1
|
Naik S, Kashyap D, Deep J, Darwish S, Cross J, Mansoor E, Garg VK, Honnavar P. Utilizing Next-Generation Sequencing: Advancements in the Diagnosis of Fungal Infections. Diagnostics (Basel) 2024; 14:1664. [PMID: 39125540 PMCID: PMC11311512 DOI: 10.3390/diagnostics14151664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Next-generation sequencing (NGS) has emerged as a promising tool for diagnosing fungal infections. It enables the identification of a wide range of fungal species and provides more accurate and rapid results than traditional diagnostic methods. NGS-based approaches involve the sequencing of DNA or RNA from clinical samples, which can be used to detect and identify fungal pathogens in complex clinical samples. The development of targeted gene panels and whole-genome sequencing has allowed for identifying genetic markers associated with antifungal drug resistance, enabling clinicians to tailor patient treatment options. NGS can also provide insights into the pathogenesis of fungal infections and aid in discovering novel drug targets. Although NGS has some limitations, such as cost and data analysis, it can potentially revolutionize the future diagnosis and treatment of fungal infections.
Collapse
Affiliation(s)
- Sheetal Naik
- Department of Physiology, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda
| | - Dharambir Kashyap
- Brown Center for Immunotherapy, Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Jashan Deep
- Basic Medical Science, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda
| | - Saif Darwish
- Basic Medical Science, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda
| | - Joseph Cross
- Department of Biochemistry, Cell Biology and Genetics; American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda
- Department of Microbial Pathogenesis and Immunology, Texas A & M University, College Station, TX 77843, USA
| | - Edmond Mansoor
- Department of Clinical Medicine; American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda
| | - Vivek Kumar Garg
- University Institute of Allied Health Sciences, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Prasanna Honnavar
- Department of Microbiology and Immunology; American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda
| |
Collapse
|
2
|
An Y, Fang X, Cheng J, Yang S, Chen Z, Tong Y. Research progress of metal-organic framework nanozymes in bacterial sensing, detection, and treatment. RSC Med Chem 2024; 15:380-398. [PMID: 38389881 PMCID: PMC10880901 DOI: 10.1039/d3md00581j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
The high efficiency and specificity of enzymes make them play an important role in life activities, but the high cost, low stability and high sensitivity of natural enzymes severely restrict their application. In recent years, nanozymes have become convincing alternatives to natural enzymes, finding utility across diverse domains, including biosensing, antibacterial interventions, cancer treatment, and environmental preservation. Nanozymes are characterized by their remarkable attributes, encompassing high stability, cost-effectiveness and robust catalytic activity. Within the contemporary scientific landscape, metal-organic frameworks (MOFs) have garnered considerable attention, primarily due to their versatile applications, spanning catalysis. Notably, MOFs serve as scaffolds for the development of nanozymes, particularly in the context of bacterial detection and treatment. This paper presents a comprehensive review of recent literature pertaining to MOFs and their pivotal role in bacterial detection and treatment. We explored the limitations and prospects for the development of MOF-based nanozymes as a platform for bacterial detection and therapy, and anticipate their great potential and broader clinical applications in addressing medical challenges.
Collapse
Affiliation(s)
- Yiwei An
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Xuankun Fang
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Jie Cheng
- School of Pharmaceutical Sciences, SunYat-sen University Guangzhou 510006 China +86 20 39943071 +86 20 39943044
| | - Shuiyuan Yang
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, SunYat-sen University Guangzhou 510006 China +86 20 39943071 +86 20 39943044
| | - Yanli Tong
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| |
Collapse
|
3
|
Reinicke M, Braun SD, Diezel C, Lemuth O, Engelmann I, Liebe T, Ehricht R. From Shadows to Spotlight: Enhancing Bacterial DNA Detection in Blood Samples through Cutting-Edge Molecular Pre-Amplification. Antibiotics (Basel) 2024; 13:161. [PMID: 38391548 PMCID: PMC10886392 DOI: 10.3390/antibiotics13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
One of the greatest challenges to the use of molecular methods for diagnostic purposes is the detection of target DNA that is present only in low concentrations. One major factor that negatively impacts accuracy, diagnostic sensitivity, and specificity is the sample matrix, which hinders the attainment of the required detection limit due to the presence of residual background DNA. To address this issue, various methods have been developed to enhance sensitivity through targeted pre-amplification of marker sequences. Diagnostic sensitivity to the single molecular level is critical, particularly when identifying bloodstream infections. In cases of clinically manifest sepsis, the concentration of bacteria in the blood may reach as low as one bacterial cell/CFU per mL of blood. Therefore, it is crucial to achieve the highest level of sensitivity for accurate detection. In the present study, we have established a method that fills the analytical gap between low concentrations of molecular markers and the minimum requirements for molecular testing. For this purpose, a sample preparation of whole blood samples with a directly downstream pre-amplification was developed, which amplifies specific species and resistance markers in a multiplex procedure. When applying pre-amplification techniques, the sensitivity of the pathogen detection in whole blood samples was up to 100 times higher than in non-pre-amplified samples. The method was tested with blood samples that were spiked with several Gram-positive and Gram-negative bacterial pathogens. By applying this method to artificial spiked blood samples, it was possible to demonstrate a sensitivity of 1 colony-forming unit (CFU) per millilitre of blood for S. aureus and E. faecium. A detection limit of 28 and 383 CFU per ml of blood was achieved for E. coli and K. pneumoniae, respectively. If the sensitivity is also confirmed for real clinical blood samples from septic patients, the novel technique can be used for pathogen detection without cultivation, which might help to accelerate diagnostics and, thus, to decrease sepsis mortality rates.
Collapse
Affiliation(s)
- Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sascha Daniel Braun
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Oliver Lemuth
- InfectoGnostics Research Campus, 07743 Jena, Germany
- BLINK AG, 07747 Jena, Germany
| | - Ines Engelmann
- InfectoGnostics Research Campus, 07743 Jena, Germany
- BLINK AG, 07747 Jena, Germany
| | - Theresa Liebe
- InfectoGnostics Research Campus, 07743 Jena, Germany
- BLINK AG, 07747 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
4
|
Song J, Lin S, Zhu L, Lin Y, An W, Zhang J, Wang H, Yang Z, Liao Y, Xu Y, Li Q. Direct identification of pathogens via microbial cellular DNA in whole blood by MeltArray. Microb Biotechnol 2024; 17:e14380. [PMID: 38084800 PMCID: PMC10832520 DOI: 10.1111/1751-7915.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 02/03/2024] Open
Abstract
Rapid identification of pathogens is critical for early and appropriate treatment of bloodstream infections. The various culture-independent assays that have been developed often have long turnaround times, low sensitivity and narrow pathogen coverage. Here, we propose a new multiplex PCR assay, MeltArray, which uses intact microbial cells as the source of genomic DNA (gDNA). The successive steps of the MeltArray assay, including selective lysis of human cells, microbial cell sedimentation, microbial cellular DNA extraction, target-specific pre-amplification and multiplex PCR detection, allowed the detection of 35 major bloodstream infectious pathogens in whole blood within 5.5 h. The limits of detection varied depending on the pathogen and ranged from 1 to 5 CFU/mL. Of 443 blood culture samples, including 373 positive blood culture samples and 70 negative blood culture samples, the MeltArray assay showed a sensitivity of 93.8% (350/373, 95% confidence interval [CI] = 90.7%-96.0%), specificity of 98.6% (69/70, 95% CI = 91.2%-99.9%), positive predictive value of 99.7% (95% CI = 98.1%-99.9%), and negative predictive value of 75.0% (95% CI = 64.7%-83.2%). The MeltArray detection results of 16 samples differed from MALDI-TOF and were confirmed by Sanger sequencing. Further testing of 110 whole blood samples from patients with suspected bloodstream infections using blood culture results revealed that the MeltArray assay had a clinical sensitivity of 100% (9/9, 95% CI = 62.8%-100.0%), clinical specificity of 74.5% (70/94, 95% CI = 64.2%-82.7%), positive predictive value of 27.3% (95% CI = 13.9%-45.8%), and negative predictive value of 100.0% (95% CI = 93.5%-100.0%). Compared with metagenomic next-generation sequencing, the MeltArray assay displayed a positive agreement of 85.7% (6/7, 95% CI = 42.0%-99.2%) and negative agreement of 100.0% (4/4, 95% CI = 39.6%-100.0%). We conclude that the MeltArray assay can be used as a rapid and reliable tool for direct identification of pathogens in bloodstream infections.
Collapse
Affiliation(s)
- Jiabao Song
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life SciencesXiamen UniversityXiamenChina
| | - Su Lin
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life SciencesXiamen UniversityXiamenChina
| | - Lin Zhu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life SciencesXiamen UniversityXiamenChina
| | - Yong Lin
- Zhongshan HospitalXiamen UniversityXiamenChina
| | - Wenbin An
- Xiang'an HospitalXiamen UniversityXiamenChina
| | - Jinding Zhang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life SciencesXiamen UniversityXiamenChina
| | - Haohao Wang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life SciencesXiamen UniversityXiamenChina
| | - Zhuan Yang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life SciencesXiamen UniversityXiamenChina
| | - Yiqun Liao
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life SciencesXiamen UniversityXiamenChina
| | - Ye Xu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life SciencesXiamen UniversityXiamenChina
| | - Qingge Li
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life SciencesXiamen UniversityXiamenChina
| |
Collapse
|
5
|
Zhang X, Wang Y, Pen D, Liu J, Zhou Q, Wang Y, Zhong H, Liu T, Chen W, Wu B, Zhou Y, Wang C, Li X, Yu F, Wang X, Lu G, Yan G. Diagnosis of mixed infection and a primary immunodeficiency disease using next-generation sequencing: a case report. Front Cell Infect Microbiol 2023; 13:1179090. [PMID: 37674579 PMCID: PMC10477990 DOI: 10.3389/fcimb.2023.1179090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Major Histocompatibility Complex Class II (MHC II) deficiency is a rare primary immunodeficiency disorder (PID) with autosomal recessive inheritance pattern. The outcome is almost fatal owing to delayed diagnosis and lacking of effective therapy. Therefore, prompt diagnosis, timely and effective treatment are critical. Here, we report a 117-day-old boy with diarrhea, cough, cyanosis and tachypnea who was failed to be cured by empiric antimicrobial therapy initially and progressed to severe pneumonia and respiratory failure. The patient was admitted to the pediatric intensive care unit (PICU) immediately and underwent a series of tests. Blood examination revealed elevated levels of inflammatory markers and cytomegalovirus DNA. Imaging findings showed signs of severe infection of lungs. Finally, the diagnosis was obtained mainly through next-generation sequencing (NGS). We found out what pathogenic microorganism he was infected via repeated conventional detection methods and metagenomic next-generation sequencing (mNGS) of sputum and bronchoalveolar lavage fluid (BALF). And his whole exome sequencing (WES) examination suggested that CIITA gene was heterozygous mutation, a kind of MHC II deficiency diseases. After aggressive respiratory support and repeated adjustment of antimicrobial regimens, the patient was weaned from ventilator on the 56th day of admission and transferred to the immunology ward on the 60th day. The patient was successful discharged after hospitalizing for 91 days, taking antimicrobials orally to prevent infections post-discharge and waiting for stem cell transplantation. This case highlights the potential importance of NGS in providing better diagnostic testing for unexplained infection and illness. Furthermore, pathogens would be identified more accurately if conventional detection techniques were combined with mNGS.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Yixue Wang
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Daly Pen
- Department of Pediatric Intensive Care Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Jing Liu
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Qinhua Zhou
- Department of Allergy and Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yao Wang
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Huaqing Zhong
- Department of Pediatric Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Tingyan Liu
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Weiming Chen
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Shanghai Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
- National Health Commision Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Yang Zhou
- Clinical Research Department, BGI PathoGenesis Pharmaceutical Technology Co., Ltd, BGI-Shenzhen, Shenzhen, China
| | - Chuanqing Wang
- Clinical Microbiology Laboratory, Department of Nosocomial Infection Control, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiangyu Li
- Department of Laboratory Medicine, Huashan Hospital North, Fudan University, Shanghai, China
| | - Fangyou Yu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaochuan Wang
- Department of Allergy and Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
| | - Guoping Lu
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Gangfeng Yan
- Department of Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ferdousi T, Dutta AK, Chowdhury MAH, Islam K, Islam MT, Islam MZ, Bulbul MRH, Khan AI, Qadri F. Role of TaqMan array card in determining causative organisms of acute febrile illness in hospitalized patients. J Clin Lab Anal 2023; 37:e24948. [PMID: 37496432 PMCID: PMC10492456 DOI: 10.1002/jcla.24948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Acute febrile illness (AFI) is a prevalent disease in developing countries that is difficult to diagnose due to the diversity of infectious organisms and the poor quality of clinical diagnosis. TaqMan array card (TAC) can detect up to 35 AFI-associated organisms in 1.5 h, addressing diagnostic demands. In this study, we aimed to evaluate the role of TAC in determining the causative organisms in hospitalized AFI patients. METHODS The study had a cross-sectional design and enrolled 120 admitted patients with persistent fever for three or more days from the medicine ward of Chittagong Medical College Hospital (CMCH) and Bangladesh Institute of Tropical and Infectious Diseases Hospital (BITID). Blood samples were collected and then subjected to automated BacT/Alert blood culture, microbial culture, TAC assay, and typhoid/paratyphoid test. RESULTS The total number of study participants was 120, among them 48 (40%) samples showed a positive result in TAC card, 29 (24.16%) were TP positive and nine (7.51%) were culture positive. The number of organisms detected by the TAC card was 13 bacteria, three viruses, one protozoan, and one fungus. The sensitivity and specificity of the TAC assay for different bacterial pathogen compared to blood culture was 44.44%, and 90.99%, respectively. In contrast, the TP test had a sensitivity and specificity of 100% and 80%, respectively, compared to the blood culture test. CONCLUSION TAC can be a handful tool for detecting multiple organisms in AFI with high specificity which can facilitate early diagnosis of different pathogens contributing to AFI.
Collapse
Affiliation(s)
- Tabassum Ferdousi
- Bangladesh Institute of Tropical and Infectious DiseasesChattogramBangladesh
| | | | | | - Kamrul Islam
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
| | - Md. Taufiqul Islam
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
| | - Md. Zahirul Islam
- Institute for Developing Science and Health Initiatives (ideSHi)DhakaBangladesh
| | | | - Ashraful Islam Khan
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
| | - Firdausi Qadri
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b)DhakaBangladesh
| |
Collapse
|
7
|
The Clinical Impact of Metagenomic Next-Generation Sequencing (mNGS) Test in Hospitalized Patients with Suspected Sepsis: A Multicenter Prospective Study. Diagnostics (Basel) 2023; 13:diagnostics13020323. [PMID: 36673134 PMCID: PMC9857658 DOI: 10.3390/diagnostics13020323] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Background: Metagenomic Next Generation Sequencing (mNGS) has the potential to detect pathogens rapidly. We aimed to assess the diagnostic performance of mNGS in hospitalized patients with suspected sepsis and evaluate its role in guiding antimicrobial therapy. Methods: A multicenter, prospective cohort study was performed. We enrolled patients with suspected sepsis, collected clinical characteristics and blood samples, and recorded the 30-day survival. Diagnostic efficacy of mNGS test and blood culture was compared, and the clinical impact of mNGS on antibiotic regimen modification was analyzed. Results: A total of 277 patients were enrolled, and 162 were diagnosed with sepsis. The mortality was 44.8% (121/270). The mNGS test exhibited shorter turn-out time (27.0 (26.0, 29.0) vs. 96.0 (72.0, 140.3) hours, p < 0.001) and higher sensitivity (90.5% vs. 36.0%, p < 0.001) compared with blood culture, especially for fungal infections. The mNGS test showed better performance for patients with mild symptoms, prior antibiotic use, and early stage of infection than blood culture, and was capable of guiding antibiotic regimen modification and improving prognosis. Higher reads of pathogens detected by mNGS were related to 30-day mortality (p = 0.002). Conclusions: Blood mNGS testing might be helpful for early etiological diagnosis of patients with suspected sepsis, guiding the antibiotic regimen modification and improving prognosis.
Collapse
|
8
|
Zhang J, Yang F, Sun Z, Fang Y, Zhu H, Zhang D, Zeng X, Liu W, Liu T, Liu Y, Chi W, Wang S, Ding L, Wu Y, Zhang Y, Zhao H. Rapid and precise identification of bloodstream infections using a pre-treatment protocol combined with high-throughput multiplex genetic detection system. BMC Infect Dis 2022; 22:823. [DOI: 10.1186/s12879-022-07793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Bloodstream infection (BSI) is a life-threatening condition with high morbidity and mortality rates worldwide. Early diagnosis of BSI is critical to avoid the unnecessary application of antimicrobial agents and for proper treatment. However, the current standard methods based on blood culture are time-consuming, thus failing to provide a timely etiological diagnosis of BSI, and common PCR-based detection might be inhibited by matrix components.
Methods
The current study explored an integrated pre-analytical treatment protocol for whole blood samples, wherein pathogens are enriched and purified by incubation and concentration, and inhibitors are inactivated and removed. Further, this study developed and evaluated a novel high-throughput multiplex genetic detection system (HMGS) to detect 24 of the most clinically prevalent BSI pathogens in blood culture samples and pre-treated whole blood samples. The specificity and sensitivity were evaluated using related reference strains and quantified bacterial/fungal suspensions. The clinical utility of BSI-HMGS combined with the pre-analytical treatment protocol was verified using blood cultures and whole blood samples.
Results
The combined pre-treatment protocol and BSI-HMGS was highly specific for target pathogens and possessed a low detection limit for clinical whole blood samples. The pre-treatment protocol could deplete the PCR inhibitors effectively. For blood culture samples, the current method showed 100.0% negative percent agreements and > 87.5% positive percent agreements compared to the reference results based on blood culture findings. For whole blood samples, the current method showed 100.0% negative percent agreements and > 80.0% positive percent agreements compared to the reference results for most pathogens. The turnaround time was ≤ 8 h, and all the procedures could be conducted in a general clinical laboratory.
Conclusion
The BSI-HMGS combined with the pre-treatment protocol was a practical and promising method for early and precise detection of BSIs, especially for areas without access to advanced medical facilities.
Collapse
|
9
|
Bonini A, Carota AG, Poma N, Vivaldi FM, Biagini D, Bottai D, Lenzi A, Tavanti A, Di Francesco F, Lomonaco T. Emerging Biosensing Technologies towards Early Sepsis Diagnosis and Management. BIOSENSORS 2022; 12:894. [PMID: 36291031 PMCID: PMC9599348 DOI: 10.3390/bios12100894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Sepsis is defined as a systemic inflammatory dysfunction strictly associated with infectious diseases, which represents an important health issue whose incidence is continuously increasing worldwide. Nowadays, sepsis is considered as one of the main causes of death that mainly affects critically ill patients in clinical settings, with a higher prevalence in low-income countries. Currently, sepsis management still represents an important challenge, since the use of traditional techniques for the diagnosis does not provide a rapid response, which is crucial for an effective infection management. Biosensing systems represent a valid alternative due to their characteristics such as low cost, portability, low response time, ease of use and suitability for point of care/need applications. This review provides an overview of the infectious agents associated with the development of sepsis and the host biomarkers suitable for diagnosis and prognosis. Special focus is given to the new emerging biosensing technologies using electrochemical and optical transduction techniques for sepsis diagnosis and management.
Collapse
Affiliation(s)
- Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Angela Gilda Carota
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Noemi Poma
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Federico Maria Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Daria Bottai
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Arianna Tavanti
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
10
|
Jiang S, Chen Y, Han S, Lv L, Li L. Next-Generation Sequencing Applications for the Study of Fungal Pathogens. Microorganisms 2022; 10:microorganisms10101882. [PMID: 36296159 PMCID: PMC9609632 DOI: 10.3390/microorganisms10101882] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing (NGS) has become a widely used technology in biological research. NGS applications for clinical pathogen detection have become vital technologies. It is increasingly common to perform fast, accurate, and specific detection of clinical specimens using NGS. Pathogenic fungi with high virulence and drug resistance cause life-threatening clinical infections. NGS has had a significant biotechnological impact on detecting bacteria and viruses but is not equally applicable to fungi. There is a particularly urgent clinical need to use NGS to help identify fungi causing infections and prevent negative impacts. This review summarizes current research on NGS applications for fungi and offers a visual method of fungal detection. With the development of NGS and solutions for overcoming sequencing limitations, we suggest clinicians test specimens as soon as possible when encountering infections of unknown cause, suspected infections in vital organs, or rapidly progressive disease.
Collapse
Affiliation(s)
- Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Correspondence: ; Tel.: +86-0571-8723-6458
| |
Collapse
|
11
|
Wang D, Fang S, Hu X, Xu Q, Chu X, Mei X, Xie W. Metagenomic Next-Generation Sequencing Is Highly Efficient in Diagnosing Pneumocystis Jirovecii Pneumonia in the Immunocompromised Patients. Front Microbiol 2022; 13:913405. [PMID: 35783441 PMCID: PMC9247511 DOI: 10.3389/fmicb.2022.913405] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Purposes To explore the value of metagenomic next-generation sequencing (mNGS) in diagnosing pneumocystis jiroveciipneumonia (PJP) in the immunocompromised patients. Methods Data of 122 patients with PJP in an immunosuppressed state and 67 non-PJP patients were collected. The diagnostic efficacy of mNGS was compared with the conventional methods, including Gomori methenamine silver (GMS) staining and serum (1,3)-β-D-glucan (BDG). Changes of anti-microbial therapy for patients with PJP based on mNGS results were also reviewed. Results The diagnostic sensitivity of mNGS to PJP was higher than that of GMS and BDG (100% vs. 15 and 74.5%, p < 0.001). The diagnostic specificity (91.%) was lower than that of GMS (100%), and similar with BDG (89.6%). In addition to P. jirovecii, mNGS revealed co-pathogens like human β-herpesvirus 5, human γ-pesvirus 4, and some other opportunistic pathogens. The reads of mNGS were remarkably higher in BALF than in blood samples. Initial antimicrobial treatment was modified in 89.3% patients based on the mNGS results, and 74 cases (60.7%) were treated with anti-P. jirovecii therapy. Conclusion mNGS is highly efficient in diagnosing PJP and good at identifying pathogens in mixed infections.
Collapse
Affiliation(s)
- Dongsheng Wang
- Department of Pulmonary and Critical Care Medicine, Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shihua Fang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Wannan Medical College, Wuhu, China
| | - Xiaowen Hu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qixia Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinmin Chu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaodong Mei
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Xiaodong Mei,
| | - Wang Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Wang Xie,
| |
Collapse
|
12
|
WANG Z, JIN Z. Expression and variation of serum cytokines in mouse model with different types of bacteremia. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.38820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhenhui WANG
- Maternal and Child Health Hospital of Hubei Province, China
| | - Zhengjiang JIN
- Maternal and Child Health Hospital of Hubei Province, China
| |
Collapse
|
13
|
Target-enriched sequencing enables accurate identification of bloodstream infections in whole blood. J Microbiol Methods 2021; 192:106391. [PMID: 34915067 DOI: 10.1016/j.mimet.2021.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022]
Abstract
Bloodstream infections are within the top ten causes of death globally, with a mortality rate of up to 70%. Gold standard blood culture testing is time-consuming, resulting in delayed, but accurate, treatment. Molecular methods, such as RT-qPCR, have limited targets in one run. We present a new Ampliseq detection system (ADS) combining target amplification and next-generation sequencing for accurate identification of bacteria, fungi, and antimicrobial resistance determinants directly from blood samples. In this study, we included removal of human genomic DNA during nucleic acid extraction, optimized the target sequence set and drug resistance genes, performed antimicrobial resistance profiling of clinical isolates, and evaluated mock specimens and clinical samples by ADS. ADS successfully identified pathogens at the species-level in 36 h, from nucleic acid extraction to results. Besides pathogen identification, ADS can also present drug resistance profiles. ADS enabled detection of all bacteria and accurate identification of 47 pathogens. In 20 spiked samples and 8 clinical specimens, ADS detected at least 92.81% of reads mapped to pathogens. ADS also showed consistency with the three culture-negative samples, and correctly identified pathogens in four of five culture-positive clinical blood specimens. This Ampliseq-based technology promises broad coverage and accurate pathogen identification, helping clinicians to accurately diagnose and treat bloodstream infections.
Collapse
|
14
|
Wu C, Zeng Y, He Y. Rapid visualization and detection of Staphylococcus aureus based on loop-mediated isothermal amplification. World J Microbiol Biotechnol 2021; 37:209. [PMID: 34719733 DOI: 10.1007/s11274-021-03178-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Staphylococcus aureus is a common clinical bacterial pathogen that can cause a diverse range of infections. The establishment of a rapid and reliable assay for the early diagnosis and detection of S. aureus is of great significance. In this study, we developed a closed-tube loop-mediated isothermal amplification (LAMP) assay for the visual detection of S. aureus using the colorimetric indicator hydroxy naphthol blue (HNB). The LAMP reaction was optimized by adjusting the amplification temperature, the concentrations of Mg2+, dNTP, and HNB, and the incubation time. In the optimized reaction system, the specificity of LAMP for S. aureus was 100%. The results established that this method accurately identified S. aureus, with no cross-reactivity with 14 non-S. aureus strains. The limit of detection (LOD) of LAMP was 8 copies/reaction of purified plasmid DNA or 400 colony-forming units/reaction of S. aureus. Compared with conventional PCR, LAMP lowered the LOD by tenfold. Finally, 220 clinically isolated strains of S. aureus and 149 non-S. aureus strains were used to evaluate the diagnostic efficacy of LAMP (test accuracy, 99.46%). The findings indicated that LAMP is a reliable test for S. aureus and could be a promising tool for the rapid diagnosis of S. aureus infections.
Collapse
Affiliation(s)
- Chuan Wu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yuanyuan Zeng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yang He
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
15
|
A Rapid Single-Cell Antimicrobial Susceptibility Testing Workflow for Bloodstream Infections. BIOSENSORS-BASEL 2021; 11:bios11080288. [PMID: 34436090 PMCID: PMC8391654 DOI: 10.3390/bios11080288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/17/2022]
Abstract
Bloodstream infections are a significant cause of morbidity and mortality worldwide. The rapid initiation of effective antibiotic treatment is critical for patients with bloodstream infections. However, the diagnosis of bloodborne pathogens is largely complicated by the matrix effect of blood and the lengthy blood tube culture procedure. Here we report a culture-free workflow for the rapid isolation and enrichment of bacterial pathogens from whole blood for single-cell antimicrobial susceptibility testing (AST). A dextran sedimentation step reduces the concentration of blood cells by 4 orders of magnitude in 20–30 min while maintaining the effective concentration of bacteria in the sample. Red blood cell depletion facilitates the downstream centrifugation-based enrichment step at a sepsis-relevant bacteria concentration. The workflow is compatible with common antibiotic-resistant bacteria and does not influence the minimum inhibitory concentrations. By applying a microfluidic single-cell trapping device, we demonstrate the workflow for the rapid determination of bacterial infection and antimicrobial susceptibility testing at the single-cell level. The entire workflow from blood to categorical AST result can be completed in less than two hours.
Collapse
|
16
|
Merino E, Gimeno A, Alcalde M, Coy J, Boix V, Molina-Pardines C, Ventero MP, Galiana A, Caro E, Rodríguez JC. Impact of Sepsis Flow Chip, a novelty fast microbiology method, in the treatment of bacteremia caused by Gram-negative bacilli. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2021; 34:193-199. [PMID: 33764003 PMCID: PMC8179947 DOI: 10.37201/req/109.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objective The aim of this study was to assess the impact of the information provided by the new Sepsis Chip Flow system (SFC) and other fast microbiological techniques on the selection of the appropriate antimicrobial treatment by the clinical researchers of an antimicrobial stewardship team. Methods Two experienced clinical researchers performed the theoretical exercise of independently selecting the treatment for patients diagnosed by bacteremia due to bacilli gram negative (BGN). At first, the clinicians had only available the clinical characteristics of 74 real patients. Sequentially, information regarding the Gram stain, MALDI-TOF, and SFC from Vitro were provided. Initially, the researchers prescribed an antimicrobial therapy based on the clinical data, later these data were complementing with information from microbiological techniques, and the clinicians made their decisions again. Results The data provided by the Gram stain reduced the number of patients prescribed with combined treatments (for clinician 1, from 23 to 7, and for clinician 2, from 28 to 12), but the use of carbapenems remained constant. In line with this, the data obtained by the MALDI-TOF also decreased the combined treatment, and the use of carbapenems remained unchanged. By contrast, the data on antimicrobial resistance provided by the SFC reduced the carbapenems treatment. Conclusions From the theoretical model the Gram stain and the MALDI-TOF results achieved a reduction in the combined treatment. However, the new system tested (SFC), due to the resistance mechanism data provided, not only reduced the combined treatment, it also decreased the prescription of the carbapenems.
Collapse
Affiliation(s)
| | | | | | | | | | - C Molina-Pardines
- Carmen Molina Pardines, Department of Microbiology, General University Hospital of Alicante-ISABIAL, Spain.
| | | | | | | | | |
Collapse
|
17
|
Protonotariou E, Meletis G, Papadopoulou D, Kachrimanidou M, Toptsi L, Skoura L. Evaluation of the "AMR Direct Flow Chip Kit" DNA microarray for detecting antimicrobial resistance genes directly from rectal and nasopharyngeal clinical samples upon ICU admission. ACTA ACUST UNITED AC 2021; 39:276-278. [PMID: 34088447 DOI: 10.1016/j.eimce.2020.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/13/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Prompt detection of antibiotic resistance genes in healthcare institutions is of utmost importance in tackling the spread of multi-drug resistant micro-organisms. We evaluated the Antimicrobial Resistance (AMR) Direct Flow Chip Kit versus phenotypic screening assays for rectal and nasopharyngeal specimens upon ICU admission. METHODS A total of 184 dual specimens (92 rectal and 92 nasopharyngeal swabs) from 92 patients were collected from 11/2017 to 8/2018. All swabs were subjected to both AMR and phenotypic tests according to their origin. The degree of agreement of the two methods was assessed by the kappa coefficient. RESULTS The kappa coefficient showed perfect agreement for MRSA, ESBLs, oxacillinases and vancomycin resistance genes (1.000, p<0.01) and very good agreement for mecA-positive CoNS, KPC-carbapenemases and metallo-beta-lactamases (0.870, p<0.01; 0.864, p<0.01; and 0.912, p<0.01, respectively). CONCLUSION The AMR Direct Flow Chip Kit is a useful alternative to phenotypic testing for rapid detection of resistance markers.
Collapse
Affiliation(s)
| | - Georgios Meletis
- Department of Microbiology, AHEPA University Hospital, Thessaloniki, Greece
| | | | | | - Lilian Toptsi
- Department of Microbiology, AHEPA University Hospital, Thessaloniki, Greece
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
18
|
Abd El-Aziz NK, Gharib AA, Mohamed EAA, Hussein AH. Real-time PCR versus MALDI-TOF MS and culture-based techniques for diagnosis of bloodstream and pyogenic infections in humans and animals. J Appl Microbiol 2020; 130:1630-1644. [PMID: 33073430 DOI: 10.1111/jam.14862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
AIMS This study was applied to evaluate the usefulness of a high-throughput sample preparation protocol prior to the application of quantitative real-time PCR (qPCR) for the early diagnosis of bloodstream and pyogenic infections in humans and animals compared to matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and classical culture. METHODS AND RESULTS Saponin-mediated selective host cell lysis combined with DNase-1 was applied for processing of whole blood and pus clinical samples collected from suspected cases of septicaemia and pyogenic infections in humans and animals. The pre-PCR processing strategy enabled the recovery of microbial cells with no changes in their colony forming units immediately after the addition of saponin. DNase-1 was efficient for removing the DNAs from the host cells as well as dead cells with damaged cell membranes. The metagenomic qPCR and MALDI-TOF MS could identify the bacterial community of sepsis at species level with a concordance of 97·37% unlike the conventional culture. According to qPCR results, Staphylococcus aureus (24·24%) was predominated in animal pyogenic infections, whereas Klebsiella pneumonia (31·81%) was commonly detected in neonatal sepsis. CONCLUSIONS Saponin combined with DNase-1 allowed the efficient recovery of microbial DNA from blood and pus samples in sepsis using qPCR assay. SIGNIFICANCE AND IMPACT OF THE STUDY Metagenomic qPCR could identify a broad range of bacteria directly from blood and pus with more sensitivity, higher discriminatory power and shorter turnaround time than those using MALDI-TOF MS and conventional culture. This might allow a timely administration of a prompt treatment.
Collapse
Affiliation(s)
- N K Abd El-Aziz
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - A A Gharib
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - E A A Mohamed
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - A H Hussein
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Evaluation of the "AMR Direct Flow Chip Kit" DNA microarray for detecting antimicrobial resistance genes directly from rectal and nasopharyngeal clinical samples upon ICU admission. Enferm Infecc Microbiol Clin 2020. [PMID: 32665077 DOI: 10.1016/j.eimc.2020.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Prompt detection of antibiotic resistance genes in healthcare institutions is of utmost importance in tackling the spread of multi-drug resistant micro-organisms. We evaluated the Antimicrobial Resistance (AMR) Direct Flow Chip Kit versus phenotypic screening assays for rectal and nasopharyngeal specimens upon ICU admission. METHODS A total of 184 dual specimens (92 rectal and 92 nasopharyngeal swabs) from 92 patients were collected from 11/2017 to 8/2018. All swabs were subjected to both AMR and phenotypic tests according to their origin. The degree of agreement of the two methods was assessed by the kappa coefficient. RESULTS The kappa coefficient showed perfect agreement for MRSA, ESBLs, oxacillinases and vancomycin resistance genes (1.000, p<0.01) and very good agreement for mecA-positive CoNS, KPC-carbapenemases and metallo-beta-lactamases (0.870, p<0.01; 0.864, p<0.01; and 0.912, p<0.01, respectively). CONCLUSION The AMR Direct Flow Chip Kit is a useful alternative to phenotypic testing for rapid detection of resistance markers.
Collapse
|
20
|
Detection of pathogenic microorganisms from bloodstream infection specimens using TaqMan array card technology. Sci Rep 2018; 8:12828. [PMID: 30150783 PMCID: PMC6110752 DOI: 10.1038/s41598-018-31200-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/14/2018] [Indexed: 12/28/2022] Open
Abstract
Bloodstream infections (BSIs) are often life-threatening, and rapid identification is critical. Here, we developed a TaqMan array card (TAC) assay to detect pathogens in BSI specimens. The TAC included 30 primer/probe pairs targeting 27 species and 3 controls. Reverse transcription and 0.1% blue dextran 2000 increased the TAC assay efficiency. The primer/probe pairs had a limit of detection of 100–102 CFU/mL and a specificity of 100%. For whole blood specimens, the TAC assay showed a sensitivity and specificity of 79.4% and 99.69%, respectively. For blood culture samples, the TAC assay showed a sensitivity and specificity of 100% and 99.67%, respectively. The TAC assay could be a promising method for early detection of bloodstream infection.
Collapse
|
21
|
van de Groep K, Bos MP, Savelkoul PHM, Rubenjan A, Gazenbeek C, Melchers WJG, van der Poll T, Juffermans NP, Ong DSY, Bonten MJM, Cremer OL. Development and first evaluation of a novel multiplex real-time PCR on whole blood samples for rapid pathogen identification in critically ill patients with sepsis. Eur J Clin Microbiol Infect Dis 2018; 37:1333-1344. [PMID: 29700761 PMCID: PMC6015113 DOI: 10.1007/s10096-018-3255-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Molecular tests may enable early adjustment of antimicrobial therapy and be complementary to blood culture (BC) which has imperfect sensitivity in critically ill patients. We evaluated a novel multiplex real-time PCR assay to diagnose bloodstream pathogens directly in whole blood samples (BSI-PCR). BSI-PCR included 11 species- and four genus-specific PCRs, a molecular Gram-stain PCR, and two antibiotic resistance markers. We collected 5 mL blood from critically ill patients simultaneously with clinically indicated BC. Microbial DNA was isolated using the Polaris method followed by automated DNA extraction. Sensitivity and specificity were calculated using BC as reference. BSI-PCR was evaluated in 347 BC-positive samples (representing up to 50 instances of each pathogen covered by the test) and 200 BC-negative samples. Bacterial species-specific PCR sensitivities ranged from 65 to 100%. Sensitivity was 26% for the Gram-positive PCR, 32% for the Gram-negative PCR, and ranged 0 to 7% for yeast PCRs. Yeast detection was improved to 40% in a smaller set-up. There was no overall association between BSI-PCR sensitivity and time-to-positivity of BC (which was highly variable), yet Ct-values were lower for true-positive versus false-positive PCR results. False-positive results were observed in 84 (4%) of the 2200 species-specific PCRs in 200 culture-negative samples, and ranged from 0 to 6% for generic PCRs. Sensitivity of BSI-PCR was promising for individual bacterial pathogens, but still insufficient for yeasts and generic PCRs. Further development of BSI-PCR will focus on improving sensitivity by increasing input volumes and on subsequent implementation as a bedside test.
Collapse
Affiliation(s)
- Kirsten van de Groep
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands. .,Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Room F06.149, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | | | - Paul H M Savelkoul
- Microbiome, Amsterdam, the Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Amsterdam, the Netherlands.,Department of Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - David S Y Ong
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Room F06.149, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marc J M Bonten
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Olaf L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Room F06.149, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | | |
Collapse
|
22
|
Rello J, van Engelen TSR, Alp E, Calandra T, Cattoir V, Kern WV, Netea MG, Nseir S, Opal SM, van de Veerdonk FL, Wilcox MH, Wiersinga WJ. Towards precision medicine in sepsis: a position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin Microbiol Infect 2018; 24:1264-1272. [PMID: 29581049 DOI: 10.1016/j.cmi.2018.03.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/06/2018] [Accepted: 03/10/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Our current understanding of the pathophysiology and management of sepsis is associated with a lack of progress in clinical trials, which partly reflects insufficient appreciation of the heterogeneity of this syndrome. Consequently, more patient-specific approaches to treatment should be explored. AIMS To summarize the current evidence on precision medicine in sepsis, with an emphasis on translation from theory to clinical practice. A secondary objective is to develop a framework enclosing recommendations on management and priorities for further research. SOURCES A global search strategy was performed in the MEDLINE database through the PubMed search engine (last search December 2017). No restrictions of study design, time, or language were imposed. CONTENT The focus of this Position Paper is on the interplay between therapies, pathogens, and the host. Regarding the pathogen, microbiologic diagnostic approaches (such as blood cultures (BCs) and rapid diagnostic tests (RDTs)) are discussed, as well as targeted antibiotic treatment. Other topics include the disruption of host immune system and the use of biomarkers in sepsis management, patient stratification, and future clinical trial design. Lastly, personalized antibiotic treatment and stewardship are addressed (Fig. 1). IMPLICATIONS A road map provides recommendations and future perspectives. RDTs and identifying drug-response phenotypes are clear challenges. The next step will be the implementation of precision medicine to sepsis management, based on theranostic methodology. This highly individualized approach will be essential for the design of novel clinical trials and improvement of care pathways.
Collapse
Affiliation(s)
- J Rello
- CIBERES, Vall d'Hebron Barcelona Campus Hospital, European Study Group of Infections in Critically Ill Patients (ESGCIP), Barcelona, Spain.
| | - T S R van Engelen
- Centre for Experimental Molecular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - E Alp
- Department of Infectious Diseases, Infection Control Committee, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - T Calandra
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - V Cattoir
- University Hospital of Rennes, Department of Clinical Microbiology, Rennes, France and National Reference Center for Antimicrobial Resistance (lab Enterococci), Rennes, France
| | - W V Kern
- Division of Infectious Diseases, Department of Medicine, University Hospital and Medical Centre, Albert-Ludwigs-University Faculty of Medicine, Freiburg, Germany; Executive Committee of ESCMID Study Group for Bloodstream Infections and Sepsis (ESGBIS), The Netherlands
| | - M G Netea
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - S Nseir
- Faculté de Médecine, University of Lille and Centre de Réanimation, CHU Lille, Lille, France
| | - S M Opal
- Brown University, Infectious Diseases, Providence, RI, USA
| | - F L van de Veerdonk
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - M H Wilcox
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, University of Leeds, Leeds, UK
| | - W J Wiersinga
- Centre for Experimental Molecular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Department of Medicine, Division of Infectious Diseases, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Executive Committee of ESCMID Study Group for Bloodstream Infections and Sepsis (ESGBIS), The Netherlands.
| |
Collapse
|
23
|
Nazemi E, Hassen WM, Frost EH, Dubowski JJ. Growth of Escherichia coli on the GaAs (001) surface. Talanta 2018; 178:69-77. [PMID: 29136882 DOI: 10.1016/j.talanta.2017.08.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
Detection of pathogenic bacteria and monitoring their susceptibility to antibiotics are of great importance in the fields of medicine, pharmaceutical research, as well as water and food industries. In order to develop a photonic biosensor for detection of bacteria by taking advantage of photoluminescence (PL) of GaAs-based devices, we have investigated the capture and growth of Escherichia coli K12 on bare and biofunctionalized surfaces of GaAs (001) - a material of interest for capping different semiconductor microstructures. The results were compared with the capture and growth of Escherichia coli K12 on Au surfaces that have commonly been applied for studying a variety of biological and biochemical reactions. We found that neither GaAs nor Au-coated glass wafers placed in Petri dishes inoculated with bacteria inhibited bacterial growth in nutrient agar, regardless of the wafers being bare or biofunctionalized. However, the capture and growth of bacteria on biofunctionalized surfaces of GaAs and Au wafers kept in a flow cell and exposed to different concentrations of bacteria and growth medium revealed that the initial surface coverage and the subsequent bacterial growth were dependent on the biofunctionalization architecture, with antibody-coated surfaces clearly being most efficient in capturing bacteria and offering better conditions for growth of bacteria. We have observed that, as long as the GaAs wafers were exposed to bacterial suspensions at concentrations of at least 105 CFU/mL, bacteria could grow on the surface of wafers, regardless of the type of biofunctionalization architecture used to capture the bacteria. These results provide important insight towards the successful development of GaAs-based devices designed for photonic monitoring of bacterial reactions to different biochemical environments.
Collapse
Affiliation(s)
- Elnaz Nazemi
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec, Canada J1K 0A5.
| | - Walid M Hassen
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec, Canada J1K 0A5.
| | - Eric H Frost
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec, Canada J1K 0A5; Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Québec, Canada J1H 5N4.
| | - Jan J Dubowski
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec, Canada J1K 0A5.
| |
Collapse
|
24
|
Tang YW, Stratton CW. Interpretation and Relevance of Advanced Technique Results. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7120226 DOI: 10.1007/978-3-319-95111-9_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Advanced techniques in the field of diagnostic microbiology have made amazing progress over the past 25 years due largely to a technological revolution in the molecular aspects of microbiology [1, 2]. In particular, rapid molecular methods for nucleic acid amplification and characterization combined with automation in the clinical microbiology laboratory as well as user-friendly software and robust laboratory informatics systems have significantly broadened the diagnostic capabilities of modern clinical microbiology laboratories. Molecular methods such as nucleic acid amplification tests (NAATs) rapidly are being developed and introduced in the clinical laboratory setting [3, 4]. Indeed, every section of the clinical microbiology laboratory, including bacteriology, mycology, mycobacteriology, parasitology, and virology, has benefited from these advanced techniques. Because of the rapid development and adaptation of these molecular techniques, the interpretation and relevance of the results produced by such molecular methods continues to lag behind. The purpose of this chapter is to review, update, and discuss the interpretation and relevance of results produced by these advanced molecular techniques.
Collapse
Affiliation(s)
- Yi-Wei Tang
- Departments of Laboratory Medicine and Internal Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Charles W. Stratton
- Department of Pathology, Microbiology and Immunology and Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
25
|
Dalla-Costa LM, Morello LG, Conte D, Pereira LA, Palmeiro JK, Ambrosio A, Cardozo D, Krieger MA, Raboni SM. Comparison of DNA extraction methods used to detect bacterial and yeast DNA from spiked whole blood by real-time PCR. J Microbiol Methods 2017; 140:61-66. [PMID: 28669799 DOI: 10.1016/j.mimet.2017.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022]
Abstract
Sepsis is the leading cause of death in intensive care units (ICUs) worldwide and its diagnosis remains a challenge. Blood culturing is the gold standard technique for blood stream infection (BSI) identification. Molecular tests to detect pathogens in whole blood enable early use of antimicrobials and affect clinical outcomes. Here, using real-time PCR, we evaluated DNA extraction using seven manual and three automated commercially available systems with whole blood samples artificially contaminated with Escherichia coli, Staphylococcus aureus, and Candida albicans, microorganisms commonly associated with BSI. Overall, the commercial kits evaluated presented several technical limitations including long turnaround time and low DNA yield and purity. The performance of the kits was comparable for detection of high microorganism loads (106CFU/mL). However, the detection of lower concentrations was variable, despite the addition of pre-processing treatment to kits without such steps. Of the evaluated kits, the UMD-Universal CE IVD kit generated a higher quantity of DNA with greater nucleic acid purity and afforded the detection of the lowest microbial load in the samples. The inclusion of pre-processing steps with the kit seems to be critical for the detection of microorganism DNA directly from whole blood. In conclusion, future application of molecular techniques will require overcoming major challenges such as the detection of low levels of microorganism nucleic acids amidst the large quantity of human DNA present in samples or differences in the cellular structures of etiological agents that can also prevent high-quality DNA yields.
Collapse
Affiliation(s)
- Libera M Dalla-Costa
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil; Laboratory of Bacteriology, Universidade Federal do Paraná, Rua Padre Camargo, 280, - 80060-240, Curitiba, Brazil; Faculdades e Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, - 80250-200, Curitiba, Brazil
| | - Luis G Morello
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil; Laboratory of Functional Genomics, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Rua Professor Algacyr Munhoz Mader, 3775, - 81310-020, Curitiba, Brazil
| | - Danieli Conte
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil
| | - Luciane A Pereira
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil
| | - Jussara K Palmeiro
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil; Laboratory of Bacteriology, Universidade Federal do Paraná, Rua Padre Camargo, 280, - 80060-240, Curitiba, Brazil
| | - Altair Ambrosio
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil; Laboratory of Bacteriology, Universidade Federal do Paraná, Rua Padre Camargo, 280, - 80060-240, Curitiba, Brazil
| | - Dayane Cardozo
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil
| | - Marco A Krieger
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil; Laboratory of Functional Genomics, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Rua Professor Algacyr Munhoz Mader, 3775, - 81310-020, Curitiba, Brazil.
| | - Sonia M Raboni
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader, 3775, - 81925-610, Curitiba, Brazil; Infectious Disease Division, Universidade Federal do Paraná, Rua Gen. Carneiro, 181, - 80060-900, Curitiba, Brazil.
| |
Collapse
|
26
|
Galiana A, Coy J, Gimeno A, Guzman NM, Rosales F, Merino E, Royo G, Rodríguez JC. Evaluation of the Sepsis Flow Chip assay for the diagnosis of blood infections. PLoS One 2017; 12:e0177627. [PMID: 28542614 PMCID: PMC5436663 DOI: 10.1371/journal.pone.0177627] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 05/01/2017] [Indexed: 01/30/2023] Open
Abstract
Background Blood infections are serious complex conditions that generally require rapid diagnosis and treatment. The big challenge is to reduce the time necessary to make a diagnosis with current clinical microbiological methods so as to improve the treatment given to patients. Methods In this study, we assess for the first time the Sepsis Flow Chip assay, which is a novel diagnostic assay for simultaneous rapid-detection of the vast majority of bloodstream pathogens, including Gram-positive and Gram-negative bacteria and fungi, in the same assay, and for the detection of most common antibiotic resistance genes. The SFC assay is based on multiplex PCR and low density DNA arrays. Results Positive blood cultures from 202 consecutive bacteremia patients were analyzed by SFC assay and the results were compared with the results obtained by the gold standard methodology used in clinical microbiology diagnostic laboratories (EUCAST guidelines). SFC assay overall sensitivity and specificity for bacterial identification were 93.3% and 100% respectively and sensitivity and specificity for the identification of antibiotic genetic resistance determinants were 93.6% and 100% respectively. Conclusions This is the first evaluation of SFC assay in clinical samples. This new method appears to be very promising by combining the high number of distinct pathogens and genetic resistance determinants identified in a single assay. Further investigations should be done to evaluate the usefulness of this assay in combination with clinical multidisciplinary groups (stewardship), in order for the results to be applied appropriately to the management of patients`infectious processes.
Collapse
Affiliation(s)
- Antonio Galiana
- Department of Microbiology, Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO) Elche, Spain
| | - Javier Coy
- Department of Microbiology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL - FISABIO), Alicante, Spain
| | - Adelina Gimeno
- Department of Microbiology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL - FISABIO), Alicante, Spain
| | - Noemi Marco Guzman
- Department of Microbiology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL - FISABIO), Alicante, Spain
| | - Francisco Rosales
- Department of Microbiology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL - FISABIO), Alicante, Spain
| | - Esperanza Merino
- Department of Infectious Diseases, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL - FISABIO), Alicante, Spain
| | - Gloria Royo
- Department of Microbiology, Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO) Elche, Spain
| | - Juan Carlos Rodríguez
- Department of Microbiology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL - FISABIO), Alicante, Spain
- * E-mail:
| |
Collapse
|
27
|
Andini N, Wang B, Athamanolap P, Hardick J, Masek BJ, Thair S, Hu A, Avornu G, Peterson S, Cogill S, Rothman RE, Carroll KC, Gaydos CA, Wang JTH, Batzoglou S, Yang S. Microbial Typing by Machine Learned DNA Melt Signatures. Sci Rep 2017; 7:42097. [PMID: 28165067 PMCID: PMC5292719 DOI: 10.1038/srep42097] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/05/2017] [Indexed: 11/09/2022] Open
Abstract
There is still an ongoing demand for a simple broad-spectrum molecular diagnostic assay for pathogenic bacteria. For this purpose, we developed a single-plex High Resolution Melt (HRM) assay that generates complex melt curves for bacterial identification. Using internal transcribed spacer (ITS) region as the phylogenetic marker for HRM, we observed complex melt curve signatures as compared to 16S rDNA amplicons with enhanced interspecies discrimination. We also developed a novel Naïve Bayes curve classification algorithm with statistical interpretation and achieved 95% accuracy in differentiating 89 bacterial species in our library using leave-one-out cross-validation. Pilot clinical validation of our method correctly identified the etiologic organisms at the species-level in 59 culture-positive mono-bacterial blood culture samples with 90% accuracy. Our findings suggest that broad bacterial sequences may be simply, reliably and automatically profiled by ITS HRM assay for clinical adoption.
Collapse
Affiliation(s)
- Nadya Andini
- Emergency Medicine, Stanford University, Stanford, California, 94305, USA
| | - Bo Wang
- Computer Science, Stanford University, Stanford, California, 94305, USA
| | - Pornpat Athamanolap
- Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Justin Hardick
- Infectious Disease, Medicine, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Billie J Masek
- Emergency Medicine, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Simone Thair
- Emergency Medicine, Stanford University, Stanford, California, 94305, USA
| | - Anne Hu
- Emergency Medicine, Stanford University, Stanford, California, 94305, USA
| | - Gideon Avornu
- Emergency Medicine, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Stephen Peterson
- Emergency Medicine, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Steven Cogill
- Emergency Medicine, Stanford University, Stanford, California, 94305, USA
| | - Richard E Rothman
- Infectious Disease, Medicine, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Emergency Medicine, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Karen C Carroll
- Medical Microbiology, Pathology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Charlotte A Gaydos
- Infectious Disease, Medicine, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Emergency Medicine, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Jeff Tza-Huei Wang
- Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Serafim Batzoglou
- Computer Science, Stanford University, Stanford, California, 94305, USA
| | - Samuel Yang
- Emergency Medicine, Stanford University, Stanford, California, 94305, USA
| |
Collapse
|
28
|
Abeyrathne CD, Huynh DH, Mcintire TW, Nguyen TC, Nasr B, Zantomio D, Chana G, Abbott I, Choong P, Catton M, Skafidas E. Lab on a chip sensor for rapid detection and antibiotic resistance determination of Staphylococcus aureus. Analyst 2017; 141:1922-9. [PMID: 26811849 DOI: 10.1039/c5an02301g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Gram-positive bacterium, Staphylococcus aureus (S. aureus), is a major pathogen responsible for a variety of infectious diseases ranging from cellulitis to more serious conditions such as septic arthritis and septicaemia. Timely treatment with appropriate antibiotic therapy is essential to ensure clinical defervescence and to prevent further complications such as infective endocarditis or organ impairment due to septic shock. To date, initial antibiotic choice is empirical, using a "best guess" of likely organism and sensitivity- an approach adopted due to the lack of rapid identification methods for bacteria. Current culture based methods take up to 5 days to identify the causative bacterial pathogen and its antibiotic sensitivity. This paper provides proof of concept for a biosensor, based on interdigitated electrodes, to detect the presence of S. aureus and ascertain its sensitivity to flucloxacillin rapidly (within 2 hours) in a cost effective manner. The proposed method is label-free and uses non-faradic measurements. This is the first study to successfully employ interdigitated electrodes for the rapid detection of antibiotic resistance. The method described has important potential outcomes of faster definitive antibiotic treatment and more rapid clinical response to treatment.
Collapse
Affiliation(s)
- Chathurika D Abeyrathne
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3053, Australia. and Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Duc H Huynh
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3053, Australia. and Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Thomas W Mcintire
- Melbourne Medical School, The University of Melbourne, Victoria 3010, Australia
| | - Thanh C Nguyen
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3053, Australia. and Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Babak Nasr
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3053, Australia. and Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Daniela Zantomio
- Department of Haematology, Austin Health, Victoria 3084, Australia
| | - Gursharan Chana
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3053, Australia. and Department of Psychiatry, Royal Melbourne Hospital, The University of Melbourne, Victoria 3050, Australia
| | - Iain Abbott
- Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Victoria 3000, Australia
| | - Peter Choong
- Department of Surgery at St. Vincent's Hospital, University of Melbourne, Victoria 3000, Australia
| | - Mike Catton
- Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Victoria 3000, Australia
| | - Efstratios Skafidas
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3053, Australia. and Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia and Department of Psychiatry, Royal Melbourne Hospital, The University of Melbourne, Victoria 3050, Australia
| |
Collapse
|
29
|
Aloisio M, Licastro D, Caenazzo L, Torboli V, D'Eustacchio A, Severini GM, Athanasakis E. A technical application of quantitative next generation sequencing for chimerism evaluation. Mol Med Rep 2016; 14:2967-74. [PMID: 27499173 PMCID: PMC5042788 DOI: 10.3892/mmr.2016.5593] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/12/2016] [Indexed: 11/24/2022] Open
Abstract
At present, the most common genetic diagnostic method for chimerism evaluation following hematopoietic stem cell transplantation is microsatellite analysis by capillary electrophoresis. The main objective was to establish, through repeated analysis over time, if a complete chimerism was present, or if the mixed chimerism was stable, increasing or decreasing over time. Considering the recent introduction of next generation sequencing (NGS) in clinical diagnostics, a detailed study evaluating an NGS protocol was conducted, coupled with a custom bioinformatics pipeline, for chimerism quantification. Based on the technology of Ion AmpliSeq, a 44-amplicon custom chimerism panel was designed, and a custom bioinformatics pipeline dedicated to the genotyping and quantification of NGS data was coded. The custom chimerism panel allowed identification of an average of 16 informative recipient alleles. The limit of detection of the protocol was fixed at 1% due to the NGS background (<1%). The protocol followed the standard Ion AmpliSeq library preparation and Ion Torrent Personal Genome Machine guidelines. Overall, the present study added to the scientific literature, identifying novel technical details for a possible future application of NGS for chimerism quantification.
Collapse
Affiliation(s)
| | - Danilo Licastro
- Cluster in Biomedicine, CBM S.c.r.l., Bioinformatic Services, Area Science Park, I‑34149 Basovizza, Italy
| | - Luciana Caenazzo
- Department of Molecular Medicine, University of Padova, I‑35121 Padova, Italy
| | - Valentina Torboli
- Department of Life Sciences, University of Trieste, I‑34127 Trieste, Italy
| | - Angela D'Eustacchio
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', I‑34137 Trieste, Italy
| | - Giovanni Maria Severini
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', I‑34137 Trieste, Italy
| | - Emmanouil Athanasakis
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', I‑34137 Trieste, Italy
| |
Collapse
|
30
|
Duplex DNA-Invading γ-Modified Peptide Nucleic Acids Enable Rapid Identification of Bloodstream Infections in Whole Blood. mBio 2016; 7:e00345-16. [PMID: 27094328 PMCID: PMC4850259 DOI: 10.1128/mbio.00345-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bloodstream infections are a leading cause of morbidity and mortality. Early and targeted antimicrobial intervention is lifesaving, yet current diagnostic approaches fail to provide actionable information within a clinically viable time frame due to their reliance on blood culturing. Here, we present a novel pathogen identification (PID) platform that features the use of duplex DNA-invading γ-modified peptide nucleic acids (γPNAs) for the rapid identification of bacterial and fungal pathogens directly from blood, without culturing. The PID platform provides species-level information in under 2.5 hours while reaching single-CFU-per-milliliter sensitivity across the entire 21-pathogen panel. The clinical utility of the PID platform was demonstrated through assessment of 61 clinical specimens, which showed >95% sensitivity and >90% overall correlation to blood culture findings. This rapid γPNA-based platform promises to improve patient care by enabling the administration of a targeted first-line antimicrobial intervention. Bloodstream infections continue to be a major cause of death for hospitalized patients, despite significant improvements in both the availability of treatment options as well their application. Since early and targeted antimicrobial intervention is one of the prime determinants of patient outcome, the rapid identification of the pathogen can be lifesaving. Unfortunately, current diagnostic approaches for identifying these infections all rely on time-consuming blood culture, which precludes immediate intervention with a targeted antimicrobial. To address this, we have developed and characterized a new and comprehensive methodology, from patient specimen to result, for the rapid identification of both bacterial and fungal pathogens without the need for culturing. We anticipate broad interest in our work, given the novelty of our technical approach combined with an immense unmet need.
Collapse
|
31
|
Direct Screening of Blood by PCR and Pyrosequencing for a 16S rRNA Gene Target from Emergency Department and Intensive Care Unit Patients Being Evaluated for Bloodstream Infection. J Clin Microbiol 2015; 54:99-105. [PMID: 26511737 DOI: 10.1128/jcm.02394-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/22/2015] [Indexed: 11/20/2022] Open
Abstract
Here we compared the results of PCR/pyrosequencing to those of culture for detecting bacteria directly from blood. DNA was extracted from 1,130 blood samples from 913 patients suspected of bacteremia (enrollment criteria were physician-ordered blood culture and complete blood count [CBC]), and 102 controls (healthy blood donors). Real-time PCR assays for beta-globin and Universal 16S rRNA gene targets were performed on all 1,232 extracts. Specimens identified by Universal 16S rRNA gene PCR/pyrosequencing as containing staphylococci, streptococci, or enteric Gram-negative rods had target-specific PCR/pyrosequencing performed. Amplifiable beta-globin (melting temperature [Tm], 87.2°C ± 0.2°C) occurred in 99.1% (1,120/1,130) of patient extracts and 100% (102/102) of controls. Concordance between PCR/pyrosequencing and culture was 96.9% (1,085/1,120) for Universal 16S rRNA gene targets, with positivity rates of 9.4% (105/1,120) and 11.3% (126/1,120), respectively. Bacteria cultured included staphylococci (59/126, 46.8%), Gram-negative rods (34/126, 27%), streptococci (32/126, 25.4%), and a Gram-positive rod (1/126, 0.8%). All controls screened negative by PCR/pyrosequencing. Clinical performance characteristics (95% confidence interval [CI]) for Universal 16S rRNA gene PCR/pyrosequencing included sensitivity of 77.8% (69.5 to 84.7), specificity of 99.3% (98.6 to 99.7), positive predictive value (PPV) of 93.3% (86.8 to 97.3), and negative predictive value (NPV) of 97.2% (96.0 to 98.2). Bacteria were accurately identified in 77.8% (98/126) of culture-confirmed sepsis samples with Universal 16S PCR/pyrosequencing and in 76.4% (96/126) with follow-up target-specific PCR/pyrosequencing. The initial PCR/pyrosequencing took ∼5.5 h to complete or ∼7.5 h when including target-specific PCR/pyrosequencing compared to 27.9 ± 13.6 h for Gram stain or 81.6 ± 24.0 h for phenotypic identification. In summary, this molecular approach detected the causative bacteria in over three-quarters of all culture-confirmed cases of bacteremia directly from blood in significantly less time than standard culture but cannot be used to rule out infection.
Collapse
|