1
|
Detassis S, Precazzini F, Grasso M, Del Vescovo V, Maines F, Caffo O, Campomenosi P, Denti MA. Plasma microRNA Signature as Companion Diagnostic for Abiraterone Acetate Treatment in Metastatic Castration-Resistant Prostate Cancer: A Pilot Study. Int J Mol Sci 2024; 25:5573. [PMID: 38891761 PMCID: PMC11171781 DOI: 10.3390/ijms25115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Abiraterone acetate (AA) serves as a medication for managing persistent testosterone production in patients with metastatic castration-resistant prostate cancer (mCRPC). However, its efficacy varies among individuals; thus, the identification of biomarkers to predict and follow treatment response is required. In this pilot study, we explored the potential of circulating microRNAs (c-miRNAs) to stratify patients based on their responsiveness to AA. We conducted an analysis of plasma samples obtained from a cohort of 33 mCRPC patients before and after three, six, and nine months of AA treatment. Using miRNA RT-qPCR panels for candidate discovery and TaqMan RT-qPCR for validation, we identified promising miRNA signatures. Our investigation indicated that a signature based on miR-103a-3p and miR-378a-5p effectively discriminates between non-responder and responder patients, while also following the drug's efficacy over time. Additionally, through in silico analysis, we identified target genes and transcription factors of the two miRNAs, including PTEN and HOXB13, which are known to play roles in AA resistance in mCRPC. In summary, our study highlights two c-miRNAs as potential companion diagnostics of AA in mCRPC patients, offering novel insights for informed decision-making in the treatment of mCRPC.
Collapse
Affiliation(s)
- Simone Detassis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- OPTOI Srl, Via Vienna 8, 38100 Trento, TN, Italy
| | - Francesca Precazzini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- Istituto Zooprofilattico Sperimentale Delle Venezie, Sezione di Bolzano, Via Laura Conti 4, 39100 Bolzano, BZ, Italy
| | - Margherita Grasso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- L.N.Age Srl-Link Neuroscience and Healthcare, Via Mario Savini 15, 00136 Roma, RO, Italy
| | - Valerio Del Vescovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
- Kapadi Italy Srl, Corso Italia 22, 20122 Milano, MI, Italy
| | - Francesca Maines
- Division of Oncology, Santa Chiara Hospital, Largo Medaglie D’oro 9, 38122 Trento, TN, Italy
| | - Orazio Caffo
- Division of Oncology, Santa Chiara Hospital, Largo Medaglie D’oro 9, 38122 Trento, TN, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, TN, Italy; (S.D.)
| |
Collapse
|
2
|
Pratama MY, Cavalletto L, Tiribelli C, Chemello L, Pascut D. Selection and validation of miR-1280 as a suitable endogenous normalizer for qRT-PCR Analysis of serum microRNA expression in Hepatocellular Carcinoma. Sci Rep 2020; 10:3128. [PMID: 32081930 PMCID: PMC7035418 DOI: 10.1038/s41598-020-59682-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/30/2020] [Indexed: 01/26/2023] Open
Abstract
Normalization procedures for the qRT-PCR analysis of miRNA in biological samples are recommended to reduce the variability caused by pre-analytical factors. Since there is no universal standardized normalization strategy for miRNA qRT-PCR studies, we conducted a throughout study to evaluate a panel of small non-coding RNAs (sncRNAs) as reference gene candidate for biomarker studies in serum samples of patients with hepatocellular carcinoma (HCC). Five sncRNAs (miR-1280, miR-1275, SNORD-116, SNORD-68, and U6) were chosen as candidate of reference genes. This study included 122 patients with HCC and was organized into a "pilot phase" consisting of 20 serum samples of HCC patients, and a "validation phase" of 102 patients. Expression level of these candidates were analyzed by qRT-PCR. Assessment of gene stability was performed using four different integrative platforms (geNorm NormFinder, Bestkeeper, and the Delta Ct method). To determine the gene stability during the follow-up of the patient, we extend the analysis of the validation cohort at T1 (1 month after treatment) and T2 (6 month after treatment). MiR-1280 was identified as the most stably expressed reference gene in both pilot and validation phase also during the follow-up. MiR-1280 appears a reliable reference gene candidate in biomarker studies.
Collapse
Affiliation(s)
- Muhammad Yogi Pratama
- Fondazione Italiana Fegato - ONLUS, Liver Research Center, AREA Science Park, Basovizza, Trieste, Italy
- Universitas Hasanuddin, Faculty of Medicine, Makassar, Indonesia
| | - Luisa Cavalletto
- Department of Medicine - DIMED, University-Hospital of Padova, Padova, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato - ONLUS, Liver Research Center, AREA Science Park, Basovizza, Trieste, Italy
| | - Liliana Chemello
- Department of Medicine - DIMED, University-Hospital of Padova, Padova, Italy.
| | - Devis Pascut
- Fondazione Italiana Fegato - ONLUS, Liver Research Center, AREA Science Park, Basovizza, Trieste, Italy
| |
Collapse
|
3
|
Müller V, Oliveira-Ferrer L, Steinbach B, Pantel K, Schwarzenbach H. Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer. Mol Oncol 2019; 13:1137-1149. [PMID: 30803129 PMCID: PMC6487715 DOI: 10.1002/1878-0261.12472] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 11/08/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are frequently precursor RNAs of microRNAs (miRNAs) or act as competing endogenous RNAs (ceRNAs) to interact with miRNAs. To better understand the shared impact of lncRNAs and miRNAs in the regulatory post‐transcriptional network, we focused here on the relationships between (a) lncRNA H19 and miR‐675, (b) NEAT1 and miR‐204, and (c) HOTAIR and miR‐331 in plasma of early breast cancer (BC) patients. We quantified each RNA in plasma samples of 63 BC patients and 10 healthy women by quantitative real‐time PCR. In cell culture experiments, the influence of these noncoding RNAs (ncRNAs) on proliferation and apoptosis of BC cell line MCF‐7 was examined. Plasma levels of H19 (P = 0.030), NEAT1 (P = 0.030), and miR‐331 (P = 0.012) were deregulated in BC patients compared with healthy women. In both cohorts, the concentrations of H19 correlated with those of miR‐675 (P = 0.0001). Higher H19 (P = 0.001) along with lower miR‐675 (P = 0.007) levels and higher miR‐204 (P = 0.017) along with lower NEAT1 (P = 0.030) levels were detected in plasma of HER2‐positive patients compared with the other BC subgroups. Whereas the expression of HOTAIR was below the detection level, miR‐331 levels correlated with nodal status (P = 0.002) and recurrence (P = 0.012). In cell culture experiments, a competitive impact on cell proliferation and apoptosis by these ncRNAs was also documented. Our findings describe a relationship of the plasma levels of H19/miR‐675 and NEAT1/miR‐204 in the different BC subtypes; in addition, they reveal an interplay between these lncRNAs and miRNAs in the regulatory network in MCF‐7 cells, which should also be considered in the search for new diagnostic and therapeutic markers.
Collapse
Affiliation(s)
- Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Bettina Steinbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
4
|
The current role and future directions of circulating tumor cells and circulating tumor DNA in urothelial carcinoma of the bladder. World J Urol 2018; 37:1785-1799. [DOI: 10.1007/s00345-018-2543-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
|
5
|
Chan CM, Lai KKY, Ng EKO, Kiang MN, Kwok TWH, Wang HK, Chan KW, Law TT, Tong DK, Chan KT, Lee NP, Law S. Serum microRNA-193b as a promising biomarker for prediction of chemoradiation sensitivity in esophageal squamous cell carcinoma patients. Oncol Lett 2017; 15:3273-3280. [PMID: 29435069 DOI: 10.3892/ol.2017.7698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most predominantly occurring type of esophageal cancer worldwide. Locally advanced ESCC patients are treated by neoadjuvant chemoradiation for tumor downstaging prior to tumor resection. Patients receiving this treatment have an increased expectation of cure via the following tumor resection and have better survival outcomes. However, not all patients respond well to chemoradiation and poor responders suffer from treatment-associated toxicity and complications without benefits. No method is currently available to predict patient chemoradiation response and to exclude poor responders from ineffective treatment. To address this clinical limitation, the present study aimed to identify non-invasive biomarkers for predicting patient chemoradiation response. Due to the features of microRNA (miRNA) in cancer diagnosis, prognosis and treatment response prediction, serum miRNA arrays were performed to identify potential miRNA(s) that may be used for chemoradiation response prediction in ESCC. Using an miRNA array to compare pre-treatment serum sample pools from 10 good responders and 10 poor responders, the present study identified miR-193b, miR-942 and miR-629* as candidate miRNAs for predicting chemoradiation response. Subsequent validation using reverse transcription-quantitative polymerase chain reaction confirmed that miR-193b, however not miR-942 and miR-629*, were significantly increased in sera from 24 good responders, compared with 23 poor responders. Further analyses using the receiver operating characteristic curve revealed a strong predictive power of serum miR-193b on discriminating good responders from poor responders to chemoradiation. In addition, a high serum level of miR-193b was significantly associated with better survival outcomes. Therefore, serum miR-193b may be considered a promising biomarker for predicting chemoradiation response and post-therapy survival of ESCC patients.
Collapse
Affiliation(s)
- Chung Man Chan
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Kenneth K Y Lai
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Enders K O Ng
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Mei Na Kiang
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Tiffany W H Kwok
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Hector K Wang
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Kwok Wah Chan
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Tsz Ting Law
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Daniel K Tong
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Kin Tak Chan
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Nikki P Lee
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Simon Law
- Department of Surgery, The University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
6
|
Rapisuwon S, Vietsch EE, Wellstein A. Circulating biomarkers to monitor cancer progression and treatment. Comput Struct Biotechnol J 2016; 14:211-22. [PMID: 27358717 PMCID: PMC4913179 DOI: 10.1016/j.csbj.2016.05.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022] Open
Abstract
Tumor heterogeneity is a major challenge and the root cause of resistance to treatment. Still, the standard diagnostic approach relies on the analysis of a single tumor sample from a local or metastatic site that is obtained at a given time point. Due to intratumoral heterogeneity and selection of subpopulations in diverse lesions this will provide only a limited characterization of the makeup of the disease. On the other hand, recent developments of nucleic acid sequence analysis allows to use minimally invasive serial blood samples to assess the mutational status and altered gene expression patterns for real time monitoring in individual patients. Here, we focus on cell-free circulating tumor-specific mutant DNA and RNA (including mRNA and non-coding RNA), as well as current limitations and challenges associated with circulating nucleic acids biomarkers.
Collapse
Affiliation(s)
| | | | - Anton Wellstein
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, 3970 Reservoir Rd, NW, Washington, DC 20007, USA
| |
Collapse
|
7
|
Mueller AK, Lindner K, Hummel R, Haier J, Watson DI, Hussey DJ. MicroRNAs and Their Impact on Radiotherapy for Cancer. Radiat Res 2016; 185:668-77. [PMID: 27223830 DOI: 10.1667/rr14370.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Resistance to radiation is considered to be an important reason for local failure after radiotherapy and tumor recurrence. However, the exact mechanisms of tumor resistance remain poorly understood. Current investigations of microRNAs as potential diagnostic and therapeutic tools for cancer treatment have shown promising results. With respect to radiotherapy resistance and response, there is now emerging evidence that microRNAs modulate key cellular pathways that mediate response to radiation. These data suggest that microRNAs might have significant potential as targets for the development of new therapeutic strategies to overcome radioresistance in cancer. This review summarizes the current literature pertinent to the influence of microRNAs in the response to radiotherapy for cancer treatment, with an emphasis on microRNAs as novel diagnostic and prognostic markers, as well as their potential to alter radiosensitivity.
Collapse
Affiliation(s)
| | | | - Richard Hummel
- a University Hospital of Muenster, 48149 Muenster, Germany
| | - Jörg Haier
- b Comprehensive Cancer Centre Muenster, University of Muenster, 48149 Muenster, Germany; and
| | - David I Watson
- c Flinders Medical Centre, Bedfork Park SA 5042, Australia
| | | |
Collapse
|
8
|
Tang Y, Cui Y, Li Z, Jiao Z, Zhang Y, He Y, Chen G, Cheng G, Zhou Q, Wang W, Zhou X, Luo J, Zhang S. Radiation-induced miR-208a increases the proliferation and radioresistance by targeting p21 in human lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:7. [PMID: 26754670 PMCID: PMC4710038 DOI: 10.1186/s13046-016-0285-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lung cancer has long been the most dangerous malignant tumor among males in both well developed and poorly developed countries. Radiotherapy plays a critical role in the curative management of inoperable non-small cell lung cancer (NSCLC) and is also used as a post-surgical treatment in lung cancer patients. Radioresistance is an important factor that limits the efficacy of radiotherapy for NSCLC patients. Increasing evidence suggests that microRNAs (miRNAs) possess diverse cellular regulatory roles in radiation responses. METHODS In this study, we used miRNA microarray technology to identify serum miRNAs that were differentially expressed before and after radiotherapy in lung cancer patients. We further examined the biological function of miR-208a on cell viability, apoptotic death and cell cycle distribution in human lung cancer cells and explored the probable mechanism. RESULTS Nine miRNAs, including miR-29b-3p, miR-200a-3p, and miR-126-3p were significantly down-regulated, whereas miR-208a was the only miRNA that was up-regulated in the serum of the patients after radiation treatment (P < 0.05). The expression of miR-208a could be induced by X-ray irradiation in lung cancer cells. Forced expression of miR-208a promoted cell proliferation and induced radioresistance via targeting p21 with a corresponding activation of the AKT/mTOR pathway in lung cancer cells, whereas down-regulation of miR-208a resulted in the opposite effects. In addition, down-regulation of miR-208a increased the percentage of cells undergoing apoptosis and inhibited the G1 phase arrest in NSCLC cells. Moreover, miR-208a from the serum exosome fraction of lung cancer patients could shuttle to A549 cells in a time-dependent manner, which was likely to contribute to the subsequent biological effects. CONCLUSIONS The present study provides evidence that miR-208a can affect the proliferation and radiosensitivity of human lung cancer cells by targeting p21 and can be transported by exosomes. Thus, miR-208a may serve as a potential therapeutic target for lung cancer patients.
Collapse
Affiliation(s)
- Yiting Tang
- Department of Radiation Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, 213001, China.
| | - Yayun Cui
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, 213001, China.
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China.
| | - Zhuqing Jiao
- Department School of Information Science and Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yong Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, 250117, China.
| | - Yan He
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Guangxia Chen
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou, 221002, China.
| | - Guangxia Cheng
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou, 221002, China.
| | - Qunyan Zhou
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China.
| | - Wenjie Wang
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Xifa Zhou
- Department of Radiation Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, 213001, China.
| | - Judong Luo
- Department of Radiation Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, 213001, China.
| | - Shuyu Zhang
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Schwarzenbach H. The clinical relevance of circulating, exosomal miRNAs as biomarkers for cancer. Expert Rev Mol Diagn 2015. [DOI: 10.1586/14737159.2015.1069183] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Di Paolo A, Polillo M, Lastella M, Bocci G, Del Re M, Danesi R. Methods: for studying pharmacogenetic profiles of combination chemotherapeutic drugs. Expert Opin Drug Metab Toxicol 2015; 11:1253-67. [PMID: 26037261 DOI: 10.1517/17425255.2015.1053460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Molecular and genetic analysis of tumors and individuals has led to patient-centered therapies, through the discovery and identification of genetic markers predictive of drug efficacy and tolerability. Present therapies often include a combination of synergic drugs, each of them directed against different targets. Therefore, the pharmacogenetic profiling of tumor masses and patients is becoming a challenge, and several questions may arise when planning a translational study. AREAS COVERED The review presents the different techniques used to stratify oncology patients and to tailor antineoplastic treatments according to individual pharmacogenetic profiling. The advantages of these methodologies are discussed as well as current limits. EXPERT OPINION Facing the rapid technological evolution for genetic analyses, the most pressing issues are the choice of appropriate strategies (i.e., from gene candidate up to next-generation sequencing) and the possibility to replicate study results for their final validation. It is likely that the latter will be the major obstacle in the future. However, the present landscape is opening up new possibilities, overcoming those hurdles that have limited result translation into clinical settings for years.
Collapse
Affiliation(s)
- Antonello Di Paolo
- University of Pisa, Department of Clinical and Experimental Medicine, Via Roma 55, 56126 Pisa , Italy +39 050 2218755 ; +39 050 2218758 ;
| | | | | | | | | | | |
Collapse
|
11
|
|