1
|
Zeng FF, Chen ZH, Luo FH, Liu CJ, Yang X, Zhang FX, Shi W. Sophorae tonkinensis radix et rhizoma: A comprehensive review of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, toxicology and detoxification strategy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118784. [PMID: 39244176 DOI: 10.1016/j.jep.2024.118784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophorae tonkinensis Radix et Rhizoma (STR), the dried root and rhizome of Sophora tonkinensis Gagnep., is commonly used in the treatment of tonsillitis and pharyngitis, throat soreness and throat obstruction, swelling and aching of gum, etc. in China or other Asian countries. STR is usually used as the core herb in traditional Chinese medicine preparations, such as "Biyanling Tablets", "Fufang Muji Granules" and "Ganyanling Injections", etc. AIM OF THE REVIEW: This review aimed to provide a comprehensive analysis of STR in terms of botany, traditional use, phytochemistry, ethnopharmacology, pharmacology, pharmacokinetics, toxicology and detoxification strategy, to provide a rational application in future research. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including China National Knowledge Infrastructure (CNKI), SciFinder, Google Scholar, PubMed, Web of Science, and Chinese Masters and Doctoral Dissertations. RESULTS Till now, a total of 333 chemical components have been identified in STR, including 85 alkaloids, 124 flavonoids, 24 triterpenes, 27 triterpene saponins, 34 organic acids, 8 polysaccharides, etc. STR and its main active constituents have cardiovascular protection, anti-tumor activity, anti-inflammatory activity, antipyretic activity, analgesic activity, antibacterial activity, antifungal activity, antiviral activity, and hepatoprotective activity, etc. However, toxic effects of STR on the liver, nerves, heart, and gastrointestinal tract have also been observed. To mitigate these risks, STR needs attenuation before use, with the most common detoxification methods being processing and combined use with other drugs. The pharmacokinetics of STR in vivo and traditional and clinical prescriptions containing STR have been sorted out. Despite the potential therapeutic benefits of STR, further research is warranted to elucidate its hepatotoxicity, particularly in vivo, exploring aspects such as in vivo metabolism, distribution, and mechanisms. CONCLUSION This review serves to emphasize the therapeutic potential of STR and highlights the crucial need to address its toxicity concerns before considering clinical application. Further research is required to comprehensively investigate the toxicological properties of STR, with particular emphasis on its hepatotoxicity and neurotoxicity. Such research endeavors have the potential to standardize the rational application of STR for optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Fen-Fen Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fu-Hui Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xia Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
2
|
Olanrewaju JA, Arietarhire LO, Soremekun OE, Olugbogi EA, Aribisala PO, Alege PE, Adeleke SO, Afolabi TO, Sodipo AO. Reporting the anti-neuroinflammatory potential of selected spondias mombin flavonoids through network pharmacology and molecular dynamics simulations. In Silico Pharmacol 2024; 12:74. [PMID: 39155973 PMCID: PMC11324643 DOI: 10.1007/s40203-024-00243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/14/2024] [Indexed: 08/20/2024] Open
Abstract
Neuroinflammation plays a pivotal role in the development and progression of neurodegenerative diseases, with a complex interplay between immune responses and brain activity. Understanding this interaction is crucial for identifying therapeutic targets and developing effective treatments. This study aimed to explore the neuroprotective properties of flavonoid compounds from Spondias mombin via the modulation of neuroinflammatory pathway using a comprehensive in-silico approach, including network pharmacology, molecular docking, and dynamic simulations. Active flavonoid ingredients from S. mombin were identified, and their potential protein targets were predicted through Network Pharmacology. Molecular docking was conducted to determine the binding affinities of these compounds against targets obtained from network pharmacology, prioritizing docking scores ≥ - 8.0 kcal/mol. Molecular dynamic simulations (MDS) assessed the stability and interaction profiles of these ligand-protein complexes. The docking study highlighted ≥ - 8.0 kcal/mol for the ligands (catechin and epicatechin) against FYN kinase as a significant target. However, these compounds failed the blood-brain barrier (BBB) permeability test. MDS confirmed the stability of catechin and the reference ligand at the FYN kinase active site, with notable interactions involving hydrogen bonds, hydrophobic contacts, and water bridges. GLU54 emerged as a key residue in the catechin-FYN complex stability due to its prolonged hydrogen bond interaction. The findings underscore the potential of S. mombin flavonoids as therapeutic agents against neuroinflammation, though optimization and nanotechnology-based delivery methods are suggested to enhance drug efficacy and overcome BBB limitations. Graphical abstract
Collapse
Affiliation(s)
- John A. Olanrewaju
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Leviticus O. Arietarhire
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Oladimeji E. Soremekun
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Ezekiel A. Olugbogi
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Precious O. Aribisala
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Pelumi E. Alege
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Stephen O. Adeleke
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Toluwanimi O. Afolabi
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| | - Abayomi O. Sodipo
- Department of Biocomputing, Eureka Research Laboratory, Faculty of Basic Medical Science, Benjamin Carson (Snr.) School of Medical Science, BABCOCK University, Ilishan-Remo, Ogun State Nigeria
| |
Collapse
|
3
|
Kaçar S, Coric D, Ometto G, Montesano G, Denniston AK, Keane PA, Uitdehaag BMJ, Crabb DP, Schoonheim MM, Petzold A, Strijbis EMM. Exploring Vitreous Haze as a Potential Biomarker for Accelerated Glymphatic Outflow and Neurodegeneration in Multiple Sclerosis: A Cross-Sectional Study. Brain Sci 2023; 14:36. [PMID: 38248251 PMCID: PMC10813039 DOI: 10.3390/brainsci14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The glymphatic system removes neurodegenerative debris. The ocular glymphatic outflow is from the eye to the proximal optic nerve. In multiple sclerosis (MS), atrophy of the optic nerve increases the glymphatic outflow space. Here, we tested whether vitreous haze (VH) can provide novel insights into the relationship between neurodegeneration and the ocular glymphatic system in MS. METHODS This cross-sectional study comprised 315 persons with MS and 87 healthy controls (HCs). VH was quantified from optical coherence tomography (OCT) volume scans. Neurodegeneration was determined on three-dimensional T1 (3DT1) MRI, lesion detection on fluid-attenuated inversion (FLAIR), and layer thickness on OCT. Generalized estimating equations, corrected for age, were used to analyze associations between VH and metrics for neurodegeneration, demographics, and clinical scales. Group differences were determined between mild, moderate, and severe disability. RESULTS On the group level, VH scores were comparable between MS and control (p = 0.629). In MS, VH scores declined with disease duration (β = -0.009, p = 0.004) and age (β = -0.007, p = 0.001). There was no relation between VH scores and higher age in HCs. In MS patients, VH was related to normalized gray (NGMV, β = 0.001, p = 0.011) and white matter volume (NWMV, β = 0.001, p = 0.003), macular ganglion cell-inner plexiform layer thickness (mGCIPL, β = 0.006, p < 0.001), and peripapillary retinal nerve fiber layer thickness (pRNFL, β = 0.004, p = 0.008). VH was significantly lower in severe compared to mild disability (mean difference -28.86%, p = 0.058). CONCLUSIONS There is a correlation between VH on OCT and disease duration, more severe disability and lower brain volumes in MS. Biologically, these relationships suggest accelerated glymphatic clearance with disease-related atrophy.
Collapse
Affiliation(s)
- Sezgi Kaçar
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (D.C.); (B.M.J.U.); (A.P.); (E.M.M.S.)
- Dutch Expertise Center for Neuro-Ophthalmology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Danko Coric
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (D.C.); (B.M.J.U.); (A.P.); (E.M.M.S.)
- Dutch Expertise Center for Neuro-Ophthalmology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Giovanni Ometto
- Department of Optometry and Visual Sciences, City, University of London, London WC1E 7HU, UK; (G.O.); (G.M.); (D.P.C.)
| | - Giovanni Montesano
- Department of Optometry and Visual Sciences, City, University of London, London WC1E 7HU, UK; (G.O.); (G.M.); (D.P.C.)
| | - Alastair K. Denniston
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK;
- Department of Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 9LF, UK;
| | - Pearse A. Keane
- NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 9LF, UK;
| | - Bernard M. J. Uitdehaag
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (D.C.); (B.M.J.U.); (A.P.); (E.M.M.S.)
| | - David P. Crabb
- Department of Optometry and Visual Sciences, City, University of London, London WC1E 7HU, UK; (G.O.); (G.M.); (D.P.C.)
| | - Menno M. Schoonheim
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, 1081 HV Amsterdam, The Netherlands;
| | - Axel Petzold
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (D.C.); (B.M.J.U.); (A.P.); (E.M.M.S.)
- Dutch Expertise Center for Neuro-Ophthalmology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
- Department of Neurology and Ophthalmology, Moorfields Eye Hospital, City Road, London EC1V 9LF, UK
- The National Hospital for Neurology and Neurosurgery, University College London, London WC1E 7HU, UK
| | - Eva M. M. Strijbis
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC Location VUmc, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (D.C.); (B.M.J.U.); (A.P.); (E.M.M.S.)
| |
Collapse
|
4
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
5
|
Pathak N, Vimal SK, Tandon I, Agrawal L, Hongyi C, Bhattacharyya S. Neurodegenerative Disorders of Alzheimer, Parkinsonism, Amyotrophic Lateral Sclerosis and Multiple Sclerosis: An Early Diagnostic Approach for Precision Treatment. Metab Brain Dis 2022; 37:67-104. [PMID: 34719771 DOI: 10.1007/s11011-021-00800-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases (NDs) are characterised by progressive dysfunction of synapses, neurons, glial cells and their networks. Neurodegenerative diseases can be classified according to primary clinical features (e.g., dementia, parkinsonism, or motor neuron disease), anatomic distribution of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), or principal molecular abnormalities. The most common neurodegenerative disorders are amyloidosis, tauopathies, a-synucleinopathy, and TAR DNA-binding protein 43 (TDP-43) proteopathy. The protein abnormalities in these disorders have abnormal conformational properties along with altered cellular mechanisms, and they exhibit motor deficit, mitochondrial malfunction, dysfunctions in autophagic-lysosomal pathways, synaptic toxicity, and more emerging mechanisms such as the roles of stress granule pathways and liquid-phase transitions. Finally, for each ND, microglial cells have been reported to be implicated in neurodegeneration, in particular, because the microglial responses can shift from neuroprotective to a deleterious role. Growing experimental evidence suggests that abnormal protein conformers act as seed material for oligomerization, spreading from cell to cell through anatomically connected neuronal pathways, which may in part explain the specific anatomical patterns observed in brain autopsy sample. In this review, we mention the human pathology of select neurodegenerative disorders, focusing on how neurodegenerative disorders (i.e., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis) represent a great healthcare problem worldwide and are becoming prevalent because of the increasing aged population. Despite many studies have focused on their etiopathology, the exact cause of these diseases is still largely unknown and until now with the only available option of symptomatic treatments. In this review, we aim to report the systematic and clinically correlated potential biomarker candidates. Although future studies are necessary for their use in early detection and progression in humans affected by NDs, the promising results obtained by several groups leads us to this idea that biomarkers could be used to design a potential therapeutic approach and preclinical clinical trials for the treatments of NDs.
Collapse
Affiliation(s)
- Nishit Pathak
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Ishi Tandon
- Amity University Jaipur, Rajasthan, Jaipur, Rajasthan, India
| | - Lokesh Agrawal
- Graduate School of Comprehensive Human Sciences, Kansei Behavioural and Brain Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Cao Hongyi
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
6
|
Zolkiffly SZI, Stanslas J, Abdul Hamid H, Mehat MZ. Ficus deltoidea: Potential inhibitor of pro-inflammatory mediators in lipopolysaccharide-induced activation of microglial cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114309. [PMID: 34119609 DOI: 10.1016/j.jep.2021.114309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ficus deltoidea Jack (FD) is widely consumed in traditional medicine as a treatment for various diseases in Malaysia. Each part of the plant such as its leave, stem, fruit and root are used traditionally to treat different types of diseases. Vitexin and isovitexin are bioactive compounds abundantly found in the leaves of FD that possessed many pharmacological properties including neuroprotection. Nonetheless, its effects on key events in neuroinflammation are unknown. AIM OF THE STUDY To determine the inhibitory properties of FD aqueous extract on pro-inflammatory mediators involved in lipopolysaccharide (LPS)-induced microglial cells. METHODS Vitexin and isovitexin in the extract were quantified via high performance liquid chromatography (HPLC). The extract was evaluated for its cytotoxicity activity via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Pre-treatment with the extract on LPS-induced microglial cells was done to determine its antioxidant and anti-neuroinflammatory properties by measuring the level of reactive oxygen species (ROS), nitric oxide (NO), tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) via 2'-7'-dichlorofluorescin diacetate (DCFDA) assay, Griess assay and Western blot respectively. RESULTS The extract at all tested concentrations (0.1 μg/mL, 1 μg/mL, 10 μg/mL, 100 μg/mL) were not cytotoxic as the percentage viability of microglial cells were all above ~80%. At the highest concentration (100 μg/mL), the extract significantly reduced the formation of ROS, NO, TNF-α, IL-1β and IL-6 in microglial cells induced by LPS. CONCLUSION The extract showed neuroprotective effects by attenuating the levels of pro-inflammatory and cytotoxic factors in LPS-induced microglial cells, possibly by mediating the nuclear factor-kappa B (NF-κB) signalling pathway.
Collapse
Affiliation(s)
- Siti Zaidathul Iman Zolkiffly
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Calis Z, Mogulkoc R, Baltaci AK. The Roles of Flavonols/Flavonoids in Neurodegeneration and Neuroinflammation. Mini Rev Med Chem 2021; 20:1475-1488. [PMID: 31288717 DOI: 10.2174/1389557519666190617150051] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/05/2019] [Accepted: 05/25/2019] [Indexed: 12/27/2022]
Abstract
The inflammatory process in the human body is a physiological response involving many cellular types and mediators. It results in scar formation to separate the damaged area from the surrounding healthy tissue. Because of increased blood-brain barrier permeability following inflammation, leukocytes infiltrate the CNS and are also supplemented by proinflammatory mediators. However, an acute inflammatory process after cerebral trauma or stroke may also result in a prolonged lesion formation, leading to a severe neuronal loss. The prolonged inflammatory process in the CNS may cause serious damage to the neuronal system. It may lead to CNS damage in such a way that endangers functional integration and proinflammatory system balance. Effects of different flavonoid species on ischemia-reperfusion injury and cognition and function have also been shown in experimental studies. Flavonoids are presented broadly in plants and diets. They are believed to have various bioactive effects including anti-viral, anti-inflammatory, cardioprotective, anti-diabetic, anti-cancer, anti-aging, etc. Quercetine is the predominant dietary flavonoid. Main sources are tea, onion, and apple. It is demonstrated that the frequently consumed food like soybean, peanut, mustard, rice, sesame, olive, potatoes, onion, and oats contain flavonoids. Catechin and its derivates which are isolated from tea leaves have antioxidant activity but in low doses, their prooxidant effects are also reported. Ipriflavone which is a synthetic flavonoid may increase total calcium in bone. In this review, the effects of flavonoids species on the inflammatory process in the neurodegenerative process were examined as general.
Collapse
Affiliation(s)
- Zehra Calis
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | | |
Collapse
|
8
|
Do HTT, Cho J. Mangosteen Pericarp and Its Bioactive Xanthones: Potential Therapeutic Value in Alzheimer's Disease, Parkinson's Disease, and Depression with Pharmacokinetic and Safety Profiles. Int J Mol Sci 2020; 21:E6211. [PMID: 32867357 PMCID: PMC7504283 DOI: 10.3390/ijms21176211] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and depression are growing burdens for society globally, partly due to a lack of effective treatments. Mangosteen (Garcinia mangostana L.,) pericarp (MP) and its xanthones may provide therapeutic advantages for these disorders. In this review, we discuss potential therapeutic value of MP-derived agents in AD, PD, and depression with their pharmacokinetic and safety profiles. MP-derived agents have shown multifunctional effects including neuroprotective, antioxidant, and anti-neuroinflammatory actions. In addition, they target specific disease pathologies, such as amyloid beta production and deposition as well as cholinergic dysfunction in AD; α-synuclein aggregation in PD; and modulation of monoamine disturbance in depression. Particularly, the xanthone derivatives, including α-mangostin and γ-mangostin, exhibit potent pharmacological actions. However, low oral bioavailability and poor brain penetration may limit their therapeutic applications. These challenges can be overcome in part by administering as a form of MP extract (MPE) or using specific carrier systems. MPE and α-mangostin are generally safe and well-tolerated in animals. Furthermore, mangosteen-based products are safe for humans. Therefore, MPE and its bioactive xanthones are promising candidates for the treatment of AD, PD, and depression. Further studies including clinical trials are essential to decipher their efficacy, and pharmacokinetic and safety profiles in these disorders.
Collapse
Affiliation(s)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Gyeonggi 10326, Korea;
| |
Collapse
|
9
|
Sharma V, Kaur A, Singh TG. Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer's disease. Biomed Pharmacother 2020; 129:110373. [PMID: 32603894 DOI: 10.1016/j.biopha.2020.110373] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022] Open
Abstract
A salient pathological features in Alzheimer's disease includes redox impairment and neuroinflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) and Nuclear factor kappa B (NF-ҡB) are the two key transcription factors that regulate cellular responses to redox impairment and neuroinflammation respectively. An effective way to confer neuroprotection in central nervous system (CNS) is the activation of a transcription factor i.e Nuclear factor erythroid 2-related factor 2 (Nrf2). An enhancer element known as Antioxidant Response Element (ARE) mediates the expression of phase II detoxification enzymes. Nrf2 is a nuclear transcription factor that binds to ARE thereby transcribing expression of several antioxidant genes. Kelch ECH associating protein-1 (Keap1), a culin 3-based E3 ligase, polyubiquitinates Nrf2 and targets it for its degradation. Disruption in the interaction between Keap1/Nrf2 can increase the brain's endogenous antioxidant capacity and thereby responsible for cell defence against oxidative stress and neuroinflammation in Alzheimer's disease (AD). The current review discusses about Keap1-Nrf2-ARE structure and function with special emphasis on the various pathways involved in positive and negative modulation of Nrf2, namely Phosphoinositide 3- kinase (PI3K), Glycogen synthase kinase-3β (GSK-3β), Nuclear factor kappa-b (NF-ҡb), Janus kinase/signal transducer and activator of transcription (JAK-STAT),Tumour Necrosis Factor- α (TNF-α), p38Mitogen-activated protein kinases (p38MAPK), Cyclic AMP response element binding protein (CREB) and intrinsic & extrinsic apoptotic pathway. Furthermore, this review highlights the miscellaneous Nrf2 activators as promising therapeutic agents for slowingdown the progression of AD.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
10
|
Sadatpoor SO, Salehi Z, Rahban D, Salimi A. Manipulated Mesenchymal Stem Cells Applications in Neurodegenerative Diseases. Int J Stem Cells 2020; 13:24-45. [PMID: 32114741 PMCID: PMC7119211 DOI: 10.15283/ijsc19031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/07/2019] [Accepted: 04/13/2019] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that have multilinear differentiation and self-renewal abilities. These cells are immune-privileged as they express no or low level of class-II major histocompatibility complex (MHC-II) and other costimulatory molecules. Having neuroprotective and regenerative properties, MSCs can be used to ameliorate several intractable neurodegenerative disorders by affecting both innate and adaptive immune systems. Several manipulations like pretreating MSCs with different conditions or agents, and using molecules derived from MSCs or genetically manipulating them, are the common and practical ways that can be used to strengthen MSCs survival and potency. Improved MSCs can have significantly enhanced impacts on diseases compared to MSCs not manipulated. In this review, we describe some of the most important manipulations that have been exerted on MSCs to improve their therapeutic functions and their applications in ameliorating three prevalent neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Seyyed omid Sadatpoor
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dariush Rahban
- Department of Nanomedicine, School of Advanced Medical Technologies, Tehran University of Medical Science, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Microglia Mediated Neuroinflammation: Focus on PI3K Modulation. Biomolecules 2020; 10:biom10010137. [PMID: 31947676 PMCID: PMC7022557 DOI: 10.3390/biom10010137] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Immune activation in the central nervous system involves mostly microglia in response to pathogen invasion or tissue damage, which react, promoting a self-limiting inflammatory response aimed to restore homeostasis. However, prolonged, uncontrolled inflammation may result in the production by microglia of neurotoxic factors that lead to the amplification of the disease state and tissue damage. In particular, specific inducers of inflammation associated with neurodegenerative diseases activate inflammatory processes that result in the production of a number of mediators and cytokines that enhance neurodegenerative processes. Phosphoinositide 3-kinases (PI3Ks) constitute a family of enzymes regulating a wide range of activity, including signal transduction. Recent studies have focused attention on the intracellular role of PI3K and its contribution to neurodegenerative processes. This review illustrates and discusses recent findings about the role of this signaling pathway in the modulation of microglia neuroinflammatory responses linked to neurodegeneration. Finally, we discuss the modulation of PI3K as a potential therapeutic approach helpful for developing innovative therapeutic strategies in neurodegenerative diseases.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW We reviewed the most recent literature examining the associations between the Mediterranean-style diet (MD), neurodegenerative diseases, and markers and mechanisms of neurodegeneration. RECENT FINDINGS Most, but not all, epidemiologic studies report a protective association between MD adherence, cognitive impairment, and brain health. Data from clinical trials supporting these observational findings are also emerging. Limited evidence suggests that MD adherence may be protective for Parkinson's disease risk. Mechanistically, plant polyphenols may activate similar molecular pathways as caloric restriction diets, which helps explain the neuroprotective properties of the MD. Evidence for cognitive disorders is abundant, but there is a dearth of literature for other neurodegenerative disorders and for markers of neurodegeneration. Further research is needed to elucidate the protective role of MD on neurodegeneration, the most salient components of the MD, and the most sensitive time periods over the lifecourse at which the MD may exert its effects.
Collapse
Affiliation(s)
- Hannah Gardener
- Department of Neurology, Miller School of Medicine, and Evelyn F. McKnight Brain Institute, University of Miami, 1120 NW 14th Street, 13th Floor, Miami, FL, 33136, USA.
| | - Michelle R Caunca
- Department of Neurology, Miller School of Medicine, and Evelyn F. McKnight Brain Institute, University of Miami, 1120 NW 14th Street, 13th Floor, Miami, FL, 33136, USA.,Division of Epidemiology and Population Health Sciences, Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 NW 14th Street, 1007B, Miami, FL, 33136, USA
| |
Collapse
|
13
|
Anti-Inflammatory Activities of Marine Algae in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20123061. [PMID: 31234555 PMCID: PMC6628294 DOI: 10.3390/ijms20123061] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is one of the main contributors to the onset and progression of neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Microglial and astrocyte activation is a brain defense mechanism to counteract harmful pathogens and damaged tissues, while their prolonged activation induces neuroinflammation that can trigger or exacerbate neurodegeneration. Unfortunately, to date there are no pharmacological therapies able to slow down or stop the progression of neurodegeneration. For this reason, research is turning to the identification of natural compounds with protective action against these diseases. Considering the important role of neuroinflammation in the onset and development of neurodegenerative pathologies, natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Marine organisms represent a huge source of natural compounds, and among them, algae are appreciated sources of important bioactive components such as antioxidants, proteins, vitamins, minerals, soluble dietary fibers, polyunsaturated fatty acids, polysaccharides, sterols, carotenoids, tocopherols, terpenes, phycobilins, phycocolloids, and phycocyanins. Recently, numerous anti-inflammatory compounds have been isolated from marine algae with potential protective efficacy against neuroinflammation. This review highlights the key inflammatory processes involved in neurodegeneration and the potential of specific compounds from marine algae to counteract neuroinflammation in the CNS.
Collapse
|
14
|
Dinda B, Dinda M, Kulsi G, Chakraborty A, Dinda S. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review. Eur J Med Chem 2019; 169:185-199. [DOI: 10.1016/j.ejmech.2019.03.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 01/25/2023]
|
15
|
Pujol-Calderón F, Portelius E, Zetterberg H, Blennow K, Rosengren LE, Höglund K. Neurofilament changes in serum and cerebrospinal fluid after acute ischemic stroke. Neurosci Lett 2019; 698:58-63. [DOI: 10.1016/j.neulet.2018.12.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 02/02/2023]
|
16
|
Squillaro T, Cimini A, Peluso G, Giordano A, Melone MAB. Nano-delivery systems for encapsulation of dietary polyphenols: An experimental approach for neurodegenerative diseases and brain tumors. Biochem Pharmacol 2018; 154:303-317. [PMID: 29803506 DOI: 10.1016/j.bcp.2018.05.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases (NDs) and brain tumors are severe, disabling, and incurable disorders that represent a critical problem regarding human suffering and the economic burden on the healthcare system. Because of the lack of effective therapies to treat NDs and brain tumors, the challenge for physicians is to discover new drugs to improve their patients' quality of life. In addition to risk factors such as genetics and environmental influences, increased cellular oxidative stress has been reported as one of the potential common etiologies in both disorders. Given their antioxidant and anti-inflammatory potential, dietary polyphenols are considered to be one of the most bioactive natural agents in chronic disease prevention and treatment. Despite the protective activity of polyphenols, their inefficient delivery systems and poor bioavailability strongly limit their use in medicine and functional food. A potential solution lies in polymeric nanoparticle-based polyphenol delivery systems that are able to enhance their absorption across the gastrointestinal tract, improve their bioavailability, and transport them to target organs. In the present manuscript, we provide an overview of the primary polyphenols used for ND and brain tumor prevention and treatment by focusing on recent findings, the principal factors limiting their application in clinical practice, and a promising delivery strategy to improve their bioavailability.
Collapse
Affiliation(s)
- T Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - A Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - G Peluso
- Institute of Agro-Environmental and Forest Biology, CNR, Naples, Italy
| | - A Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA; Department of Medicine, Surgery and Neuroscience University of Siena, Italy.
| | - M A B Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem 2017; 153:105-115. [PMID: 28923363 DOI: 10.1016/j.ejmech.2017.09.001] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
Neuroinflammation is one of the main mechanisms involved in the progression of several neurodegenerative diseases, such as Parkinson, Alzheimer, multiple sclerosis, amyotrophic lateral sclerosis and others. The activation of microglia is the main feature of neuroinflammation, promoting the release of pro-inflammatory cytokines and resulting in the progressive neuronal cell death. Natural compounds, such as flavonoids, possess neuroprotective potential probably related to their ability to modulate the inflammatory responses involved in neurodegenerative diseases. In fact, pure flavonoids (e.g., quercetin, genistein, hesperetin, epigallocatechin-3-gallate) or enriched-extracts, can reduce the expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2), down-regulate inflammatory markers and prevent neural damage. This anti-inflammatory activity is primarily related to the regulation of microglial cells, mediated by their effects on MAPKs and NF-κB signalling pathways, as demonstrated by in vivo and in vitro data. The present work reviews the role of inflammation in neurodegenerative diseases, highlighting the potential therapeutic effects of flavonoids as a promising approach to develop innovative neuroprotective strategy.
Collapse
Affiliation(s)
- Carmela Spagnuolo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| | - Stefania Moccia
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| |
Collapse
|
18
|
Bereczki E, Bogstedt A, Höglund K, Tsitsi P, Brodin L, Ballard C, Svenningsson P, Aarsland D. Synaptic proteins in CSF relate to Parkinson's disease stage markers. NPJ PARKINSONS DISEASE 2017. [PMID: 28649607 PMCID: PMC5445607 DOI: 10.1038/s41531-017-0008-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent findings of morphological and functional changes in Parkinson's disease brains have shown altered synapse formation, but their role in cognitive decline is still an area under exploration. Here we measured the concentration of three key synaptic proteins, Rab3A, SNAP25 and neurogranin by enzyme-linked immunosorbent assay, in cerebrospinal fluid from a total of 139 participants (87 controls and 52 Parkinson's disease patients out of which 30 were drug-naïve) and explored their associations with motor and cognitive symptoms. Associations with motor disease stage (assessed by Hoehn and Yahr scale) and cognitive performance (assessed by the Montreal Cognitive Assessment scores) were explored. An overall increase in the concentration of SNAP25 was found in Parkinson's disease patients (p = 0.032). Increased neurogranin levels were found in the drug naïve patients subgroup (p = 0.023). Significant associations were observed between increased concentration of neurogranin and cognitive impairment in total Parkinson's disease group (p = 0.017), as well as in the drug naïve (p = 0.021) and with motor disease stage (p = 0.041). There were no significant disease-driven changes observed in the concentration of Rab3a. Concentrations SNAP25 and neurogranin were increased in cerebrospinal fluid of Parkinson's disease patients in a disease specific manner and related to cognitive and motor symptom severity. Future longitudinal studies should explore whether cerebrospinal fluid synaptic proteins can predict cognitive decline in Parkinson's disease.
Collapse
Affiliation(s)
- Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division for Neurogeriatrics, Karolinska Institutet, Novum, Stockholm Sweden
| | - Anna Bogstedt
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Novum, Huddinge Sweden
| | - Kina Höglund
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry Sahlgrenska Academy, Gothenburg University, 43180, Molndal, 41345 Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Molndal, SE-431 80 Mölndal Sweden
| | - Panagiota Tsitsi
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, 17176 Sweden
| | - Lovisa Brodin
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, 17176 Sweden
| | - Clive Ballard
- Medical School, University of Exeter, Exeter, EX1 2LU UK
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, 17176 Sweden
| | - Dag Aarsland
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division for Neurogeriatrics, Karolinska Institutet, Novum, Stockholm Sweden
| |
Collapse
|
19
|
van Waalwijk van Doorn LJC, Koel-Simmelink MJ, Haußmann U, Klafki H, Struyfs H, Linning P, Knölker HJ, Twaalfhoven H, Kuiperij HB, Engelborghs S, Scheltens P, Verbeek MM, Vanmechelen E, Wiltfang J, Teunissen CE. Validation of soluble amyloid-β precursor protein assays as diagnostic CSF biomarkers for neurodegenerative diseases. J Neurochem 2016; 137:112-21. [PMID: 26748905 DOI: 10.1111/jnc.13527] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/15/2015] [Accepted: 12/28/2015] [Indexed: 12/01/2022]
Abstract
Analytical validation of a biomarker assay is essential before implementation in clinical practice can occur. In this study, we analytically validated the performance of assays detecting soluble amyloid-β precursor protein (sAPP) α and β in CSF in two laboratories according to previously standard operating procedures serving this goal. sAPPα and sAPPβ ELISA assays from two vendors (IBL-international, Meso Scale Diagnostics) were validated. The performance parameters included precision, sensitivity, dilutional linearity, recovery, and parallelism. Inter-laboratory variation, biomarker comparison (sAPPα vs. sAPPβ) and clinical performance was determined in three laboratories using 60 samples of patients with subjective memory complaints, Alzheimer's disease, or frontotemporal dementia. All performance parameters of the assays were similar between labs and within predefined acceptance criteria. The only exceptions were minor out-of-range results for recovery at low concentrations and, despite being within predefined acceptance criteria, non-comparability of the results for evaluation of the dilutional linearity and hook-effect. Based on the inter-laboratory correlation between Lab #1 and Lab #2, the IBL-international assays were more robust (sAPPα: r(2) = 0.92, sAPPβ: r(2) = 0.94) than the Meso Scale Diagnostics (MSD) assay (sAPPα: r(2) = 0.70, sAPPβ: r(2) = 0.80). Specificity of assays was confirmed using assay-specific peptide competitors. Clinical validation showed consistent results across the clinical groups in the different laboratories for all assays. The validated sAPP assays appear to be of sufficient technical quality and perform well. Moreover, the study shows that the newly developed standard operating procedures provide highly useful tools for the validation of new biomarker assays. A recommendation was made for renewed instructions to evaluate the dilutional linearity and hook-effect. We analytically validated the performance of assays detecting soluble amyloid-β precursor protein (sAPP) α and β in CSF according to SOPs in agreement with ISO15189 guidelines. The validated sAPP assays appear to be of sufficient technical quality and perform well. Moreover, this study proofs that the newly developed SOPs, with a minor modification, provide highly useful tools for the validation of new biomarker assays.
Collapse
Affiliation(s)
- Linda J C van Waalwijk van Doorn
- Department of Neurology, Department of Laboratory Medicine, Radboud University Medical Center, Radboud Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marleen J Koel-Simmelink
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Ute Haußmann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR-Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hans Klafki
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR-Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Hanne Struyfs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Philipp Linning
- Department of Chemistry, Technische Universität Dresden, Dresden, Germany
| | | | - Harry Twaalfhoven
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Department of Laboratory Medicine, Radboud University Medical Center, Radboud Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Memory Clinic and Department of Neurology, Hospital Network Antwerp (ZNA), Antwerp, Belgium
| | | | - Marcel M Verbeek
- Department of Neurology, Department of Laboratory Medicine, Radboud University Medical Center, Radboud Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Keller L, Lincoln B. Drosophila neuronal injury model allows for temporal dissection of neurodegenerative events. Neural Regen Res 2016; 11:416-7. [PMID: 27127476 PMCID: PMC4829002 DOI: 10.4103/1673-5374.179046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Alonso R, Pisa D, Marina AI, Morato E, Rábano A, Rodal I, Carrasco L. Evidence for fungal infection in cerebrospinal fluid and brain tissue from patients with amyotrophic lateral sclerosis. Int J Biol Sci 2015; 11:546-58. [PMID: 25892962 PMCID: PMC4400386 DOI: 10.7150/ijbs.11084] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/10/2015] [Indexed: 12/14/2022] Open
Abstract
Among neurogenerative diseases, amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by a progressive motor neuron dysfunction in the motor cortex, brainstem and spinal cord. ALS is the most common form of motor neuron disease; yet, to date, the exact etiology of ALS remains unknown. In the present work, we have explored the possibility of fungal infection in cerebrospinal fluid (CSF) and in brain tissue from ALS patients. Fungal antigens, as well as DNA from several fungi, were detected in CSF from ALS patients. Additionally, examination of brain sections from the frontal cortex of ALS patients revealed the existence of immunopositive fungal antigens comprising punctate bodies in the cytoplasm of some neurons. Fungal DNA was also detected in brain tissue using PCR analysis, uncovering the presence of several fungal species. Finally, proteomic analyses of brain tissue demonstrated the occurrence of several fungal peptides. Collectively, our observations provide compelling evidence of fungal infection in the ALS patients analyzed, suggesting that this infection may play a part in the etiology of the disease or may constitute a risk factor for these patients.
Collapse
Affiliation(s)
- Ruth Alonso
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| | - Diana Pisa
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| | - Ana Isabel Marina
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| | - Esperanza Morato
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| | - Alberto Rábano
- 2. Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid. Spain
| | - Izaskun Rodal
- 2. Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid. Spain
| | - Luis Carrasco
- 1. Centro de Biología Molecular "Severo Ochoa". c/Nicolás Cabrera, 1. Universidad Autónoma de Madrid. Cantoblanco. 28049 Madrid. Spain
| |
Collapse
|