, is a cancer form that could significantly benefit from the information linked to liquid biopsy, especially in the treatment management. In this review, we will focus our attention on the latest applications of liquid biopsy in metastatic melanoma and possible developments in the clinical setting.
Collapse
|
9
|
Huang Q, Ji M, Li F, Li Y, Zhou X, Hsueh CY, Zhou L. Diagnostic and prognostic value of plasma cell-free DNA combined with VEGF-C in laryngeal squamous cell carcinoma. Mol Cell Probes 2023; 67:101895. [PMID: 36682577 DOI: 10.1016/j.mcp.2023.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) and vascular endothelial growth factor-C (VEGF-C) can be utilized to detect cancer and predict its prognosis. However, their potential application in laryngeal squamous cell carcinoma (LSCC) is unclear. PURPOSE This study aimed to identify the diagnostic and prognostic value of cfDNA and VEGF-C in LSCC patients. METHODS The plasma cfDNA of 148 LSCC patients and 43 non-tumor patients were isolated. Quantitative real-time PCR (qRT-PCR) was performed to assess long and short DNA fragments in plasma by amplifying the ALU repeats. ALU-qPCR results (ALU247/ALU115) were used to calculate cfDNA integrity index. Vascular endothelial growth factor-C (VEGF-C) level was detected by ELISA assay. Correlation between cfDNA and clinical features was analyzed. For detecting the sensitivity and specificity of cfDNA and VEGF-C alone or in combination for diagnosing LSCC, receiver operator characteristic (ROC) was established. For evaluating the overall survival (OS) of LSCC, Kaplan-Meier curves were established. RESULTS LSCC patients had significantly higher levels of plasma cfDNA (ALU115, ALU247, and cfDNA integrity index) and VEGF-C than those without cancer (p < 0.05), showing area under the curve (AUC) values of 0.79, 0.74, 0.62 and 0.80, when cutoff value was correspondingly defined at 2.14 ng/mL, 1.39 ng/mL, 0.73 and 412.90 pg/mL, respectively. The AUC for distinguishing LSCC patients from non-tumor patients by plasma cfDNA combined with VEGF-C was 0.89 (95% CI: 0.83-0.94). A significant correlation was found between plasma cfDNA levels and Ki-67, tumor size, pT stage, and smoking history (p < 0.05). Based on survival analysis, low VEGF-C concentration groups had longer OS than those with high VEGF-C concentration (p = 0.02). CONCLUSION Indicators such as plasma cfDNA and VEGF-C may be used to diagnose and monitor LSCC for its noninvasiveness and rapid accessibility.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Mengyou Ji
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Feiran Li
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yufeng Li
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Xuehua Zhou
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Chi-Yao Hsueh
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Liang Zhou
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
10
|
Cell-Free DNA as a New Biomarker of IVF Success, Independent of Any Infertility Factor, Including Endometriosis. Diagnostics (Basel) 2023; 13:diagnostics13020208. [PMID: 36673018 PMCID: PMC9858053 DOI: 10.3390/diagnostics13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Cell-free DNA fragments detected in blood and in other biological fluids are released from apoptotic/necrotic cells. In this study, we analyzed cfDNA levels in follicular fluid (FF) samples from patients with infertility. Samples were collected from 178 infertile women and cfDNA was extracted and quantified by qPCR, using ALU115 and ALU247 primers, and statistical correlations were performed. We found that cfDNA concentration was significantly higher in FF pools from women aged 35 and over than in women under 35 years of age (p = 0.017). We also found that q247 cfDNA levels were significantly higher in women with an associated female factor, such as endometriosis, PCOS and POF, compared with women with no specific cause of infertility (p = 0.033). The concentration of cfDNA did not vary significantly in each group of women with an associated female factor. The concentration of cfDNA was significantly higher in the FF of women that obtained embryos with a high fragmentation rate, compared to embryos with a low fragmentation rate (p = 0.007). Finally, we found that women who did not become pregnant during IVF treatments had higher q247 cfDNA levels (p = 0.043). The quantification of cfDNA could be an important biomarker of follicular micro-environment quality to predict embryo quality and the success of IVF, making them more specific and effective.
Collapse
|
11
|
Shah UJ, Alsulimani A, Ahmad F, Mathkor DM, Alsaieedi A, Harakeh S, Nasiruddin M, Haque S. Bioplatforms in liquid biopsy: advances in the techniques for isolation, characterization and clinical applications. Biotechnol Genet Eng Rev 2022; 38:339-383. [PMID: 35968863 DOI: 10.1080/02648725.2022.2108994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue biopsy analysis has conventionally been the gold standard for cancer prognosis, diagnosis and prediction of responses/resistances to treatments. The existing biopsy procedures used in clinical practice are, however, invasive, painful and often associated with pitfalls like poor recovery of tumor cells and infeasibility for repetition in single patients. To circumvent these limitations, alternative non-invasive, rapid and economical, yet sturdy, consistent and dependable, biopsy techniques are required. Liquid biopsy is an emerging technology that fulfills these criteria and potentially much more in terms of subject-specific real-time monitoring of cancer progression, determination of tumor heterogeneity and treatment responses, and specific identification of the type and stages of cancers. The present review first briefly revisits the state-of-the-art technique of liquid biopsy and then proceeds to address in detail, the advances in the potential clinical applications of four major biological agencies present in liquid biopsy samples (circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs)). Finally, the authors conclude with the limitations that need to be addressed in order for liquid biopsy to effectively replace the conventional invasive biopsy methods in the clinical settings.
Collapse
Affiliation(s)
- Ushma Jaykamal Shah
- MedGenome Labs Ltd, Kailash Cancer Hospital and Research Center, Vadodara, India
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Nasiruddin
- MedGenome Labs Ltd, Narayana Health City, Bangalore, India.,Genomics Lab, Orbito Asia Diagnostics, Coimbatore, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
12
|
Sassu CM, Palaia I, Boccia SM, Caruso G, Perniola G, Tomao F, Di Donato V, Musella A, Muzii L. Role of Circulating Biomarkers in Platinum-Resistant Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222413650. [PMID: 34948446 PMCID: PMC8707281 DOI: 10.3390/ijms222413650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is the second most common cause of death in women with gynecological cancer. Considering the poor prognosis, particularly in the case of platinum-resistant (PtR) disease, a huge effort was made to define new biomarkers able to help physicians in approaching and treating these challenging patients. Currently, most data can be obtained from tumor biopsy samples, but this is not always available and implies a surgical procedure. On the other hand, circulating biomarkers are detected with non-invasive methods, although this might require expensive techniques. Given the fervent hope in their value, here we focused on the most studied circulating biomarkers that could play a role in PtR OC.
Collapse
|
13
|
Ciobanu OA, Martin S, Fica S. Perspectives on the diagnostic, predictive and prognostic markers of neuroendocrine neoplasms (Review). Exp Ther Med 2021; 22:1479. [PMID: 34765020 PMCID: PMC8576627 DOI: 10.3892/etm.2021.10914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of rare tumors with different types of physiology and prognosis. Therefore, prognostic information, including morphological differentiation, grade, tumor stage and primary location, are invaluable and contribute to the formulation of treatment decisions. Biomarkers that are currently used, including chromogranin A (CgA), serotonin and neuron-specific enolase, are singular parameters that cannot be used to accurately predict variables associated with tumor growth, including proliferation, metabolic rate and metastatic potential. In addition, site-specific biomarkers, such as insulin and gastrin, cannot be applied to all types of NENs. The clinical application of broad-spectrum markers, as it is the case for CgA, remains controversial despite being widely used. Due to limitations of the currently available mono-analyte biomarkers, recent studies were conducted to explore novel parameters for NEN diagnosis, prognosis, therapy stratification and evaluation of treatment response. Identification of prognostic factors for predicting NEN outcome is a critical requirement for the planning of adequate clinical management. Advances in ‘liquid’ biopsies and genomic analysis techniques, including microRNA, circulating tumor DNA or circulating tumor cells and sophisticated biomathematical analysis techniques, such as NETest or molecular image-based biomarkers, are currently under investigation as potentially novel tools for the management of NENs in the future. Despite these recent findings yielding promising observations, further research is necessary. The present review therefore summarizes the existing knowledge and recent advancements in the exploration of biochemical markers for NENs, with focus on gastroenteropancreatic-neuroendocrine tumors.
Collapse
Affiliation(s)
- Oana Alexandra Ciobanu
- Department of Endocrinology and Diabetes, Elias Hospital, 011461 Bucharest, Romania.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Sorina Martin
- Department of Endocrinology and Diabetes, Elias Hospital, 011461 Bucharest, Romania.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Simona Fica
- Department of Endocrinology and Diabetes, Elias Hospital, 011461 Bucharest, Romania.,Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| |
Collapse
|
14
|
Zhang Y, Liu Z, Ji K, Li X, Wang C, Ren Z, Liu Y, Chen X, Han X, Meng L, Li L, Li Z. Clinical Application Value of Circulating Cell-free DNA in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:736330. [PMID: 34660697 PMCID: PMC8511426 DOI: 10.3389/fmolb.2021.736330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and a leading cause of cancer-related deaths. Due to late diagnosis, early intrahepatic metastasis and nonresponse to systemic treatments, surgical resection and/or biopsy specimens remain the gold standard for disease staging, grading and clinical decision-making. Since only a small amount of tissue was obtained in a needle biopsy, the conventional tissue biopsy is unable to represent tumor heterogeneity in HCC. For this reason, it is imperative to find a new non-invasive and easily available diagnostic tool to detect HCC at an early stage and to monitor HCC recurrence. The past decade has witnessed considerable evolution in the development of liquid biopsy technologies with the emergence of next-generation sequencing. As a liquid biopsy approach, molecular analysis of cell-free DNA (cfDNA), characterized by noninvasiveness and real-time analysis, may accurately represent the tumor burden and comprehensively reflect genetic profile of HCC. Therefore, cfDNA may be used clinically as a predictive biomarker in early diagnosis, outcome assessment, and even molecular typing. In this review, we provide an update on the recent advances made in clinical applications of cfDNA in HCC.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Kun Ji
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Xin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infections Disease, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinju Chen
- First Ward of Spleen, Stomach, Liver and Gall, The First Affiliated Hospital of Henan University of TCM, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Lingfang Meng
- Department of Ultrasound, Zhengzhou Sixth People's Hospital, Henan Infectious Disease Hospital, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
15
|
Zhang W, Zhang YM, Gao Y, Zhang S, Chu W, Wei G, Li K, He X, Chen L, Guo L, Luan S, Zhang P. A novel decision tree model based on chromosome imbalances in cell-free DNA and CA-125 in the differential diagnosis of ovarian cancer. Int J Biol Markers 2021; 36:3-13. [PMID: 34053311 DOI: 10.1177/1724600821992356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE CA-125 is widely used as biomarker of ovarian cancer. However, CA-125 suffers low accuracy. We developed a hybrid analytical model, the Ovarian Cancer Decision Tree (OCDT), employing a two-layer decision tree, which considers genetic alteration information from cell-free DNA along with CA-125 value to distinguish malignant tumors from benign tumors. METHODS We consider major copy number alterations at whole chromosome and chromosome-arm level as the main feature of our detection model. Fifty-eight patients diagnosed with malignant tumors, 66 with borderline tumors, and 10 with benign tumors were enrolled. RESULTS Genetic analysis revealed significant arm-level imbalances in most malignant tumors, especially in high-grade serous cancers in which 12 chromosome arms with significant aneuploidy (P<0.01) were identified, including 7 arms with significant gains and 5 with significant losses. The area under receiver operating characteristic curve (AUC) was 0.8985 for copy number variations analysis, compared to 0.8751 of CA125. The OCDT was generated with a cancerous score (CScore) threshold of 5.18 for the first level, and a CA-125 value of 103.1 for the second level. Our most optimized OCDT model achieved an AUC of 0.975. CONCLUSIONS The results suggested that genetic variations extracted from cfDNA can be combined with CA-125, and together improved the differential diagnosis of malignant from benign ovarian tumors. The model would aid in the pre-operative assessment of women with adnexal masses. Future clinical trials need to be conducted to further evaluate the value of CScore in clinical settings and search for the optimal threshold for malignancy detection.
Collapse
Affiliation(s)
- Weina Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Yu-Min Zhang
- Biological Testing Department, Heze Food and Drug Testing Institute, Heze, Shandong Province, China
| | - Yuan Gao
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Shengmiao Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Weixin Chu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Guopeng Wei
- Research Lab, Gezhi Genomics, Nanjing, Jiangsu Province, China
| | - Ke Li
- Research Lab, Gezhi Genomics, Nanjing, Jiangsu Province, China
| | - Xuesong He
- Research Lab, Gezhi Genomics, Nanjing, Jiangsu Province, China
| | - Long Chen
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Li Guo
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Shufang Luan
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Ping Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| |
Collapse
|
16
|
Zheng B, Liu XL, Fan R, Bai J, Wen H, Du LT, Jiang GQ, Wang CY, Fan XT, Ye YN, Qian YS, Wang YC, Liu GJ, Deng GH, Shen F, Hu HP, Wang H, Zhang QZ, Ru LL, Zhang J, Gao YH, Xia J, Yan HD, Liang MF, Yu YL, Sun FM, Gao YJ, Sun J, Zhong CX, Wang Y, Kong F, Chen JM, Zheng D, Yang Y, Wang CX, Wu L, Hou JL, Liu JF, Wang HY, Chen L. The Landscape of Cell-Free HBV Integrations and Mutations in Cirrhosis and Hepatocellular Carcinoma Patients. Clin Cancer Res 2021; 27:3772-3783. [PMID: 33947693 DOI: 10.1158/1078-0432.ccr-21-0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/09/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Intratumoral hepatitis B virus (HBV) integrations and mutations are related to hepatocellular carcinoma (HCC) progression. Circulating cell-free DNA (cfDNA) has shown itself as a powerful noninvasive biomarker for cancer. However, the HBV integration and mutation landscape on cfDNA remains unclear. EXPERIMENTAL DESIGN A cSMART (Circulating Single-Molecule Amplification and Resequencing Technology)-based method (SIM) was developed to simultaneously investigate HBV integration and mutation landscapes on cfDNA with HBV-specific primers covering the whole HBV genome. Patients with HCC (n = 481) and liver cirrhosis (LC; n = 517) were recruited in the study. RESULTS A total of 6,861 integration breakpoints including TERT and KMT2B were discovered in HCC cfDNA, more than in LC. The concentration of circulating tumor DNA (ctDNA) was positively correlated with the detection rate of these integration hotspots and total HBV integration events in cfDNA. To track the origin of HBV integrations in cfDNA, whole-genome sequencing (WGS) was performed on their paired tumor tissues. The paired comparison of WGS data from tumor tissues and SIM data from cfDNA confirmed most recurrent integration events in cfDNA originated from tumor tissue. The mutational landscape across the whole HBV genome was first generated for both HBV genotype C and B. A region from nt1100 to nt1500 containing multiple HCC risk mutation sites (OR > 1) was identified as a potential HCC-related mutational hot zone. CONCLUSIONS Our study provides an in-depth delineation of HBV integration/mutation landscapes at cfDNA level and did a comparative analysis with their paired tissues. These findings shed light on the possibilities of noninvasive detection of virus insertion/mutation.
Collapse
Affiliation(s)
- Bo Zheng
- National Center for Liver Cancer, Shanghai, PR China.,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, PR China
| | - Xiao-Long Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, PR China
| | - Rong Fan
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jian Bai
- Berry Oncology Corporation. Beijing, PR China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Lu-Tao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, PR China.,The Clinical Research Center of Shandong Province for Clinical Laboratory, Jinan, PR China
| | - Guo-Qing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, PR China
| | | | - Xiao-Tang Fan
- Dept of Hepatology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Yi-Nong Ye
- The Department of Infectious Disease, the First People's Hospital of Foshan, Foshan City, PR China
| | - Yun-Song Qian
- Hepatology Department, Ningbo Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, PR China
| | - Ying-Chao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, PR China
| | | | - Guo-Hong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Feng Shen
- Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, PR China
| | - He-Ping Hu
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, PR China
| | - Hui Wang
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, PR China
| | | | - Lan-Lan Ru
- Berry Oncology Corporation. Beijing, PR China
| | - Jing Zhang
- Berry Oncology Corporation. Beijing, PR China
| | - Yan-Hang Gao
- The First Hospital of Jilin University, Jilin, PR China
| | - Jie Xia
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Hua-Dong Yan
- Hepatology Department, Ningbo Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, PR China
| | - Min-Feng Liang
- The Department of Infectious Disease, the First People's Hospital of Foshan, Foshan City, PR China
| | - Yan-Long Yu
- Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, PR China
| | - Fu-Ming Sun
- Berry Oncology Corporation. Beijing, PR China
| | - Yu-Jing Gao
- Xuzhou Infectious Diseases Hospital, Xuzhou, PR China
| | - Jian Sun
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Chun-Xiu Zhong
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yin Wang
- Berry Oncology Corporation. Beijing, PR China
| | - Fei Kong
- The First Hospital of Jilin University, Jilin, PR China
| | - Jin-Ming Chen
- Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, PR China
| | - Dan Zheng
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yuan Yang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, PR China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, PR China
| | - Chuan-Xin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, PR China.,The Clinical Research Center of Shandong Province for Clinical Laboratory, Jinan, PR China
| | - Lin Wu
- Berry Oncology Corporation. Beijing, PR China.
| | - Jin-Lin Hou
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Jing-Feng Liu
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Jinan District, Fuzhou City, PR China.
| | - Hong-Yang Wang
- National Center for Liver Cancer, Shanghai, PR China. .,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, PR China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, PR China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, PR China
| | - Lei Chen
- National Center for Liver Cancer, Shanghai, PR China. .,International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
17
|
Li J, Li Z, Ding Y, Xu Y, Zhu X, Cao N, Huang C, Qin M, Liu F, Zhao A. TP53 mutation and MET amplification in circulating tumor DNA analysis predict disease progression in patients with advanced gastric cancer. PeerJ 2021; 9:e11146. [PMID: 33959414 PMCID: PMC8054733 DOI: 10.7717/peerj.11146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is a heterogeneous disease that encompasses various molecular subtypes. The molecular mutation characteristics of circulating tumor DNA (ctDNA) in advanced gastric cancer (AGC), especially the clinical utility of TP53 mutation and MET amplification in ctDNA need to be further explored. Objectives The aim of this study was mainly to assess the clinical utility of TP53 mutation and MET amplification in ctDNA as biomarkers for monitoring disease progression of AGC. Patients and Methods We used multigene NGS-panel technology to study the characteristics of ctDNA gene mutations and screen the key mutant genes in AGC patients. The Kaplan-Meier method was used to calculate the survival probability and log-rank test was used to compare the survival curves of TP53 mutation and MET amplification in ctDNA of AGC patients. The survival time was set from the blood test time to the follow-up time to observe the relationship between the monitoring index and tumor prognosis. Results We performed mutation detection on ctDNA in 23 patients with AGC and identified the top 20 mutant genes. The five most frequently mutated genes were TP53 (55%), EGFR (20%), ERBB2 (20%), MET (15%) and APC (10%). TP53 was the most common mutated gene (55%) and MET had a higher frequency of mutations (15%) in our study. Kaplan-Meier analysis showed that patients with TP53 mutant in ctDNA had shorter overall survival (OS) than these with TP53 wild (P < 0.001). The Allele frequency (AF) of TP53 mutations in patient number 1 was higher in the second time (0.94%) than in the first time (0.36%); the AF of TP53 mutations in patient number 16 was from scratch (0∼0.26%). In addition, the AF of TP53 mutations in patients who survive was relatively low (P = 0.047). Simultaneously, Kaplan-Meier analysis showed that patients with MET amplification also had shorter OS than these with MET without amplification (P < 0.001). Conclusion TP53 and MET are the two common frequently mutant genes in ctDNA of AGC patients.TP53 mutation and MET amplification in ctDNA could predict disease progression of AGC patients.
Collapse
Affiliation(s)
- Jia Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China.,Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhaoyan Li
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Yajie Ding
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Chen Huang
- Department of General Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengmeng Qin
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Feng Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| |
Collapse
|
18
|
Can Circulating Cell-Free DNA or Circulating Tumor DNA Be a Promising Marker in Ovarian Cancer? JOURNAL OF ONCOLOGY 2021; 2021:6627241. [PMID: 33936202 PMCID: PMC8062166 DOI: 10.1155/2021/6627241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
In recent years, the studies on ovarian cancer have made great progress, but the morbidity and mortality of patients with ovarian cancer are still very high. Due to the lack of effective early screening and detecting tools, 70% of ovarian cancer patients are diagnosed at an advanced stage. The overall survival rate of ovarian cancer patients treated with surgical combined with chemotherapy has not been significantly improved, and they usually relapse or resist chemotherapy. Therefore, a novel tumor marker is beneficial for the diagnosis and prognosis of patients with ovarian cancer. As the index of "liquid biopsy," circulating cell-free DNA/circulating tumor DNA (cfDNA/ctDNA) has attracted a lot of attention. It has more remarkable advantages than traditional methods and gives a wide range of clinical applications in kinds of solid tumors. This review attempts to illuminate the important value of cfDNA/ctDNA in ovarian cancer, including diagnosis, monitoring, and prognosis. Meanwhile, we will present future directions and challenges for detection of cfDNA/ctDNA.
Collapse
|
19
|
ESR1 NAPA Assay: Development and Analytical Validation of a Highly Sensitive and Specific Blood-Based Assay for the Detection of ESR1 Mutations in Liquid Biopsies. Cancers (Basel) 2021; 13:cancers13030556. [PMID: 33535614 PMCID: PMC7867152 DOI: 10.3390/cancers13030556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary A considerable number of estrogen-receptor–positive (ER+) breast cancer patients develop resistance to endocrine treatment. One of the most important resistance mechanisms is the presence of ESR1 mutations. In the present study, we developed and analytically validated a novel, highly sensitive and specific nuclease-assisted minor-allele enrichment with probe-overlap (NaME-PrO)-assisted Amplification refractory mutation system (ARMS) (NAPA) assay for the detection of four ESR1 mutations (Y537S, Y537C, Y537N and D538G). The assay was further applied in 13 ER+ breast cancer (BrCa) primary tumour tissues (FFPEs), 13 non-cancerous breast tissues (mammoplasties), and 32 pairs of liquid biopsy samples [circulating tumour cells (CTCs) and paired plasma circulating tumour DNA (ctDNA)] obtained at different time points from 8 ER+ metastatic breast cancer patients. In the plasma ctDNA, the ESR1 mutations were not identified at the baseline, whereas the D538G mutation was detected during the follow-up period at five consecutive time points in one patient. In the CTCs, only the Y537C mutation was detected in one patient sample at the baseline. A direct comparison of the ESR1 NAPA assay with the drop-off ddPCR using 32 identical plasma ctDNA samples gave a concordance of 90.6%. We present a low-cost, highly specific, sensitive and robust assay for blood-based ESR1 profiling. Abstract A considerable number of estrogen receptor-positive breast cancer (ER+ BrCa) patients develop resistance to endocrine treatment. One of the most important resistance mechanisms is the presence of ESR1 mutations. We developed and analytically validated a highly sensitive and specific NaME-PrO-assisted ARMS (NAPA) assay for the detection of four ESR1 mutations (Y537S, Y537C, Y537N and D538G) in circulating tumour cells (CTCs) and paired plasma circulating tumour DNA (ctDNA) in patients with ER+ BrCa. The analytical specificity, analytical sensitivity and reproducibility of the assay were validated using synthetic oligos standards. We further applied the developed ESR1 NAPA assay in 13 ER+ BrCa primary tumour tissues, 13 non-cancerous breast tissues (mammoplasties) and 64 liquid biopsy samples: 32 EpCAM-positive cell fractions and 32 paired plasma ctDNA samples obtained at different time points from 8 ER+ metastatic breast cancer patients, during a 5-year follow-up period. Peripheral blood from 11 healthy donors (HD) was used as a control. The developed assay is highly sensitive (a detection of mutation-allelic-frequency (MAF) of 0.5% for D538G and 0.1% for Y537S, Y537C, Y537N), and highly specific (0/13 mammoplasties and 0/11 HD for all mutations). In the plasma ctDNA, ESR1 mutations were not identified at the baseline, whereas the D538G mutation was detected in five sequential ctDNA samples during the follow-up period in the same patient. In the EpCAM-isolated cell fractions, only the Y537C mutation was detected in one patient sample at the baseline. A direct comparison of the ESR1 NAPA assay with the drop-off ddPCR using 32 identical plasma ctDNA samples gave a concordance of 90.6%. We present a low cost, highly specific, sensitive and robust assay for blood-based ESR1 profiling. The clinical performance of the ESR1 NAPA assay will be prospectively evaluated in a large number of well-characterized patient cohorts.
Collapse
|
20
|
Hinestrosa JP, Searson DJ, Lewis JM, Kinana A, Perrera O, Dobrovolskaia I, Tran K, Turner R, Balcer HI, Clark I, Bodkin D, Hoon DSB, Krishnan R. Simultaneous Isolation of Circulating Nucleic Acids and EV-Associated Protein Biomarkers From Unprocessed Plasma Using an AC Electrokinetics-Based Platform. Front Bioeng Biotechnol 2020; 8:581157. [PMID: 33224932 PMCID: PMC7674311 DOI: 10.3389/fbioe.2020.581157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023] Open
Abstract
The power of personalized medicine is based on a deep understanding of cellular and molecular processes underlying disease pathogenesis. Accurately characterizing and analyzing connections between these processes is dependent on our ability to access multiple classes of biomarkers (DNA, RNA, and proteins)—ideally, in a minimally processed state. Here, we characterize a biomarker isolation platform that enables simultaneous isolation and on-chip detection of cell-free DNA (cfDNA), extracellular vesicle RNA (EV-RNA), and EV-associated proteins in unprocessed biological fluids using AC Electrokinetics (ACE). Human biofluid samples were flowed over the ACE microelectrode array (ACE chip) on the Verita platform while an electrical signal was applied, inducing a field that reversibly captured biomarkers onto the microelectrode array. Isolated cfDNA, EV-RNA, and EV-associated proteins were visualized directly on the chip using DNA and RNA specific dyes or antigen-specific, directly conjugated antibodies (CD63, TSG101, PD-L1, GPC-1), respectively. Isolated material was also eluted off the chip and analyzed downstream by multiple methods, including PCR, RT-PCR, next-generation sequencing (NGS), capillary electrophoresis, and nanoparticle size characterization. The detection workflow confirmed the capture of cfDNA, EV-RNA, and EV-associated proteins from human biofluids on the ACE chip. Tumor specific variants and the mRNAs of housekeeping gene PGK1 were detected in cfDNA and RNA isolated directly from chips in PCR, NGS, and RT-PCR assays, demonstrating that high-quality material can be isolated from donor samples using the isolation workflow. Detection of the luminal membrane protein TSG101 with antibodies depended on membrane permeabilization, consistent with the presence of vesicles on the chip. Protein, morphological, and size characterization revealed that these vesicles had the characteristics of EVs. The results demonstrated that unprocessed cfDNA, EV-RNA, and EV-associated proteins can be isolated and simultaneously fluorescently analyzed on the ACE chip. The compatibility with established downstream technologies may also allow the use of the platform as a sample preparation method for workflows that could benefit from access to unprocessed exosomal, genomic, and proteomic biomarkers.
Collapse
Affiliation(s)
| | | | - Jean M Lewis
- Biological Dynamics, Inc., San Diego, CA, United States
| | - Alfred Kinana
- Biological Dynamics, Inc., San Diego, CA, United States
| | | | | | - Kevin Tran
- Departments of Translational Molecular Medicine and Sequence Center, John Wayne Cancer Institute, Santa Monica, CA, United States
| | - Robert Turner
- Biological Dynamics, Inc., San Diego, CA, United States
| | | | - Iryna Clark
- Biological Dynamics, Inc., San Diego, CA, United States
| | - David Bodkin
- Cancer Center Oncology Medical Group, La Mesa, CA, United States
| | - Dave S B Hoon
- Departments of Translational Molecular Medicine and Sequence Center, John Wayne Cancer Institute, Santa Monica, CA, United States
| | | |
Collapse
|
21
|
Aberrant Telomere Length in Circulating Cell-Free DNA as Possible Blood Biomarker with High Diagnostic Performance in Endometrial Cancer. Pathol Oncol Res 2020; 26:2281-2289. [PMID: 32462419 DOI: 10.1007/s12253-020-00819-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
To investigate the diagnostic performance of relative telomere length (RTL) in cell-free DNA (cfDNA) for endometrioid endometrial cancer (EC). We measured RTL in cfDNA of 40 EC patients (65 ± 12 years) and 31 healthy controls (HC) (63 ± 13 years), excluding in both groups other oncologic and severe non-oncologic diseases to limit confounders. Circulating cfDNA was extracted from serum using the QIAamp DNA Blood Mini kit (Qiagen, Hilden, Germany). After the quantitative real-time polymerase chain reaction, telomere repeat copy number to single-gene copy number ratio was calculated. RTL in cfDNA was found to be significantly lower in EC patients than in HC (p < 0.0001). The diagnostic performance of cfDNA RTL was estimated with receiver operating characteristics (ROC) curve analysis, which showed a diagnostic accuracy for EC of 0.87 (95% CI: 0.79-0.95, p < 0.0001). The cutoff cfDNA RTL value of 2.505 (T/S copy ratio) reported a sensitivity of 80.0% (95% CI: 64.35-90.95) and a specificity of 80.65% (95% CI: 62.53-92.55). Significant differences of RTL among EC stages or grades (p = 0.85 and p = 0.89, respectively) were not observed. Our results suggest that cfDNA RTL analysis may be a diagnostic tool for EC detection since the early stage, whilst its diagnostic performance seems unsatisfactory for cancer progression, staging, and grading. However, further studies are needed to confirm these preliminary findings. In particular, future investigations should focus on high-risk patients (such as those with atypical endometrial hyperplasia) that may benefit from this tool, because TL shortening is not specific for EC and is influenced by other oncologic and non-oncologic diseases.
Collapse
|
22
|
Kye HG, Ahrberg CD, Park BS, Lee JM, Chung BG. Separation, Purification, and Detection of cfDNA in a Microfluidic Device. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Kim YM, Lee SW, Lee YJ, Lee HY, Lee JE, Choi EK. Prospective study of the efficacy and utility of TP53 mutations in circulating tumor DNA as a non-invasive biomarker of treatment response monitoring in patients with high-grade serous ovarian carcinoma. J Gynecol Oncol 2019; 30:e32. [PMID: 30887755 PMCID: PMC6424844 DOI: 10.3802/jgo.2019.30.e32] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Somatic TP53 mutation (TP53mut) is a characteristic finding in high-grade serous ovarian cancer (HGSOC). The aim of this study was to assess the clinical efficacy and utility of TP53mut circulating tumor DNA (ctDNA) monitoring as a biomarker for managing HGSOC. METHODS TP53muts were evaluated in patients who received primary treatment for suspected ovarian cancer at Asan Medical Center. In patients diagnosed with HGSOC and with TP53mut, ctDNA, cancer antigen 125 (CA 125), and computed tomography were followed up according to the treatment course. RESULTS Direct sequencing analysis of 103 tumor tissues from 61 HGSOC patients confirmed TP53muts in 41 patients (67.2%). All these patient-specific somatic mutations were detected in plasma cell-free DNA. The mean value of preoperative TP53 mutant allele count (TP53MAC) in stage III patients was 12.2 copies/μL and in stage IV patients was 45.3 copies/μL. TP53MAC was significantly reduced by treatment and there was no significant difference in the rate of decrease compared to CA 125 by the generalized linear mixed model. When patients were divided into a low TP53MAC group (<0.2 copies/μL) and a high TP53MAC group (≥0.2 copies/μL) based on the TP53MAC value at 3 months after the end of chemotherapy, there was a significant difference in time to progression between the two groups (p=0.038). CONCLUSION TP53mut ctDNA shows potential as a tumor-specific biomarker for treatment response monitoring in HGSOC. TP53mut ctDNA levels at 3 months post treatment has a significant prognostic utility than that of CA 125.
Collapse
Affiliation(s)
- Yong Man Kim
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shin Wha Lee
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Young Jae Lee
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | - Eun Kyung Choi
- Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Abdulmawjood B, Roma-Rodrigues C, Fernandes AR, Baptista PV. Liquid biopsies in myeloid malignancies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1044-1061. [PMID: 35582281 PMCID: PMC9019201 DOI: 10.20517/cdr.2019.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
Hematologic malignancies are the most common type of cancer affecting children and young adults, and encompass diseases, such as leukemia, lymphoma, and myeloma, all of which impact blood associated tissues such as the bone marrow, lymphatic system, and blood cells. Clinical diagnostics of these malignancies relies heavily on the use of bone marrow samples, which is painful, debilitating, and not free from risks for leukemia patients. Liquid biopsies are based on minimally invasive assessment of markers in the blood (and other fluids) and have the potential to improve the efficacy of diagnostic/therapeutic strategies in leukemia patients, providing a useful tool for the real time molecular profiling of patients. The most promising noninvasive biomarkers are circulating tumor cells, circulating tumor DNA, microRNAs, and exosomes. Herein, we discuss the role of assessing these circulating biomarkers for the understanding of tumor progression and metastasis, tumor progression dynamics through treatment and for follow-up.
Collapse
Affiliation(s)
- Bilal Abdulmawjood
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, Caparica 2829-516, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, Caparica 2829-516, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, Caparica 2829-516, Portugal
| | - Pedro V Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, Caparica 2829-516, Portugal
| |
Collapse
|
25
|
Tuaeva NO, Falzone L, Porozov YB, Nosyrev AE, Trukhan VM, Kovatsi L, Spandidos DA, Drakoulis N, Kalogeraki A, Mamoulakis C, Tzanakakis G, Libra M, Tsatsakis A. Translational Application of Circulating DNA in Oncology: Review of the Last Decades Achievements. Cells 2019; 8:E1251. [PMID: 31615102 PMCID: PMC6829588 DOI: 10.3390/cells8101251] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, the introduction of new molecular techniques in experimental and clinical settings has allowed researchers and clinicians to propose circulating-tumor DNA (ctDNA) analysis and liquid biopsy as novel promising strategies for the early diagnosis of cancer and for the definition of patients' prognosis. It was widely demonstrated that through the non-invasive analysis of ctDNA, it is possible to identify and characterize the mutational status of tumors while avoiding invasive diagnostic strategies. Although a number of studies on ctDNA in patients' samples significantly contributed to the improvement of oncology practice, some investigations generated conflicting data about the diagnostic and prognostic significance of ctDNA. Hence, to highlight the relevant achievements obtained so far in this field, a clearer description of the current methodologies used, as well as the obtained results, are strongly needed. On these bases, this review discusses the most relevant studies on ctDNA analysis in cancer, as well as the future directions and applications of liquid biopsy. In particular, special attention was paid to the early diagnosis of primary cancer, to the diagnosis of tumors with an unknown primary location, and finally to the prognosis of cancer patients. Furthermore, the current limitations of ctDNA-based approaches and possible strategies to overcome these limitations are presented.
Collapse
Affiliation(s)
- Natalia O Tuaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Luca Falzone
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Naples, Italy.
| | - Yuri B Porozov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- ITMO University, Saint Petersburg 197101, Russia.
| | - Alexander E Nosyrev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Vladimir M Trukhan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54248 Thessaloniki, Greece.
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Zografou, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, 70013 Crete, Greece.
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Massimo Libra
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| | - Aristides Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.
| |
Collapse
|
26
|
Hlady RA, Zhao X, Pan X, Yang JD, Ahmed F, Antwi SO, Giama NH, Patel T, Roberts LR, Liu C, Robertson KD. Genome-wide discovery and validation of diagnostic DNA methylation-based biomarkers for hepatocellular cancer detection in circulating cell free DNA. Am J Cancer Res 2019; 9:7239-7250. [PMID: 31695765 PMCID: PMC6831291 DOI: 10.7150/thno.35573] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is growing in incidence but treatment options remain limited, particularly for late stage disease. As liver cirrhosis is the principal risk state for HCC development, markers to detect early HCC within this patient population are urgently needed. Perturbation of epigenetic marks, such as DNA methylation (5mC), is a hallmark of human cancers, including HCC. Identification of regions with consistently altered 5mC levels in circulating cell free DNA (cfDNA) during progression from cirrhosis to HCC could therefore serve as markers for development of minimally-invasive screens of early HCC diagnosis and surveillance. Methods: To discover DNA methylation derived biomarkers of HCC in the background of liver cirrhosis, we profiled genome-wide 5mC landscapes in patient cfDNA using the Infinium HumanMethylation450k BeadChip Array. We further linked these findings to primary tissue data available from TCGA and other public sources. Using biological and statistical frameworks, we selected CpGs that robustly differentiated cirrhosis from HCC in primary tissue and cfDNA followed by validation in an additional independent cohort. Results: We identified CpGs that segregate patients with cirrhosis, from patients with HCC within a cirrhotic liver background, through genome-wide analysis of cfDNA 5mC landscapes. Lasso regression analysis pinpointed a panel of probes in our discovery cohort that were validated in two independent datasets. A panel of five CpGs (cg04645914, cg06215569, cg23663760, cg13781744, and cg07610777) yielded area under the receiver operating characteristic (AUROC) curves of 0.9525, 0.9714, and 0.9528 in cfDNA discovery and tissue validation cohorts 1 and 2, respectively. Validation of a 5-marker panel created from combining hypermethylated and hypomethylated CpGs in an independent cfDNA set by bisulfite pyrosequencing yielded an AUROC of 0.956, compared to the discovery AUROC of 0.996. Conclusion: Our finding that 5mC markers derived from primary tissue did not perform well in cfDNA, compared to those identified directly from cfDNA, reveals potential advantages of starting with cfDNA to discover high performing markers for liquid biopsy development.
Collapse
|
27
|
Wang L, Marek GW, Hlady RA, Wagner RT, Zhao X, Clark VC, Fan AX, Liu C, Brantly M, Robertson KD. Alpha-1 Antitrypsin Deficiency Liver Disease, Mutational Homogeneity Modulated by Epigenetic Heterogeneity With Links to Obesity. Hepatology 2019; 70:51-66. [PMID: 30681738 DOI: 10.1002/hep.30526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/15/2019] [Indexed: 01/20/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) liver disease is characterized by marked heterogeneity in presentation and progression, despite a common underlying gene mutation, strongly suggesting the involvement of other genetic and/or epigenetic modifiers. Variation in clinical phenotype has added to the challenge of detection, diagnosis, and testing of new therapies in patients with AATD. We examined the contribution of DNA methylation (5-methylcytosine [5mC]) to AATD liver disease heterogeneity because 5mC responds to environmental and genetic cues and its deregulation is a major driver of liver disease. Using liver biopsies from adults with early-stage AATD and the ZZ genotype, genome-wide 5mC patterns were interrogated. We compared DNA methylation among patients with early AATD, and among patients with normal liver, cirrhosis, and hepatocellular carcinoma derived from multiple etiologic exposures, and linked patient clinical/demographic features. Global analysis revealed significant genomic hypomethylation in AATD liver-impacting genes related to liver cancer, cell cycle, and fibrosis, as well as key regulatory molecules influencing growth, migration, and immune function. Further analysis indicated that 5mC changes are localized, with hypermethylation occurring within a background of genome-wide 5mC loss and with patients with AATD manifesting distinct epigenetic landscapes despite their mutational homogeneity. By integrating clinical data with 5mC landscapes, we observed that CpGs differentially methylated among patients with AATD disease are linked to hallmark clinical features of AATD (e.g., hepatocyte degeneration and polymer accumulation) and further reveal links to well-known sex-specific effects of liver disease progression. Conclusion: Our data reveal molecular epigenetic signatures within this mutationally homogeneous group that point to ways to stratify patients for liver disease risk.
Collapse
Affiliation(s)
- Liguo Wang
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN
| | - George W Marek
- Division of Pulmonary, Critical Care & Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Ryan A Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Ryan T Wagner
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Xia Zhao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Virginia C Clark
- Division of Gastroenterology, Hepatology & Nutrition, University of Florida, Gainesville, FL
| | - Alex Xiucheng Fan
- Division of Pulmonary, Critical Care & Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Mark Brantly
- Division of Pulmonary, Critical Care & Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN.,Center for Individualized Medicine Epigenomics Program, Mayo Clinic, Rochester, MN
| |
Collapse
|
28
|
Liquid Biopsies for Ovarian Carcinoma: How Blood Tests May Improve the Clinical Management of a Deadly Disease. Cancers (Basel) 2019. [PMID: 31167492 DOI: 10.3390/cancers11060774]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancers (OvC) are frequent, with more than 22,000 new cases each year for 14,000 deaths in the United States. Except for patients with BRCA1 or BRCA2 mutations, diagnostic methods, prognostic tools, and therapeutic strategies have not much improved in the last two decades. High throughput tumor molecular analyses have identified important alterations involved in ovarian carcinoma growth and spreading. However, these data have not modified the clinical management of most of patients. Moreover, tumor sample collection requires invasive procedures not adapted to objectives, such as the screening, prediction, or assessment of treatment efficacy, monitoring of residual disease, and early diagnosis of relapse. In recent years, circulating tumor biomarkers (also known as "liquid biopsies") such as circulating tumor cells, circulating nucleotides (DNA or miRNA), or extracellular vesicles, have been massively explored through various indications, platforms, and goals, but their use has not yet been validated in routine practice. This review describes the methods of analysis and results related to liquid biopsies for ovarian epithelial cancer. The different settings that a patient can go through during her journey with OvC are explored: screening and early diagnosis, prognosis, prediction of response to systemic therapies for advanced stages, and monitoring of residual subclinical disease.
Collapse
|
29
|
Mari R, Mamessier E, Lambaudie E, Provansal M, Birnbaum D, Bertucci F, Sabatier R. Liquid Biopsies for Ovarian Carcinoma: How Blood Tests May Improve the Clinical Management of a Deadly Disease. Cancers (Basel) 2019; 11:E774. [PMID: 31167492 PMCID: PMC6627130 DOI: 10.3390/cancers11060774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancers (OvC) are frequent, with more than 22,000 new cases each year for 14,000 deaths in the United States. Except for patients with BRCA1 or BRCA2 mutations, diagnostic methods, prognostic tools, and therapeutic strategies have not much improved in the last two decades. High throughput tumor molecular analyses have identified important alterations involved in ovarian carcinoma growth and spreading. However, these data have not modified the clinical management of most of patients. Moreover, tumor sample collection requires invasive procedures not adapted to objectives, such as the screening, prediction, or assessment of treatment efficacy, monitoring of residual disease, and early diagnosis of relapse. In recent years, circulating tumor biomarkers (also known as "liquid biopsies") such as circulating tumor cells, circulating nucleotides (DNA or miRNA), or extracellular vesicles, have been massively explored through various indications, platforms, and goals, but their use has not yet been validated in routine practice. This review describes the methods of analysis and results related to liquid biopsies for ovarian epithelial cancer. The different settings that a patient can go through during her journey with OvC are explored: screening and early diagnosis, prognosis, prediction of response to systemic therapies for advanced stages, and monitoring of residual subclinical disease.
Collapse
Affiliation(s)
- Roxane Mari
- CRCM-Predictive Oncology laboratory, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
- CRCM-Department of Medical Oncology, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| | - Emilie Mamessier
- CRCM-Predictive Oncology laboratory, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| | - Eric Lambaudie
- CRCM-Predictive Oncology laboratory, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
- CRCM-Department of Medical Oncology, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| | - Magali Provansal
- Department of Medical Oncology, Institut Paoli-Calmettes, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| | - Daniel Birnbaum
- CRCM-Predictive Oncology laboratory, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| | - François Bertucci
- CRCM-Predictive Oncology laboratory, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
- CRCM-Department of Medical Oncology, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| | - Renaud Sabatier
- CRCM-Predictive Oncology laboratory, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
- CRCM-Department of Medical Oncology, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| |
Collapse
|
30
|
Mari R, Mamessier E, Lambaudie E, Provansal M, Birnbaum D, Bertucci F, Sabatier R. Liquid Biopsies for Ovarian Carcinoma: How Blood Tests May Improve the Clinical Management of a Deadly Disease. Cancers (Basel) 2019. [PMID: 31167492 DOI: 10.3390/cancers11060774] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancers (OvC) are frequent, with more than 22,000 new cases each year for 14,000 deaths in the United States. Except for patients with BRCA1 or BRCA2 mutations, diagnostic methods, prognostic tools, and therapeutic strategies have not much improved in the last two decades. High throughput tumor molecular analyses have identified important alterations involved in ovarian carcinoma growth and spreading. However, these data have not modified the clinical management of most of patients. Moreover, tumor sample collection requires invasive procedures not adapted to objectives, such as the screening, prediction, or assessment of treatment efficacy, monitoring of residual disease, and early diagnosis of relapse. In recent years, circulating tumor biomarkers (also known as "liquid biopsies") such as circulating tumor cells, circulating nucleotides (DNA or miRNA), or extracellular vesicles, have been massively explored through various indications, platforms, and goals, but their use has not yet been validated in routine practice. This review describes the methods of analysis and results related to liquid biopsies for ovarian epithelial cancer. The different settings that a patient can go through during her journey with OvC are explored: screening and early diagnosis, prognosis, prediction of response to systemic therapies for advanced stages, and monitoring of residual subclinical disease.
Collapse
Affiliation(s)
- Roxane Mari
- CRCM-Predictive Oncology laboratory, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
- CRCM-Department of Medical Oncology, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| | - Emilie Mamessier
- CRCM-Predictive Oncology laboratory, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| | - Eric Lambaudie
- CRCM-Predictive Oncology laboratory, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
- CRCM-Department of Medical Oncology, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| | - Magali Provansal
- Department of Medical Oncology, Institut Paoli-Calmettes, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| | - Daniel Birnbaum
- CRCM-Predictive Oncology laboratory, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| | - François Bertucci
- CRCM-Predictive Oncology laboratory, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
- CRCM-Department of Medical Oncology, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| | - Renaud Sabatier
- CRCM-Predictive Oncology laboratory, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
- CRCM-Department of Medical Oncology, Institut Paoli-Calmettes, Inserm, CNRS, Aix-Marseille Univ, 232 Boulevard Sainte Marguerite, 13009 Marseille, France.
| |
Collapse
|
31
|
Role of Liquid Biopsy in Clinical Decision-Making for Breast Cancer. CURRENT BREAST CANCER REPORTS 2019. [DOI: 10.1007/s12609-019-0308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Lianidou E, Pantel K. Liquid biopsies. Genes Chromosomes Cancer 2019; 58:219-232. [PMID: 30382599 DOI: 10.1002/gcc.22695] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsy is based on minimally invasive blood tests and has a high potential to significantly change the therapeutic strategy in cancer patients, providing an extremely powerful and reliable noninvasive clinical tool for the individual molecular profiling of patients in real time. Liquid biopsy approaches include the analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating miRNAs, and tumor-derived extracellular vesicles (EVs) that are shed from primary tumors and their metastatic sites into peripheral blood. The major advantage of liquid biopsy analysis is that it is minimally invasive, and can be serially repeated, thus allowing extracting information from the tumor in real time. Moreover, the identification of predictive biomarkers in peripheral blood that can monitor response to therapy in real time holds a very strong potential for novel approaches in the therapeutic management of cancer patients. In this review, we summarize recent knowledge on CTCs and ctDNA and discuss future trends in the field.
Collapse
Affiliation(s)
- Evi Lianidou
- Analysis of Circulating Tumor Cells Laboratory, Department of Chemistry, University of Athens, Athens, Greece
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Optical Biomarker-based Biosensors for Cancer/Infectious Disease Medical Diagnoses. Appl Immunohistochem Mol Morphol 2019; 27:278-286. [DOI: 10.1097/pai.0000000000000586] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Lin J, Ma L, Zhang D, Gao J, Jin Y, Han Z, Lin D. Tumour biomarkers-Tracing the molecular function and clinical implication. Cell Prolif 2019; 52:e12589. [PMID: 30873683 PMCID: PMC6536410 DOI: 10.1111/cpr.12589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
In recent years, with the increase in cancer mortality caused by metastasis, and with the development of individualized and precise medical treatment, early diagnosis with precision becomes the key to decrease the death rate. Since detecting tumour biomarkers in body fluids is the most non‐invasive way to identify the status of tumour development, it has been widely investigated for the usage in clinic. These biomarkers include different expression or mutation in microRNAs (miRNAs), circulating tumour DNAs (ctDNAs), proteins, exosomes and circulating tumour cells (CTCs). In the present article, we summarized and discussed some updated research on these biomarkers. We overviewed their biological functions and evaluated their multiple roles in human and small animal clinical treatment, including diagnosis of cancers, classification of cancers, prognostic and predictive values for therapy response, monitors for therapy efficacy, and anti‐cancer therapeutics. Biomarkers including different expression or mutation in miRNAs, ctDNAs, proteins, exosomes and CTCs provide more choice for early diagnosis of tumour detection at early stage before metastasis. Combination detection of these tumour biomarkers may provide higher accuracy at the lowest molecule combination number for tumour early detection. Moreover, tumour biomarkers can provide valuable suggestions for clinical anti‐cancer treatment and execute monitoring of treatment efficiency.
Collapse
Affiliation(s)
- Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lie Ma
- Department of Respiratory Disease, The Navy General Hospital of PLA, Beijing, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihai Han
- Department of Respiratory Disease, The Navy General Hospital of PLA, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Malhone C, Longatto-Filho A. Cervical, Ovarian and Endometrial Tumor Markers: Potential Clinical Value. Semin Ultrasound CT MR 2019; 40:350-357. [PMID: 31375174 DOI: 10.1053/j.sult.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumors markers can be described as molecular products expressed by neoplasia tissues (immunohistochemistry), or metabolized and secreted by tumor and characterized biochemically in body fluids such as blood and urine. They may have utility as indicators of tumor stage and grade as well useful for monitoring responses to treatment and predicting recurrence, progression, development of metastases, or even patient survival. Unfortunately, in some cases they may have no identified clinical potential. Several investigations have been carried out, especially in the last decade, using biotechnological methods, in order to identify new potential tumor markers. By translating these findings into clinical use one may facilitate accurate diagnosis and prognostic prediction, and contribute to individualized treatment. The objective of this review is to describe some biomarkers with potential use in clinical settings of uterine cervix, ovary, and endometrium carcinomas.
Collapse
Affiliation(s)
- Carolina Malhone
- Sociedade Brasileira de Mastologia (Brazilian Society of Mastology), São Paulo, SP, Brazil
| | - Adhemar Longatto-Filho
- Department of Pathology, Laboratory of Medical Investigation (LIM), University of São Paulo School of Medicine, Sao Paulo, SP, Brazil; Life and Health Sciences Research Institute (ICVS), School of Medicine Nces, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Molecular Oncology Research Center, Barretos Cancer Hospital, Pio XII Foundation, Barretos, Brazil.
| |
Collapse
|
36
|
Herrera-Martínez AD, Hofland LJ, Gálvez Moreno MA, Castaño JP, de Herder WW, Feelders RA. Neuroendocrine neoplasms: current and potential diagnostic, predictive and prognostic markers. Endocr Relat Cancer 2019; 26:R157-R179. [PMID: 30615596 DOI: 10.1530/erc-18-0354] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Some biomarkers for functioning and non-functioning neuroendocrine neoplasms (NENs) are currently available. Despite their application in clinical practice, results should be interpreted cautiously. Considering the variable sensitivity and specificity of these parameters, there is an unmet need for novel biomarkers to improve diagnosis and predict patient outcome. Nowadays, several new biomarkers are being evaluated and may become future tools for the management of NENs. These biomarkers include (1) peptides and growth factors; (2) DNA and RNA markers based on genomics analysis, for example, the so-called NET test, which has been developed for analyzing gene transcripts in circulating blood; (3) circulating tumor/endothelial/progenitor cells or cell-free tumor DNA, which represent minimally invasive methods that would provide additional information for monitoring treatment response and (4) improved imaging techniques with novel radiolabeled somatostatin analogs or peptides. Below we summarize some future directions in the development of novel diagnostic and predictive/prognostic biomarkers in NENs. This review is focused on circulating and selected tissue markers.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Reina Sofia University Hospital, Córdoba, Spain
| | - Leo J Hofland
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - María A Gálvez Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Reina Sofia University Hospital, Córdoba, Spain
| | - Wouter W de Herder
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Richard A Feelders
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
37
|
A Study of Pre-Analytical Variables and Optimization of Extraction Method for Circulating Tumor DNA Measurements by Digital Droplet PCR. Cancer Epidemiol Biomarkers Prev 2019; 28:909-916. [DOI: 10.1158/1055-9965.epi-18-0586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/13/2018] [Accepted: 02/25/2019] [Indexed: 11/16/2022] Open
|
38
|
Hickmann AK, Frick M, Hadaschik D, Battke F, Bittl M, Ganslandt O, Biskup S, Döcker D. Molecular tumor analysis and liquid biopsy: a feasibility investigation analyzing circulating tumor DNA in patients with central nervous system lymphomas. BMC Cancer 2019; 19:192. [PMID: 30823914 PMCID: PMC6397454 DOI: 10.1186/s12885-019-5394-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background Central nervous system lymphomas (CNSL) is a devastating disease. Currently, a confirmatory biopsy is required prior to treatment. Objective Our investigation aims to prove the feasibility of a minimally-invasive diagnostic approach for the molecular characterization of CNSL. Methods Tissue biopsies from 6 patients with suspected CNSL were analyzed using a 649gene next-generation sequencing (NGS) tumor panel (tumor vs. reference tissue (EDTA-blood)). The individual somatic mutation pattern was used as a basis for the digital PCR analyzing circulating tumor DNA (ctDNA) from plasma and cerebrospinal fluid (CSF) samples, identifying one selected tumor mutation during this first step of the feasibility investigation. Results NGS-analysis of biopsy tissue revealed a specific somatic mutation pattern in all confirmed lymphoma samples (n = 5, NGS-sensitivity 100%) and none in the sample identified as normal brain tissue (NGS-specificity 100%). cfDNA-extraction was dependent on the extraction-kit used and feasible in 3 samples, in all of which somatic mutations were detectable (100%). Analysis of CSF-derived cfDNA was superior to plasma-derived cfDNA and routine microscopic analysis (lymphoma cells: n = 2, 40%). One patient showed a divergent molecular pattern, typical of Burkitt-Lymphoma (HIV+, serologic evidence of EBV-infection). Lumbar puncture was tolerated without complications, whereas biopsy caused 3 hemorrhages. Conclusions Our investigation provides evidence that analysis of cfDNA in central nervous system tumors is feasible using the described protocol. Molecular characterization of CNSL could be achieved by analysis of CSF-derived cfDNA. Knowledge of a tumor’s specific mutation pattern may allow initiation of targeted therapies, treatment surveillance and could lead to minimally-invasive diagnostics in the future. Electronic supplementary material The online version of this article (10.1186/s12885-019-5394-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Katrin Hickmann
- Department of Neurosurgery, Kantonsspital St. Gallen, Rorschacherstrasse 95, 9600, St. Gallen, Switzerland. .,Neurosurgical Department, Klinikum Stuttgart, Stuttgart, Germany.
| | - Maximilian Frick
- Center for Genomics and Transcriptomics (CeGaT) GmbH, Tübingen, Germany
| | - Dirk Hadaschik
- Center for Genomics and Transcriptomics (CeGaT) GmbH, Tübingen, Germany
| | - Florian Battke
- Center for Genomics and Transcriptomics (CeGaT) GmbH, Tübingen, Germany
| | - Markus Bittl
- Neurosurgical Department, Klinikum Stuttgart, Stuttgart, Germany
| | - Oliver Ganslandt
- Neurosurgical Department, Klinikum Stuttgart, Stuttgart, Germany
| | - Saskia Biskup
- Center for Genomics and Transcriptomics (CeGaT) GmbH, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Outpatient Clinic for Human Genetics, Tübingen, Germany
| | - Dennis Döcker
- Center for Genomics and Transcriptomics (CeGaT) GmbH, Tübingen, Germany.,Outpatient Clinic for Human Genetics, Tübingen, Germany
| |
Collapse
|
39
|
Giannopoulou L, Kasimir-Bauer S, Lianidou ES. Liquid biopsy in ovarian cancer: recent advances on circulating tumor cells and circulating tumor DNA. Clin Chem Lab Med 2019; 56:186-197. [PMID: 28753534 DOI: 10.1515/cclm-2017-0019] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/02/2017] [Indexed: 12/18/2022]
Abstract
Ovarian cancer remains the most lethal disease among gynecological malignancies despite the plethora of research studies during the last decades. The majority of patients are diagnosed in an advanced stage and exhibit resistance to standard chemotherapy. Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) represent the main liquid biopsy approaches that offer a minimally invasive sample collection. Both have shown a diagnostic, prognostic and predictive value in many types of solid malignancies and recent studies attempted to shed light on their role in ovarian cancer. This review is mainly focused on the clinical value of both CTCs and ctDNA in ovarian cancer and, more specifically, on their potential as diagnostic, prognostic and predictive tumor biomarkers.
Collapse
Affiliation(s)
- Lydia Giannopoulou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, Greece
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Evi S Lianidou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, Greece
| |
Collapse
|
40
|
Mari R, Lambaudie É, Provansal M, Sabatier R. [Circulating tumor DNA assessment for gynaecological cancers management]. Bull Cancer 2019; 106:237-252. [PMID: 30765097 DOI: 10.1016/j.bulcan.2018.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023]
Abstract
Gynaecological cancers are frequent, with more than 16,000 cases per year in France for 6500 deaths. Few improvements in diagnostic methods, prognostic tools, and therapeutic strategies have occurred in the last two decades. Tumour genomic analyses from, at least in part, the Cancer Genome Atlas have identified some of the molecular alterations involved in gynaecological tumours growth and spreading. However, these data remain incomplete and have not led to dramatic changes in the clinical management of our patients. Moreover, they require invasive samples that are not suitable to objectives like screening/early diagnosis, assessment of treatment efficacy, monitoring of residual disease or early diagnosis of relapse. In the last years, the analysis of circulating tumour biomarkers (also called "liquid biopsies") based on tumour cells (circulating tumour cells) or tumour nucleotides (circulating DNA or RNA) has been massively explored through various indications, platforms, objectives; data related to circulating tumour DNA being the most important in terms of number of publications and interest for clinical practice. This review aims to describe the methods of analysis as well as the observations from the analysis of circulating tumour DNA in gynaecological tumours, from screening/early diagnosis to the adaptation of treatment for advanced stages, through choice of treatments and monitoring of subclinical disease.
Collapse
Affiliation(s)
- Roxane Mari
- Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, département d'oncologie médicale, CRCM, Marseille cedex 9, France
| | - Éric Lambaudie
- Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, département de chirurgie oncologique, CRCM, Marseille cedex 9, France; Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, CRCM, laboratoire d'oncologie prédictive, Marseille cedex 9, France
| | - Magali Provansal
- Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, département d'oncologie médicale, CRCM, Marseille cedex 9, France
| | - Renaud Sabatier
- Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, département d'oncologie médicale, CRCM, Marseille cedex 9, France; Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, CRCM, laboratoire d'oncologie prédictive, Marseille cedex 9, France.
| |
Collapse
|
41
|
Abstract
Genetic material derived from tumours is constantly shed into the circulation of cancer patients both in the form of circulating free nucleic acids and within circulating cells or extracellular vesicles. Monitoring cancer-specific genomic alterations, particularly mutant allele frequencies, in circulating nucleic acids allows for a non-invasive liquid biopsy for detecting residual disease and response to therapy. The advent of molecular targeted treatments and immunotherapies with increasing effectiveness requires corresponding effective molecular biology methods for the detection of biomarkers such as circulating nucleic acid to monitor and ultimately personalise therapy. The use of polymerase chain reaction (PCR)-based methods, such as droplet digital PCR, allows for a very sensitive analysis of circulating tumour DNA, but typically only a limited number of gene mutations can be detected in parallel. In contrast, next-generation sequencing allows for parallel analysis of multiple mutations in many genes. The development of targeted next-generation sequencing cancer gene panels optimised for the detection of circulating free DNA now provides both the flexibility of multiple mutation analysis coupled with a sensitivity that approaches or even matches droplet digital PCR. In this review, we discuss the advantages and disadvantages of these current molecular technologies in conjunction with how this field is evolving in the context of melanoma diagnosis, prognosis, and monitoring of response to therapy.
Collapse
|
42
|
Jiang X, Zhao C, Fan X, Xu W, Zhang R, Xu H, Wu G. A DNA-modified hydrogel for simultaneous purification, concentration and detection of targeted cfDNA in human serum. RSC Adv 2019; 9:3407-3415. [PMID: 35518945 PMCID: PMC9060316 DOI: 10.1039/c8ra10138h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/15/2019] [Indexed: 02/05/2023] Open
Abstract
Cell-free DNA (cfDNA) in blood, which stems from the fetus of pregnant women and tumor in cancer patients, has gained attention in molecular diagnosis. However, cfDNA is less stable, and its amount in the serum is extremely low; these are critical barriers for the utilization of this resource. In this study, a DNA-modified polyacrylamide hydrogel (DNA-Gel) was prepared, and a specialized device was designed to simultaneously catch, purify, concentrate, and detect targeted cfDNA by electrophoresis. We demonstrated that 20–1000 bp ssDNA and dsDNA could be caught and released by the DNA-Gel-based device with high specificity and sensitivity. Upon increasing the number of cycles and electrophoresis time, higher DNA purity and density were achieved, and the separation of serum proteins, untargeted cfDNA, and other charged molecules was promoted. As low as 10 pg μL−1 of DNA could be detected using the DNA-Gel after four cycles of concentration. We also detected 1 fg μL−1 of DNA in the serum with 16 cycles of concentration, followed by 25 PCR cycles. We also designed a device to obtain DNA from the DNA-Gel. We found that the DNA loss rate was around 50%, and A260/A280 was close to 1.7. Thus, we have designed a cost-effective and highly economical device to purify DNA at low concentrations with high specificity and selectivity. A cost-effective device based on DNA-modified polyacrylamide hydrogel was designed to simultaneously catch, purify, concentrate, and detect targeted cfDNA by electrophoresis at low concentrations with high specificity and selectivity.![]()
Collapse
Affiliation(s)
- Xinglu Jiang
- Medical School of Southeast University
- Nanjing 210009
- People's Republic of China
| | - Chenggui Zhao
- Center of Clinical Laboratory Medicine
- Zhongda Hospital
- Southeast University
- Nanjing 210009
- People's Republic of China
| | - Xiaobo Fan
- Medical School of Southeast University
- Nanjing 210009
- People's Republic of China
| | - Wei Xu
- Medical School of Southeast University
- Nanjing 210009
- People's Republic of China
| | - Rui Zhang
- Medical School of Southeast University
- Nanjing 210009
- People's Republic of China
| | - Hongbo Xu
- Medical School of Southeast University
- Nanjing 210009
- People's Republic of China
| | - Guoqiu Wu
- Medical School of Southeast University
- Nanjing 210009
- People's Republic of China
- Center of Clinical Laboratory Medicine
- Zhongda Hospital
| |
Collapse
|
43
|
Potential clinical applications of circulating cell-free DNA in ovarian cancer patients. Expert Rev Mol Med 2018; 20:e6. [PMID: 30558693 DOI: 10.1017/erm.2018.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circulating cell-free DNA (cfDNA) consists of small fragments of DNA that circulate freely in the bloodstream. In cancer patients, a fraction of cfDNA is derived from tumour cells, therefore containing the same genetic and epigenetic alterations, and is termed circulating cell-free tumour DNA. The potential use of cfDNA, the so-called 'liquid biopsy', as a non-invasive cancer biomarker has recently received a lot of attention. The present review will focus on studies concerning the potential clinical applications of cfDNA in ovarian cancer patients.
Collapse
|
44
|
Kalavska K, Minarik T, Vlkova B, Manasova D, Kubickova M, Jurik A, Mardiak J, Sufliarsky J, Celec P, Mego M. Prognostic value of various subtypes of extracellular DNA in ovarian cancer patients. J Ovarian Res 2018; 11:85. [PMID: 30243303 PMCID: PMC6196469 DOI: 10.1186/s13048-018-0459-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023] Open
Abstract
Background Patients with ovarian cancer represent a heterogeneous population with a variable prognosis and response to chemotherapy. Plasma DNA has been shown to have a prognostic value in different types of cancer including ovarian carcinoma. Whether total circulating DNA, which can be assessed much easier without knowing the tumor-specific mutations, has similar informative value is currently unknown. The aim of this study was to evaluate the prognostic value of extracellular DNA in advanced ovarian cancer. Methods This prospective study included 67 patients (pts) with ovarian cancer treated with 1st line paclitaxel and carboplatin (25 pts) and paclitaxel, carboplatin and bevacizumab (42 pts). Thirty-five patients had optimal surgical debulking before chemotherapy. Extracellular DNA was quantified using real time PCR before administration of chemotherapy (67 pts) and after 6 cycles of chemotherapy (44 pts). Results Total extracellular DNA (ecDNA), as well as extracellular DNA of nuclear (nDNA) and mitochondrial origin (mtDNA) significantly (p < 0.05) decreased after 6 cycles of chemotherapy (by 54%, 63% and 52%, respectively. Patients with stage I disease had significantly lower mtDNA compared to patients with stage II-IV (8604 vs. 16, 984 ge/mL, p = 0.03). Patients with lower baseline nDNA had superior progression-free (HR = 0.35 (0.14–0.86)) and overall survival (HR = 0.18 (0.04–0.77). The prognostic value of nDNA was confirmed independent of tumor stage and confirmed in multivariate analysis. Conclusions Our data suggest that ecDNA of both, nuclear and mitochondrial origin could be added to prognostic markers in ovarian cancer. Analysis of ecDNA does not require the knowledge of tumor-specific mutations in contrast to the quantification of tumor-derived ecDNA. Study of the dynamics and cell type-specific source of the ecDNA could shed light on its biology in cancer and might help to direct the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Katarina Kalavska
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovak Republic.,Translational Research Unit, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | | | - Barbora Vlkova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Denisa Manasova
- Translational Research Unit, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | | | | | - Jozef Mardiak
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovak Republic.,National Cancer Institute, Bratislava, Slovakia
| | - Jozef Sufliarsky
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovak Republic.,National Cancer Institute, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovak Republic. .,Translational Research Unit, Faculty of Medicine, Comenius University, Bratislava, Slovakia. .,National Cancer Institute, Bratislava, Slovakia.
| |
Collapse
|
45
|
Nakabayashi M, Kawashima A, Yasuhara R, Hayakawa Y, Miyamoto S, Iizuka C, Sekizawa A. Massively parallel sequencing of cell-free DNA in plasma for detecting gynaecological tumour-associated copy number alteration. Sci Rep 2018; 8:11205. [PMID: 30046040 PMCID: PMC6060170 DOI: 10.1038/s41598-018-29381-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
The discovery of circulating tumour DNA molecules created a paradigm shift in tumour biomarkers as predictors of recurrence. Non-invasive prenatal testing (NIPT) to detect circulating cell-free foetal DNA in maternal plasma is increasingly recognised as a valuable substitute to perceive foetal copy number variation (CNV). This study aimed to determine whether the copy number detection in plasma samples using NIPT platform could be used as a prognostic biomarker in patients with gynaecological cancer. We conducted a prospective study using samples containing preoperative plasma from 100 women with gynaecological cancers. Samples were randomly rearranged and blindly sequenced using a low-coverage whole-genome sequencing plasma DNA, NIPT platform. The NIPT pipeline identified copy number alterations (CNAs) were counted in plasma as a gain or loss if they exceeded 10 Mb from the expected diploid coverage. Progression-free survival (PFS) and overall survival (OS) were analysed according to the presence of CNA in plasma using Kaplan-Meier analyses. The NIPT pipeline detected 19/100 cases of all gynaecological cancers, including 6/36 ovarian cancers, 3/11 cervical cancers, and 10/53 endometrial cancers. Patients with CNA in plasma had a significantly poorer prognosis in all stages concerning PFS and OS. Therefore, low-coverage sequencing NIPT platform could serve as a predictive marker of patient outcome.
Collapse
Affiliation(s)
- Makoto Nakabayashi
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Akihiro Kawashima
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan.
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Yosuke Hayakawa
- Information System Department GeneTech, Inc. 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Shingo Miyamoto
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Chiaki Iizuka
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| |
Collapse
|
46
|
Sumbal S, Javed A, Afroze B, Zulfiqar HF, Javed F, Noreen S, Ijaz B. Circulating tumor DNA in blood: Future genomic biomarkers for cancer detection. Exp Hematol 2018; 65:17-28. [PMID: 29940219 DOI: 10.1016/j.exphem.2018.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022]
Abstract
Cancer is characterized by Darwinian evolution and is a primary cause of mortality and morbidity around the globe. Over the preceding decade, the treatment of cancer has been markedly improved by many targeted therapies, but these treatments have given birth to new challenges and issues. Clonal evolution and tumor heterogeneity present a significant challenge in designing cancer therapies. Fortunately, these restrictions have been overcome by technological advancements allowing us to track both genetic and epigenetic aberrations. Cell-free circulating tumor DNA (ctDNA) analysis, or "liquid biopsy" from a blood sample, provides the opportunity to track the genetic landscape of cancerous lesions. This review focuses on ctDNA analysis as a noninvasive method and versatile biomarker for cancer treatment and technological advancements for ctDNA analysis. This method may able to cope with all the challenges associated with previous cancer therapies and has the potential to monitor minimal residual disease, tumor burden, and therapy response and provide rapid detection of relapse. However, there are many challenges that still need to be addressed. Future prognosis, diagnosis, and analysis of ctDNA require reproducibility and accuracy of results, which are not possible without the validation and optimization of procedures. Integrated digital error suppression has thus far shown promise in the detection of ctDNA in cancer.
Collapse
Affiliation(s)
- Sumbal Sumbal
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Aneeqa Javed
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Bakht Afroze
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | | | - Faqeeha Javed
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Sobia Noreen
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan.
| |
Collapse
|
47
|
Yadav DK, Bai X, Yadav RK, Singh A, Li G, Ma T, Chen W, Liang T. Liquid biopsy in pancreatic cancer: the beginning of a new era. Oncotarget 2018; 9:26900-26933. [PMID: 29928492 PMCID: PMC6003564 DOI: 10.18632/oncotarget.24809] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
With dismal survival rate pancreatic cancer remains one of the most aggressive and devastating malignancy. Predominantly, due to the absence of a dependable methodology for early identification and limited therapeutic options for advanced disease. However, it takes over 17 years to develop pancreatic cancer from initiation of mutation to metastatic cancer; therefore, if diagnosed early; it may increase overall survival dramatically, thus, providing a window of opportunity for early detection. Recently, genomic expression analysis defined 4 subtypes of pancreatic cancer based on mutated genes. Hence, we need simple and standard, minimally invasive test that can monitor those altered genes or their associated pathways in time for the success of precision medicine, and liquid biopsy seems to be one answer to all these questions. Again, liquid biopsy has an ability to pair with genomic tests. Additionally, liquid biopsy based development of circulating tumor cells derived xenografts, 3D organoids system, real-time monitoring of genetic mutations by circulating tumor DNA and exosome as the targeted drug delivery vehicle holds lots of potential for the treatment and cure of pancreatic cancer. At present, diagnosis of pancreatic cancer is frantically done on the premise of CA19-9 and radiological features only, which doesn't give a picture of genetic mutations and epigenetic alteration involved. In this manner, the current diagnostic paradigm for pancreatic cancer diagnosis experiences low diagnostic accuracy. This review article discusses the current state of liquid biopsy in pancreatic cancer as diagnostic and therapeutic tools and future perspectives of research in the light of circulating tumor cells, circulating tumor DNA and exosomes.
Collapse
Affiliation(s)
- Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rajesh Kumar Yadav
- Department of Pharmacology, Gandaki Medical College, Tribhuwan University, Institute of Medicine, Pokhara 33700, Nepal
| | - Alina Singh
- Department of Surgery, Bir Hospital, National Academy of Medical Science, Kanti Path, Kathmandu 44600, Nepal
| | - Guogang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
48
|
Giannopoulou L, Mastoraki S, Buderath P, Strati A, Pavlakis K, Kasimir-Bauer S, Lianidou ES. ESR1 methylation in primary tumors and paired circulating tumor DNA of patients with high-grade serous ovarian cancer. Gynecol Oncol 2018; 150:355-360. [PMID: 29807696 DOI: 10.1016/j.ygyno.2018.05.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Estrogen receptor, coded by the ESR1 gene, is highly expressed in epithelial ovarian cancer. ESR1 gene is frequently methylated in many types of gynecological malignancies. However, only a few studies attempted to investigate the role of ESR1 methylation and its clinical significance in ovarian cancer so far. The aim of our study was to examine ESR1 methylation status in primary tumors and corresponding circulating tumor DNA of patients with high-grade serous ovarian cancer (HGSC). METHODS ESR1 methylation was detected by a highly specific and sensitive real-time methylation-specific PCR assay. Two groups of HGSC samples were analyzed: group A (n = 66 primary tumors) and group B (n = 53 primary tumors and 50 corresponding plasma samples). RESULTS ESR1 was found methylated in both groups of primary tumors: in 32/66 (48.5%) of group A and in 15/53 (28.3%) of group B. 19/50 (38.0%) corresponding plasma samples of group B were also methylated for ESR1. A significant agreement for ESR1 methylation was observed between primary tumors and paired plasma ctDNA samples (P = 0.004). Interestingly, the presence of ESR1 methylation in primary tumor samples of group B was significantly correlated with a better overall survival (P = 0.027) and progression-free survival (P = 0.041). CONCLUSIONS We report for the first time the presence of ESR1 methylation in plasma ctDNA of patients with HGSC. The agreement between ESR1 methylation in primary tumors and paired ctDNA is statistically significant. Our results indicate a correlation between the presence of ESR1 methylation and a better clinical outcome in HGSC patients.
Collapse
Affiliation(s)
- Lydia Giannopoulou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens 15771, Greece
| | - Sophia Mastoraki
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens 15771, Greece
| | - Paul Buderath
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen D-45122, Germany
| | - Areti Strati
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens 15771, Greece
| | - Kitty Pavlakis
- Pathology Department, IASO women's hospital, 15123 Marousi, Athens, Greece
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, University of Duisburg-Essen, Hufelandstrasse 55, Essen D-45122, Germany
| | - Evi S Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens 15771, Greece.
| |
Collapse
|
49
|
Lin SY, Huang SK, Huynh KT, Salomon MP, Chang SC, Marzese DM, Lanman RB, Talasaz A, Hoon DS. Multiplex Gene Profiling of Cell-Free DNA in Patients With Metastatic Melanoma for Monitoring Disease. JCO Precis Oncol 2018; 2:PO.17.00225. [PMID: 32913981 PMCID: PMC7446321 DOI: 10.1200/po.17.00225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Hotspot blood cell-free DNA (cfDNA) biomarker assays have limited utility in profiling tumor heterogeneity and burden and in capturing regional metastasis with low disease burden in patients with melanoma. We investigated the utility of a sensitive 54-cancer gene digital next-generation sequencing approach targeting blood cfDNA single nucleotide variants (SNVs) and copy number amplification for monitoring disease in patients with melanoma with regional or distant organ metastasis (DOM). PATIENTS AND METHODS A total of 142 blood samples were evaluated by digital next-generation sequencing across two patient cohorts. Cohort 1 contained 44 patients with stage II, III, or IV disease with matched tumor DNA at the time of surgery or DOM. Cohort 2 consisted of 12 overlapping patients who were longitudinally monitored after complete lymph node dissection to DOM. RESULTS In cohort 1, cfDNA SNVs were detected in 75% of patients. Tumor-cfDNA somatic SNV concordance was 85% at a variant allele fraction of ≥ 0.5%. An SNV load (number of unique SNVs detected) of greater than two SNVs and an SNV burden (total cumulative SNV VAF) of > 0.5% were significantly associated with worse overall survival (P < .05) in stage IV patients. In cohort 2, 98 longitudinal blood samples along with matched regional and distant metastases from 12 stage III patients were analyzed before complete lymph node dissection and throughout disease progression. cfDNA SNV levels correlated with tumor burden (P = .019), enabled earlier detection of recurrence compared with radiologic imaging (P < .01), captured tumor heterogeneity, and identified increasing SNVs levels before recurrence. CONCLUSION This study demonstrates significant utility for cfDNA profiling in patients with melanoma with regional and/or distant metastasis for earlier detection of recurrence and progression and in capturing tumor evolution and heterogeneity, thus impacting how patients with melanoma are monitored.
Collapse
Affiliation(s)
- Selena Y. Lin
- Selena Y. Lin, Sharon K. Huang, Kelly T. Huynh, Matthew P. Salomon, Diego M. Marzese, and Dave S.B. Hoon, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica; Richard B. Lanman and AmirAli Talasaz, Guardant Health, Redwood City, CA; and Shu-Ching Chang, Medical Data Research Center at Providence Saint Joseph’s Health, Portland, OR
| | - Sharon K. Huang
- Selena Y. Lin, Sharon K. Huang, Kelly T. Huynh, Matthew P. Salomon, Diego M. Marzese, and Dave S.B. Hoon, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica; Richard B. Lanman and AmirAli Talasaz, Guardant Health, Redwood City, CA; and Shu-Ching Chang, Medical Data Research Center at Providence Saint Joseph’s Health, Portland, OR
| | - Kelly T. Huynh
- Selena Y. Lin, Sharon K. Huang, Kelly T. Huynh, Matthew P. Salomon, Diego M. Marzese, and Dave S.B. Hoon, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica; Richard B. Lanman and AmirAli Talasaz, Guardant Health, Redwood City, CA; and Shu-Ching Chang, Medical Data Research Center at Providence Saint Joseph’s Health, Portland, OR
| | - Matthew P. Salomon
- Selena Y. Lin, Sharon K. Huang, Kelly T. Huynh, Matthew P. Salomon, Diego M. Marzese, and Dave S.B. Hoon, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica; Richard B. Lanman and AmirAli Talasaz, Guardant Health, Redwood City, CA; and Shu-Ching Chang, Medical Data Research Center at Providence Saint Joseph’s Health, Portland, OR
| | - Shu-Ching Chang
- Selena Y. Lin, Sharon K. Huang, Kelly T. Huynh, Matthew P. Salomon, Diego M. Marzese, and Dave S.B. Hoon, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica; Richard B. Lanman and AmirAli Talasaz, Guardant Health, Redwood City, CA; and Shu-Ching Chang, Medical Data Research Center at Providence Saint Joseph’s Health, Portland, OR
| | - Diego M. Marzese
- Selena Y. Lin, Sharon K. Huang, Kelly T. Huynh, Matthew P. Salomon, Diego M. Marzese, and Dave S.B. Hoon, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica; Richard B. Lanman and AmirAli Talasaz, Guardant Health, Redwood City, CA; and Shu-Ching Chang, Medical Data Research Center at Providence Saint Joseph’s Health, Portland, OR
| | - Richard B. Lanman
- Selena Y. Lin, Sharon K. Huang, Kelly T. Huynh, Matthew P. Salomon, Diego M. Marzese, and Dave S.B. Hoon, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica; Richard B. Lanman and AmirAli Talasaz, Guardant Health, Redwood City, CA; and Shu-Ching Chang, Medical Data Research Center at Providence Saint Joseph’s Health, Portland, OR
| | - AmirAli Talasaz
- Selena Y. Lin, Sharon K. Huang, Kelly T. Huynh, Matthew P. Salomon, Diego M. Marzese, and Dave S.B. Hoon, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica; Richard B. Lanman and AmirAli Talasaz, Guardant Health, Redwood City, CA; and Shu-Ching Chang, Medical Data Research Center at Providence Saint Joseph’s Health, Portland, OR
| | - Dave S.B. Hoon
- Selena Y. Lin, Sharon K. Huang, Kelly T. Huynh, Matthew P. Salomon, Diego M. Marzese, and Dave S.B. Hoon, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica; Richard B. Lanman and AmirAli Talasaz, Guardant Health, Redwood City, CA; and Shu-Ching Chang, Medical Data Research Center at Providence Saint Joseph’s Health, Portland, OR
| |
Collapse
|
50
|
Chen J, Huan W, Zuo H, Zhao L, Huang C, Liu X, Hou S, Qi J, Shi W. Alu methylation serves as a biomarker for non-invasive diagnosis of glioma. Oncotarget 2018; 7:26099-106. [PMID: 27028997 PMCID: PMC5041967 DOI: 10.18632/oncotarget.8318] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/04/2016] [Indexed: 01/22/2023] Open
Abstract
Current techniques for diagnosing glioma are invasive and do not accurately predict prognosis. We developed a novel, non-invasive liquid chip assay to diagnose glioma and predict prognosis. Using this method, we determined the methylation state of the Alu element in cell-free DNA extracted from the serum of 109 glioma patients. Controls included 56 patients with benign intracranial tumors and 50 healthy subjects. Matched tumor tissues were processed for 36 patients. The cfDNA from glioma patients showed lower levels of Alu methylation than the controls (P<0.01). Alu methylation was also lower in high-grade than low-grade gliomas (P<0.01), indicating that Alu methylation correlates negatively with disease severity. Moreover, Alu methylation correlated positively with survival (P<0.01). These findings suggest high-throughput liquid chip could serve as a non-invasive diagnostic assay for glioma.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurological Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wei Huan
- Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hao Zuo
- Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Longxiang Zhao
- Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Chuanjun Huang
- Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaojiang Liu
- Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Shiqiang Hou
- Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jing Qi
- Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wei Shi
- Department of Neurological Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|