1
|
Wakamatsu K, Maruyama A, Okazumi S. Evaluation of Plasma microRNA-222 as a Biomarker for Gastric Cancer. J Clin Med 2024; 14:98. [PMID: 39797181 PMCID: PMC11721468 DOI: 10.3390/jcm14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: The dysregulation of microRNAs (miRNAs) has been detected in patients with gastric cancer (GC), which inspired the use of miRNAs as a novel biomarker for GC. In this study, we investigated the previously reported miRNA dysfunction in cancer tissues as a potential plasma biomarker for GC using quantitative reverse transcriptase polymerase chain reaction (RT-PCR). Methods: The published miRNA abnormalities were searched in the microRNA Cancer Association Database. Plasma samples were collected from patients with GC (n = 26) and controls (n = 17). The sensitivity and specificity of polyadenylation RT-PCR (PA-RT) and stem-loop RT-PCR (SL-RT) were compared. Statistical comparisons between patients with GC and controls were performed to identify miRNA biomarkers, and correlation analyses between the threshold cycle (Ct) values of miRNAs and various blood biochemical parameters were performed to elucidate the confounding factors. Results: mir-17, mir-21, mir-31, mir-99b, mir-222, and U6 were selected. PA-RT showed greater sensitivity and lower specificity than SL-RT (PA-RT vs. SL-RT, mean Ct: 19.6 vs. 29.2; coefficient of variation: 0.42 vs. 0.10). Adopting SL-RT owing to its higher specificity, only mir-222 was significantly upregulated in patients with GC (GC vs. control, miRNA expression: 15.4 vs. 5.27, p = 0.0098). Regarding the correlation between blood biochemical parameters and cells with miRNA expression, mir-31 and mir-99b were correlated with blood urea nitrogen, mir-17, mir-21, and mir-99b were negatively correlated with platelets, and mir-21 was correlated with neutrophils. No obvious correlations were noted between mir-222 expression and blood parameters. Receiver operating characteristic (ROC) curve analysis indicated that mir-222 identified GC patients with a maximum area under the curve (0.73, 95% confidence interval 0.57-0.89). Conclusions: Plasma mir-222 was confirmed to be dysregulated in patients with GC, irrespective of blood biochemical parameters.
Collapse
Affiliation(s)
- Kotaro Wakamatsu
- Department of Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Chiba, Japan;
| | - Atsushi Maruyama
- Department of Life Science and Technology, Institute of Science Tokyo, 4259 B-57 Nagatsuta-cho, Midori, Yokohama 226-8501, Kanagawa, Japan;
| | - Shinichi Okazumi
- Department of Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Chiba, Japan;
| |
Collapse
|
2
|
Zendjabil M. Preanalytical, analytical and postanalytical considerations in circulating microRNAs measurement. Biochem Med (Zagreb) 2024; 34:020501. [PMID: 38882585 PMCID: PMC11177657 DOI: 10.11613/bm.2024.020501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/08/2024] [Indexed: 06/18/2024] Open
Abstract
Microribonucleic acids (miRNAs) have emerged as a new category of biomarkers for many human diseases like cancer, cardiovascular and neurodegenerative disorders. MicroRNAs can be detected in various body fluids including blood, urine and cerebrospinal fluid. However, the literature contains conflicting results for circulating miRNAs, which is the main barrier to using miRNAs as non-invasive biomarkers. This variability in results is largely due to differences between studies in sample processing methodology, miRNA quantification and result normalization. The purpose of this review is to describe the various preanalytical, analytical and postanalytical factors that can impact miRNA detection accuracy and to propose recommendations for the standardization of circulating miRNAs measurement.
Collapse
Affiliation(s)
- Mustapha Zendjabil
- Faculty of Medicine, University of Oran 1 - Ahmed Ben Bella, Oran, Algeria
- Department of Biochemistry, Oran University Hospital, Oran, Algeria
| |
Collapse
|
3
|
Lee M, Kang S, Kim S, Park N. Advances and Trends in miRNA Analysis Using DNAzyme-Based Biosensors. BIOSENSORS 2023; 13:856. [PMID: 37754090 PMCID: PMC10526965 DOI: 10.3390/bios13090856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023]
Abstract
miRNAs are endogenous small, non-coding RNA molecules that function in post-transcriptional regulation of gene expression. Because miRNA plays a pivotal role in maintaining the intracellular environment, and abnormal expression has been found in many cancer diseases, detection of miRNA as a biomarker is important for early diagnosis of disease and study of miRNA function. However, because miRNA is present in extremely low concentrations in cells and many types of miRNAs with similar sequences are mixed, traditional gene detection methods are not suitable for miRNA detection. Therefore, in order to overcome this limitation, a signal amplification process is essential for high sensitivity. In particular, enzyme-free signal amplification systems such as DNAzyme systems have been developed for miRNA analysis with high specificity. DNAzymes have the advantage of being more stable in the physiological environment than enzymes, easy to chemically synthesize, and biocompatible. In this review, we summarize and introduce the methods using DNAzyme-based biosensors, especially with regard to various signal amplification methods for high sensitivity and strategies for improving detection specificity. We also discuss the current challenges and trends of these DNAzyme-based biosensors.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea (S.K.)
| | - Seungjae Kang
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea (S.K.)
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| |
Collapse
|
4
|
Non-Coding RNAs as Biomarkers for Embryo Quality and Pregnancy Outcomes: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24065751. [PMID: 36982824 PMCID: PMC10052053 DOI: 10.3390/ijms24065751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Despite advances in in vitro fertilization (IVF), there is still a lack of non-invasive and reliable biomarkers for selecting embryos with the highest developmental and implantation potential. Recently, small non-coding RNAs (sncRNAs) have been identified in biological fluids, and extracellular sncRNAs are explored as diagnostic biomarkers in the prediction of IVF outcomes. To determine the predictive role of sncRNAs in embryo quality and IVF outcomes, a systematic review and meta-analysis was performed. Articles were retrieved from PubMed, EMBASE, and Web of Science from 1990 to 31 July 2022. Eighteen studies that met the selection criteria were analyzed. In total, 22 and 47 different sncRNAs were found to be dysregulated in follicular fluid (FF) and embryo spent culture medium (SCM), respectively. MiR-663b, miR-454 and miR-320a in FF and miR-20a in SCM showed consistent dysregulation in two different studies. The meta-analysis indicated the potential predictive performance of sncRNAs as non-invasive biomarkers, with a pooled area under curve (AUC) value of 0.81 (95% CI 0.78, 0.844), a sensitivity of 0.79 (95% CI 0.72, 0.85), a specificity of 0.67 (95% CI 0.52, 0.79) and a diagnostic odds ratio (DOR) of 8 (95% CI 5, 12). Significant heterogeneity was identified among studies in sensitivity (I2 = 46.11%) and specificity (I2 = 89.73%). This study demonstrates that sncRNAs may distinguish embryos with higher developmental and implantation potentials. They can be promising non-invasive biomarkers for embryo selection in ART. However, the significant heterogeneity among studies highlights the demand for prospective multicenter studies with optimized methods and adequate sample sizes in the future.
Collapse
|
5
|
Qin X, Wang X, Xu K, Zhang Y, Tian H, Li Y, Qi B, Yang X. Quantitative analysis of miRNAs using SplintR ligase-mediated ligation of complementary-pairing probes enhanced by RNase H (SPLICER)-qPCR. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:241-255. [PMID: 36700047 PMCID: PMC9842969 DOI: 10.1016/j.omtn.2022.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Here, a method using SplintR ligase-mediated ligation of complementary-pairing probes enhanced by RNase H (SPLICER) for miRNAs quantification was established. The strategy has two steps: (1) ligation of two DNA probes specifically hybridize to target miRNA and (2) qPCR amplifying the ligated probe. The miRNA-binding regions of the probes are stem-looped, a motif significantly reduces nonspecific ligation at high ligation temperature (65°C). The ends of the probes are designed complementary to form a paired probe, facilitating the recognition of target miRNAs with low concentrations. RNase H proved to be able to stabilize the heteroduplex formed by the probe and target miRNA, contributing to enhanced sensitivity (limit of detection = 60 copies). High specificity (discriminating homology miRNAs differing only one nucleotide), wide dynamic range (seven orders of magnitude) and ability to accurately detect plant miRNAs (immune to hindrance of 2'-O-methyl moiety) enable SPLICER comparable with the commercially available TaqMan and miRCURY assays. SYBR green I, rather than expensive hydrolysis or locked nucleic acid probes indispensable to TaqMan and miRCURY assays, is adequate for SPLICER. The method was efficient (<1 h), economical ($7 per sample), and robust (able to detect xeno-miRNAs in mammalian bodies), making it a powerful tool for molecular diagnosis and corresponding therapy.
Collapse
Affiliation(s)
- Xinshu Qin
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710062, Shaanxi, China
| | - Xingyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710062, Shaanxi, China,Corresponding author: Xingyu Wang, College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710054, Shaanxi, China.
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi, China
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hongye Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710062, Shaanxi, China
| | - Yinglei Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710062, Shaanxi, China
| | - Bangran Qi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710062, Shaanxi, China
| | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710062, Shaanxi, China,Corresponding author: Xingbin Yang, College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710054, Shaanxi, China.
| |
Collapse
|
6
|
Ang YS, Qiu X, Yam HM, Wu N, Lanry Yung LY. Enzyme-free and isothermal discrimination of microRNA point mutations using a DNA split proximity circuit with turn-on fluorescence readout. Biosens Bioelectron 2022; 217:114727. [DOI: 10.1016/j.bios.2022.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
|
7
|
Joo S, Lee UJ, Son HY, Kim M, Huh YM, Lee TG, Lee M. Highly Selective FRET-Aided Single-Molecule Counting of MicroRNAs Labeled by Splinted Ligation. ACS Sens 2022; 7:3409-3415. [PMID: 36279317 DOI: 10.1021/acssensors.2c01526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that play an important role in regulating gene expression. Since miRNAs are abnormally expressed in various cancers, they are considered to be promising biomarkers for early cancer diagnosis. However, the short length and strong sequence similarity among miRNAs make their reliable quantification very challenging. We developed a highly selective amplification-free miRNA detection method based on Förster resonance energy transfer (FRET)-aided single-molecule counting. miRNAs were selectively labeled with FRET probes using splinted ligation. When imaged with a single-molecule FRET setup, the miRNA molecules were accurately identified by the probe's FRET. miRNA concentrations were estimated from the count of molecules. The high sensitivity of the method in finding sparse molecules enabled us to achieve a limit of detection of 31-56 amol for miR-125b, miR-100, and miR-99a. Single nucleotide mismatch could be discriminated with a very high target-to-mismatch ratio. The method accurately measured the high expression of miR-125b in gastric cancer cells, which agreed well with previous reports. The high sensitivity and accuracy of this technique demonstrated its clinical potential as a robust miRNA detection method.
Collapse
Affiliation(s)
- Sihwa Joo
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
| | - Ui Jin Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, South Korea.,Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, South Korea
| | - Moonil Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea.,Department of Biotechnology, University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, South Korea.,Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, South Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul 03722, South Korea.,YUHS-KRIBB Medical Convergence Research Institute, Seoul 03722, South Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea.,Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, South Korea
| | - Mina Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
| |
Collapse
|
8
|
Target-Responsive Template Structure Switching-Mediated Exponential Rolling Circle Amplification for the Direct and Sensitive Detection of MicroRNA. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Considerations and Suggestions for the Reliable Analysis of miRNA in Plasma Using qRT-PCR. Genes (Basel) 2022; 13:genes13020328. [PMID: 35205372 PMCID: PMC8872398 DOI: 10.3390/genes13020328] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are promising molecules that can regulate gene expression, and their expression level and type have been associated with early diagnosis, targeted therapy, and prognosis of various diseases. Therefore, analysis of miRNA in the plasma or serum is useful for the discovery of biomarkers and the diagnosis of implicated diseases to achieve potentially unprecedented progress in early treatment. Numerous methods to improve sensitivity have recently been proposed and confirmed to be valuable in miRNA detection. Specifically, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is an effective and common method for sensitive and specific analysis of miRNA from biological fluids, such as plasma or serum. Despite this, the application of qRT-PCR is limited, as it can be affected by various contaminants. Therefore, extraction studies have been frequently conducted to maximize the extracted miRNA amount while simultaneously minimizing contaminants. Moreover, studies have evaluated extraction efficiency and normalization of the extracted sample. However, variability in results among laboratories still exists. In this review, we aimed to summarize the factors influencing the qualification and quantification of miRNAs in the plasma using qRT-PCR. Factors influencing reliable analysis of miRNA using qRT-PCR are described in detail. Additionally, we aimed to describe the importance of evaluating extraction and normalization for reliable miRNA analysis and to explore how miRNA detection accuracy, especially from plasma, can be improved.
Collapse
|
10
|
A non-enzymatic, isothermal strand displacement and amplification assay for rapid detection of SARS-CoV-2 RNA. Nat Commun 2021; 12:5089. [PMID: 34429424 PMCID: PMC8385016 DOI: 10.1038/s41467-021-25387-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
The current nucleic acid signal amplification methods for SARS-CoV-2 RNA detection heavily rely on the functions of biological enzymes which imposes stringent transportation and storage conditions, high cost and global supply shortages. Here, a non-enzymatic whole genome detection method based on a simple isothermal signal amplification approach is developed for rapid detection of SARS-CoV-2 RNA and potentially any types of nucleic acids regardless of their size. The assay, termed non-enzymatic isothermal strand displacement and amplification (NISDA), is able to quantify 10 RNA copies.µL−1. In 164 clinical oropharyngeal RNA samples, NISDA assay is 100 % specific, and it is 96.77% and 100% sensitive when setting up in the laboratory and hospital, respectively. The NISDA assay does not require RNA reverse-transcription step and is fast (<30 min), affordable, highly robust at room temperature (>1 month), isothermal (42 °C) and user-friendly, making it an excellent assay for broad-based testing. The reliance on enzymes in SARS-CoV-2 RNA detection imposes limits on transport and storage conditions. Here the authors use non-enzymatic isothermal amplification to detect RNA with no need for reverse transcription.
Collapse
|
11
|
Ban E, Kwon H, Seo HS, Yoo YS, Song EJ. Screening of miRNAs in plasma as a diagnostic biomarker for cardiac disease based on optimization of extraction and qRT-PCR condition assay through amplification efficiency. BMC Biotechnol 2021; 21:50. [PMID: 34399741 PMCID: PMC8366012 DOI: 10.1186/s12896-021-00710-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/04/2021] [Indexed: 02/11/2023] Open
Abstract
Background Although quantitative real-time PCR (qRT-PCR) is a common and sensitive method for miRNAs analysis, it is necessary to optimize conditions and minimize qRT-PCR inhibitors to achieve reliable results. The aim of this study was to minimize interference by contaminants in qRT-PCR, maximize product yields for miRNA analyses, and optimize PCR conditions for the reliable screening of miRNAs in plasma. Methods The annealing temperature was first optimized by assessing amplification efficiencies. The effects of extraction conditions on levels of inhibitors that interfere with PCR were evaluated. The tested extraction conditions were the volume of the upper layer taken, number of chloroform extractions, and the inclusion of ethanol washing, a process that reduces PCR interference during RNA extraction using TRIzol. Results An acceptable amplification efficiency of RT-qPCR was achieved by the optimization of the annealing temperature of the tested miRNAs and by the collection a supernatant volume corresponding to about 50% of the volume of TRIzol with triple chloroform extraction. These optimal extraction and PCR conditions were successfully applied to plasma miRNA screening to detect biomarker candidates for the diagnosis of acute myocardial infarction. Conclusion This is the first study to optimize extraction and qRT-PCR conditions, while improving miRNA yields and minimizing the loss of extracted miRNA by evaluations of the amplification efficiency.
Collapse
Affiliation(s)
- Eunmi Ban
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Haejin Kwon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Korea University Medicine, Seoul, 08308, Republic of Korea
| | - Young Sook Yoo
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
12
|
Roest HP, IJzermans JNM, van der Laan LJW. Evaluation of RNA isolation methods for microRNA quantification in a range of clinical biofluids. BMC Biotechnol 2021; 21:48. [PMID: 34362351 PMCID: PMC8344161 DOI: 10.1186/s12896-021-00706-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Extracellular microRNAs (miRNAs), released from cells into biofluids, have emerged as promising biomarkers for diagnostic and prognostic purposes. Several RNA isolation methods are available for the analysis of these cell-free miRNAs by RT-qPCR. Not all methods, however, are equally suitable for different biofluids. Here, we extracted total RNA from four very diverse biofluids: serum, urine, bile, and graft preservation fluid (perfusate). Four different protocols were used: a phenol-chloroform extraction and alcohol precipitation in combination with a precipitation carrier (QP) and three different column-based isolation methods, one with phenol-chloroform extraction (RN) and two without (NG and CU). For this range of clinical biofluid samples, we evaluated the potential of these different RNA isolation methods assessing recovery efficiency and the co-purification of RT-qPCR inhibiting compounds. RESULTS Differences were observed between each of the RNA isolation methods in the recovery of cel-miR-39, a synthetic miRNA spiked in during the workup procedure, and for endogenous miRNAs. Co-purification of heparin, a known RT-qPCR inhibitor, was assessed using heparinase I during cDNA synthesis. RT-qPCR detection of synthetic miRNAs cel-miR-39, spiked in during RNA workup, cel-miR-54, spiked in during cDNA synthesis, and endogenous miRNAs was strongly improved in the presence of heparinase I for some, but not all, isolation methods. Other, co-isolated RT-qPCR inhibitors were not identified, except for biliverdin, which co-isolated from some bile samples with one of the methods. In addition, we observed that serum and urine contain compounds that enhance the binding of heparin to certain solid-phase columns. CONCLUSIONS For reliable measurements of miRNA-based biomarkers in biofluids, optimization of RNA isolation procedures is recommended as methods can differ in miRNA detection and in co-purification of RT-qPCR inhibitory compounds. Heparinase I treatment confirmed that heparin appeared to be the major RT-qPCR inhibiting compound, but also biliverdin, co-isolated from bile, could interfere with detection.
Collapse
Affiliation(s)
- Henk P Roest
- Department of Surgery, Laboratory of Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus MC - University Medical Center, P.O. Box 2040, Room Na-1005, 3000, CA, Rotterdam, the Netherlands.
| | - Jan N M IJzermans
- Department of Surgery, Laboratory of Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus MC - University Medical Center, P.O. Box 2040, Room Na-1005, 3000, CA, Rotterdam, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Laboratory of Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus MC - University Medical Center, P.O. Box 2040, Room Na-1005, 3000, CA, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Sanchez Herrero JF, Pluvinet R, Luna de Haro A, Sumoy L. Paired-end small RNA sequencing reveals a possible overestimation in the isomiR sequence repertoire previously reported from conventional single read data analysis. BMC Bioinformatics 2021; 22:215. [PMID: 33902448 PMCID: PMC8077951 DOI: 10.1186/s12859-021-04128-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Next generation sequencing has allowed the discovery of miRNA isoforms, termed isomiRs. Some isomiRs are derived from imprecise processing of pre-miRNA precursors, leading to length variants. Additional variability is introduced by non-templated addition of bases at the ends or editing of internal bases, resulting in base differences relative to the template DNA sequence. We hypothesized that some component of the isomiR variation reported so far could be due to systematic technical noise and not real. RESULTS We have developed the XICRA pipeline to analyze small RNA sequencing data at the isomiR level. We exploited its ability to use single or merged reads to compare isomiR results derived from paired-end (PE) reads with those from single reads (SR) to address whether detectable sequence differences relative to canonical miRNAs found in isomiRs are true biological variations or the result of errors in sequencing. We have detected non-negligible systematic differences between SR and PE data which primarily affect putative internally edited isomiRs, and at a much smaller frequency terminal length changing isomiRs. This is relevant for the identification of true isomiRs in small RNA sequencing datasets. CONCLUSIONS We conclude that potential artifacts derived from sequencing errors and/or data processing could result in an overestimation of abundance and diversity of miRNA isoforms. Efforts in annotating the isomiRnome should take this into account.
Collapse
Affiliation(s)
| | | | | | - Lauro Sumoy
- Institut Germans Trias i Pujol (IGTP), Badalona, Spain.
| |
Collapse
|
14
|
Shin S, Jung Y, Uhm H, Song M, Son S, Goo J, Jeong C, Song JJ, Kim VN, Hohng S. Quantification of purified endogenous miRNAs with high sensitivity and specificity. Nat Commun 2020; 11:6033. [PMID: 33247115 PMCID: PMC7699633 DOI: 10.1038/s41467-020-19865-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short (19-24 nt) non-coding RNAs that suppress the expression of protein coding genes at the post-transcriptional level. Differential expression profiles of miRNAs across a range of diseases have emerged as powerful biomarkers, making a reliable yet rapid profiling technique for miRNAs potentially essential in clinics. Here, we report an amplification-free multi-color single-molecule imaging technique that can profile purified endogenous miRNAs with high sensitivity, specificity, and reliability. Compared to previously reported techniques, our technique can discriminate single base mismatches and single-nucleotide 3'-tailing with low false positive rates regardless of their positions on miRNA. By preloading probes in Thermus thermophilus Argonaute (TtAgo), miRNAs detection speed is accelerated by more than 20 times. Finally, by utilizing the well-conserved linearity between single-molecule spot numbers and the target miRNA concentrations, the absolute average copy numbers of endogenous miRNA species in a single cell can be estimated. Thus our technique, Ago-FISH (Argonaute-based Fluorescence In Situ Hybridization), provides a reliable way to accurately profile various endogenous miRNAs on a single miRNA sensing chip.
Collapse
Affiliation(s)
- Soochul Shin
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Yoonseok Jung
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Heesoo Uhm
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Minseok Song
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Soomin Son
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jiyoung Goo
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, Republic of Korea
| | - Cherlhyun Jeong
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Xie S, Zhu Q, Qu W, Xu Z, Liu X, Li X, Li S, Ma W, Miao Y, Zhang L, Du X, Dong W, Li H, Zhao C, Wang Y, Fang Y, Zhao S. sRNAPrimerDB: comprehensive primer design and search web service for small non-coding RNAs. Bioinformatics 2020; 35:1566-1572. [PMID: 30295699 DOI: 10.1093/bioinformatics/bty852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/03/2018] [Accepted: 10/06/2018] [Indexed: 12/28/2022] Open
Abstract
MOTIVATION Small non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), play key roles in many biological processes. However, only a few tools can be used to develop the optimal primer or probe design for the expression profile of small ncRNAs. Here, we developed sRNAPrimerDB, the first automated primer designing and query web service for small ncRNAs. RESULTS The primer online designing module of sRNAPrimerDB is composed of primer design algorithms and quality evaluation of the polymerase chain reaction (PCR) primer. Five types of primers, namely, generic or specific reverse transcription primers, specific PCR primers pairs, TaqMan probe, double-hairpin probe and hybridization probe for different small ncRNA detection methods, can be designed and searched using this service. The quality of PCR primers is further evaluated using melting temperature, primer dimer, hairpin structure and specificity. Moreover, the sequence and size of each amplicon are also provided for the subsequent experiment verification. At present, 531 306 and 2 941 669 primer pairs exist across 223 species for miRNAs and piRNAs, respectively, according to sRNAPrimerDB. Several primers designed by sRNAPrimerDB are further successfully validated by subsequent experiments. AVAILABILITY AND IMPLEMENTATION sRNAPrimerDB is a valuable platform that can be used to detect small ncRNAs. This module can be publicly accessible at http://www.srnaprimerdb.com or http://123.57.239.141. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P.R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, P.R. China
| | - Qin Zhu
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, P.R. China
| | - Wubin Qu
- iGeneTech Bioscience Co., Ltd, Beijing, P.R. China
| | - Zhong Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiangdong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P.R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P.R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, P.R. China
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P.R. China
| | - Wubin Ma
- Department of Medicine, School of Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Yiliang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P.R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, P.R. China
| | - Lisheng Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiaoyong Du
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, P.R. China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A & F University, Yangling, P.R. China
| | - Haiwei Li
- iGeneTech Bioscience Co., Ltd, Beijing, P.R. China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yunlong Wang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yaping Fang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, P.R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, P.R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
16
|
Warnement CM, Cismowski MJ, Rogers LK. Optimizing miR-29 measurements in biobanked, heparinized samples. Life Sci 2019; 238:116894. [PMID: 31626789 DOI: 10.1016/j.lfs.2019.116894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 01/18/2023]
Abstract
AIMS MicroRNAs (miRs) and their importance in development, normal physiology, and disease have become increasingly recognized. Our laboratory is interested in miR-29 and its effects on lung development. These studies set out to identify optimal conditions for the measurement of miR-29 in heparinized, biobanked samples and to compare isoform expression patterns. MATERIALS AND METHODS The efficiency of three distinct heparinases were tested using reverse transcriptase polymerase chain reaction (RT-PCR): recombinant F. Heparinum heparinase I; recombinant P. heparinus heparinase II; recombinant P. heparinus heparinase III; and heparinase I (B. efferthii-derived). The effects of freeze/thaws, and the relative expression of different miR-29 isoforms were also assessed using RT-PCR. KEY FINDINGS Our investigations determined that heparinase 1 (recombinant F. Heparinum) and 2 (recombinant P. heparinus) at 1 or 2 h incubation efficiently neutralized heparin activity and prevented interference with the PCR. Also, a single freeze/thaw did not affect the measurement of miR-29-3p but multiple freeze/thaw cycles decreased the measureable miR levels. Finally, the -3p strand was most abundantly expressed in all three isoforms in both human and mouse plasma. SIGNIFICANCE Our findings illustrate that specific conditions need to be optimized for the particular miR and the type of sample being tested.
Collapse
Affiliation(s)
- Catherine M Warnement
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, USA
| | - Mary J Cismowski
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, USA; Department of Pediatrics, The Ohio State University, USA
| | - Lynette K Rogers
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, USA; Department of Pediatrics, The Ohio State University, USA.
| |
Collapse
|
17
|
Krepelkova I, Mrackova T, Izakova J, Dvorakova B, Chalupova L, Mikulik R, Slaby O, Bartos M, Ruzicka V. Evaluation of miRNA detection methods for the analytical characteristic necessary for clinical utilization. Biotechniques 2019; 66:277-284. [PMID: 31124705 DOI: 10.2144/btn-2019-0021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
miRNAs are promising biomarkers but methods for their measurement are not clear. We therefore examined three miRNA detection technologies and considered the analytical characteristics essential for clinical utilization. TaqMan assays, SplintR-qPCR and miREIA were compared for their absolute quantification bias, conformity and robustness. Absolute concentrations of miR-142-5p, miR-23a-3p and miR-93-5p were measured with all three methods using 30 samples. Robustness was evaluated by measurement of miR-21-5p in five uniform experiments. Correlations were miRNA-specific, but we observed a different absolute concentration range in RT-qPCR (fmol/μl) and methods evading the RT process (amol/μl). Consistently, RT-less methods reported better robustness (CV 8-19%) than RT-qPCR (CV 39-50%). The calibration curve in TaqMan Advanced assay was influenced by dilution media. Methods avoiding RT seem to be a promising future alternative for miRNA measurement.
Collapse
Affiliation(s)
- Iveta Krepelkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,BioVendor - Laboratorní medicína a.s., Brno, Czech Republic
| | - Tereza Mrackova
- BioVendor - Laboratorní medicína a.s., Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center (FNUSA-ICRC), Brno, Czech Republic
| | - Jana Izakova
- BioVendor - Laboratorní medicína a.s., Brno, Czech Republic
| | | | | | - Robert Mikulik
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center (FNUSA-ICRC), Brno, Czech Republic.,Department of Neurology, St Anne's University Hospital, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Brno, Czech Republic
| | - Milan Bartos
- BioVendor - Laboratorní medicína a.s., Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Viktor Ruzicka
- BioVendor - Laboratorní medicína a.s., Brno, Czech Republic
| |
Collapse
|
18
|
Witvrouwen I, Gevaert AB, Van Craenenbroeck EM, Van Craenenbroeck AH. MicroRNA Isolation from Plasma for Real-Time qPCR Array. ACTA ACUST UNITED AC 2018; 99:e69. [DOI: 10.1002/cphg.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Isabel Witvrouwen
- Laboratory of Cellular and Molecular Cardiology, Research Group Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp; Antwerp Belgium
- Department of Cardiology, Antwerp University Hospital (UZA); Edegem Belgium
| | - Andreas B. Gevaert
- Laboratory of Cellular and Molecular Cardiology, Research Group Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp; Antwerp Belgium
- Department of Cardiology, Antwerp University Hospital (UZA); Edegem Belgium
| | - Emeline M. Van Craenenbroeck
- Laboratory of Cellular and Molecular Cardiology, Research Group Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp; Antwerp Belgium
- Department of Cardiology, Antwerp University Hospital (UZA); Edegem Belgium
| | - Amaryllis H. Van Craenenbroeck
- Laboratory of Cellular and Molecular Cardiology, Research Group Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp; Antwerp Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp; Antwerp Belgium
- Department of Nephrology, Antwerp University Hospital (UZA); Edegem Belgium
| |
Collapse
|
19
|
Identifying and characterizing functional 3' nucleotide addition in the miRNA pathway. Methods 2018; 152:23-30. [PMID: 30138674 DOI: 10.1016/j.ymeth.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, modifications to microRNAs (miRNAs) via 3' end nucleotide addition have gone from a deep-sequencing curiosity to experimentally confirmed drivers of a range of regulatory activities. Here we overview the methods that have been deployed by researchers seeking to untangle these diverse functional roles and include characterizing not only the nucleotidyl transferases catalyzing the additions but also the nucleotides being added, and the timing of their addition during the miRNA pathway. These methods and their further development are key to clarifying the diverse and sometimes contradictory functional findings presently attributed to these nucleotide additions.
Collapse
|
20
|
Enzyme-free isothermal target-recycled amplification combined with PAGE for direct detection of microRNA-21. Anal Biochem 2018; 550:117-122. [DOI: 10.1016/j.ab.2018.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
|
21
|
Ma X, Zhang Y, Qiao F, Wang M, Zuo Z, Zhang Y, Wang Y. Comparison of RNA extraction and microRNA detection protocols for a small amount of germinal vesicle oocytes in bovine. Anim Reprod Sci 2018; 195:112-120. [PMID: 29859700 DOI: 10.1016/j.anireprosci.2018.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/01/2018] [Accepted: 05/14/2018] [Indexed: 11/17/2022]
Abstract
RT-qPCR is a widely used method to detect miRNA expression. Compared with mRNA, miRNA has a shorter length and lower abundance which hinders the acquisition of reliable results. Thus, miRNA detection requires a method with high sensitivity and accuracy. Collecting large amounts of material is particularly difficult for oocytes and pre-implantation embryos of domestic animals. Establishing a set of miRNA detection methods that are suitable to detect trace amounts of such materials is urgently needed. In this study, the total RNA in 50 germinal vesicle (GV) oocytes was isolated through direct lysis and by using mirVana miRNA Isolation Kit and miRNeasy Micro Kit. The OD260/280 values and concentrations of the RNA in these three groups were compared to identify a superior RNA isolation method. In addition, the specificity and sensitivity of common DNA and LNA primers were compared by real-time quantitative polymerase chain reaction for miRNA detection. Results show that the RNA concentration of in the direct lysis group was significantly higher than that in the other two groups. The specificity between the DNA primers and LNA primers was identical, whereas the sensitivity of LNA primers was superior to that of DNA primers. These results suggest that direct lysis combined with LNA primers might be a suitable protocol for the miRNA detection of a small amounts of GV oocytes and pre-implantation embryos in cattle.
Collapse
Affiliation(s)
- Xiaonan Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ying Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fang Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Mengyun Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhenzi Zuo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
22
|
MicroRNA profiling in plasma samples using qPCR arrays: Recommendations for correct analysis and interpretation. PLoS One 2018; 13:e0193173. [PMID: 29474497 PMCID: PMC5825041 DOI: 10.1371/journal.pone.0193173] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/06/2018] [Indexed: 11/25/2022] Open
Abstract
MicroRNA (miRNA) regulate gene expression through posttranscriptional mRNA degradation or suppression of translation. Many (pre)analytical issues remain to be resolved for miRNA screening with TaqMan Low Density Arrays (TLDA) in plasma samples, such as optimal RNA isolation, preamplification and data normalization. We optimized the TLDA protocol using three RNA isolation protocols and preamplification dilutions. By using 100μL elution volume during RNA isolation and adding a preamplification step without dilution, 49% of wells were amplified. Informative target miRNA were defined as having quantification cycle values ≤35 in at least 20% of samples and low technical variability (CV across 2 duplicates of 1 sample <4%). A total of 218 miRNA was considered informative (= 59% of all target miRNA). Different normalization strategies were compared: exogenous Ath-miR-159a, endogenous RNA U6, and three mathematical normalization techniques: geNorm (Qbase, QB) and NormFinder (NF) normalization algorithms, and global mean calculation. To select the best normalization method, technical variability, biological variability, stability, and the extent to which the normalization method reduces data dispersion were calculated. The geNorm normalization algorithm reduced data dispersion to the greatest extent, while endogenous RNA U6 performed worst. In conclusion, for miRNA profiling in plasma samples using TLDA cards we recommend: 1. Implementing a preamplification step in the TLDA protocol without diluting the final preamplification product 2. A stepwise approach to exclude non-informative miRNA based on quality control parameters 3. Against using snoRNA U6 as normalization method for relative quantification 4. Using the geNorm algorithm as normalization method for relative quantification.
Collapse
|
23
|
Seow N, Fenati RA, Connolly AR, Ellis AV. Hi-fidelity discrimination of isomiRs using G-quadruplex gatekeepers. PLoS One 2017; 12:e0188163. [PMID: 29145502 PMCID: PMC5690596 DOI: 10.1371/journal.pone.0188163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/01/2017] [Indexed: 11/17/2022] Open
Abstract
Core microRNA (miRNA) sequences exist as populations of variants called isomiRs made up of different lengths and nucleotide compositions. In particular, the short sequences of miRNA make single-base isomiR mismatches very difficult to be discriminated. Non-specific hybridizations often arise when DNA probe-miRNA target hybridization is the primary, or initial, mode of detection. These errors then become exacerbated through subsequent amplification steps. Here, we present the design of DNA probes modified with poly-guanine (PG) tracts that were induced to form G-quadruplexes (G4) for hi-fidelity discrimination of miRNA core target sequence from single-base mismatched isomiRs. We demonstrate that, when compared to unmodified probes, this G4 'gate-keeping' function within the G4-modified probes enables more stringent hybridization of complementary core miRNA target transcripts while limiting non-specific hybridizations. This increased discriminatory power of the G4-modified probes over unmodified probes is maintained even after further reverse transcriptase extension of probe-target hybrids. Enzymatic extension also enhanced the clarity and sensitivity of readouts and allows different isomiRs to be distinguished from one another via the relative positions of the mismatches.
Collapse
Affiliation(s)
- Nianjia Seow
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Bedford Park, SA, Australia
| | - Renzo A Fenati
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Bedford Park, SA, Australia.,School of Chemical and Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley R Connolly
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Bedford Park, SA, Australia
| | - Amanda V Ellis
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Bedford Park, SA, Australia.,School of Chemical and Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Androvic P, Valihrach L, Elling J, Sjoback R, Kubista M. Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic Acids Res 2017; 45:e144. [PMID: 28911110 PMCID: PMC5587787 DOI: 10.1093/nar/gkx588] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNAs that serve as important regulators of gene expression at the posttranscriptional level. They are stable in body fluids and pose great potential to serve as biomarkers. Here, we present a highly specific, sensitive and cost-effective system to quantify miRNA expression based on two-step RT-qPCR with SYBR-green detection chemistry called Two-tailed RT-qPCR. It takes advantage of novel, target-specific primers for reverse transcription composed of two hemiprobes complementary to two different parts of the targeted miRNA, connected by a hairpin structure. The introduction of a second probe ensures high sensitivity and enables discrimination of highly homologous miRNAs irrespectively of the position of the mismatched nucleotide. Two-tailed RT-qPCR has a dynamic range of seven logs and a sensitivity sufficient to detect down to ten target miRNA molecules. It is capable to capture the full isomiR repertoire, leading to accurate representation of the complete miRNA content in a sample. The reverse transcription step can be multiplexed and the miRNA profiles measured with Two-tailed RT-qPCR show excellent correlation with the industry standard TaqMan miRNA assays (r2 = 0.985). Moreover, Two-tailed RT-qPCR allows for rapid testing with a total analysis time of less than 2.5 hours.
Collapse
Affiliation(s)
- Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, Vestec 252 50, Czech Republic.,Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc 783 71, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, Vestec 252 50, Czech Republic
| | | | | | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, Vestec 252 50, Czech Republic.,TATAA Biocenter AB, Gothenburg 411 03, Sweden
| |
Collapse
|
25
|
van Vliet EA, Puhakka N, Mills JD, Srivastava PK, Johnson MR, Roncon P, Das Gupta S, Karttunen J, Simonato M, Lukasiuk K, Gorter JA, Aronica E, Pitkänen A. Standardization procedure for plasma biomarker analysis in rat models of epileptogenesis: Focus on circulating microRNAs. Epilepsia 2017; 58:2013-2024. [PMID: 28960286 DOI: 10.1111/epi.13915] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 12/21/2022]
Abstract
The World Health Organization estimates that globally 2.4 million people are diagnosed with epilepsy each year. In nearly 30% of these cases, epilepsy cannot be properly controlled by antiepileptic drugs. More importantly, treatments to prevent or modify epileptogenesis do not exist. Therefore, novel therapies are urgently needed. In this respect, it is important to identify which patients will develop epilepsy and which individually tailored treatment is needed. However, currently, we have no tools to identify the patients at risk, and diagnosis of epileptogenesis remains as a major unmet medical need, which relates to lack of diagnostic biomarkers for epileptogenesis. As the epileptogenic process in humans is typically slow, the use of animal models is justified to speed up biomarker discovery. We aim to summarize recommendations for molecular biomarker research and propose a standardized procedure for biomarker discovery in rat models of epileptogenesis. The potential of many phylogenetically conserved circulating noncoding small RNAs, including microRNAs (miRNAs), as biomarkers has been explored in various brain diseases, including epilepsy. Recent studies show the feasibility of detecting miRNAs in blood in both experimental models and human epilepsy. However, the analysis of circulating miRNAs in rodent models is challenging, which relates both to the lack of standardized sampling protocols and to analysis of miRNAs. We will discuss the issues critical for preclinical plasma biomarker discovery, such as documentation, blood and brain tissue sampling and collection, plasma separation and storage, RNA extraction, quality control, and RNA detection. We propose a protocol for standardization of procedures for discovery of circulating miRNA biomarkers in rat models of epileptogenesis. Ultimately, we hope that the preclinical standardization will facilitate clinical biomarker discovery for epileptogenesis in man.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - James D Mills
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Prashant K Srivastava
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, United Kingdom
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, United Kingdom
| | - Paolo Roncon
- Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Shalini Das Gupta
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenni Karttunen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michele Simonato
- Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy.,University of Ferrara, Ferrara, Italy
| | - Katarzyna Lukasiuk
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
26
|
Wu Y, Xing X, You T, Liang R, Liu J. RT-qPCR with chimeric dU stem-loop primer is efficient for the detection of bacterial small RNAs. Appl Microbiol Biotechnol 2017; 101:4561-4568. [PMID: 28314872 DOI: 10.1007/s00253-017-8181-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 01/18/2023]
Abstract
Small non-coding RNAs are considered be involved in the regulation of multiple cellular processes. Quantitative reverse transcription PCR (RT-qPCR) is widely used in the detection of eukaryotic microRNA, and the stem-loop primers can improve the specificity and efficiency of reverse transcription. However, the loop structure of primers probably influence the next quantitative amplification due to the base stacking and steric hindrance. Here, we designed a chimeric stem-loop primer with a deoxyuracil (dU) base located near the RNA matching part. After the reverse transcription, uracil-DNA glycosylase (UDG) treatment was used to remove the dU base and destroy the stem-loop structure of RT product. Enzymatic assay confirmed that the recombinant UDG could efficiently eliminate the dU base in the oligonucleotide. Transcriptions of two small RNAs (TFF and ryeA) in Escherichia coli were detected by RT-qPCR with different primers. Results showed that the use of the chimeric dU stem-loop primer and UDG treatment could enhance the detection specificity and sensitivity about 1.1- to 3.4-fold, compared to those with traditional stem-loop primer and linear primer. Total RNA of 1-10 pg was enough for efficient detection with the chimeric stem-loop primers. In a word, this strategy could promote the RT-qPCR detection efficiency on the transcription of bacterial small RNAs even in trace samples and can facilitate the detection of exiguous change in cellular metabolism.
Collapse
Affiliation(s)
- Yangfan Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xuejiao Xing
- School of Pharmacy, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ting You
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Jianhua Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
27
|
Lagatie O, Batsa Debrah L, Debrah A, Stuyver LJ. Plasma-derived parasitic microRNAs have insufficient concentrations to be used as diagnostic biomarker for detection of Onchocerca volvulus infection or treatment monitoring using LNA-based RT-qPCR. Parasitol Res 2017; 116:1013-1022. [PMID: 28111713 PMCID: PMC5313568 DOI: 10.1007/s00436-017-5382-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/16/2017] [Indexed: 01/30/2023]
Abstract
River blindness, caused by infection with the filarial nematode Onchocerca volvulus, is a neglected tropical disease affecting millions of people. There is a clear need for diagnostic tools capable of identifying infected patients, but that can also be used for monitoring disease progression and treatment efficacy. Plasma-derived parasitic microRNAs have been suggested as potential candidates for such diagnostic tools. We have investigated whether these parasitic microRNAs are present in sufficient quantity in plasma of Onchocerca-infected patients to be used as a diagnostic biomarker for detection of O. volvulus infection or treatment monitoring. Plasma samples were collected from different sources (23 nodule-positive individuals and 20 microfilaridermic individuals), microRNAs (miRNAs) were extracted using Qiagen miRNeasy kit, and a set of 17 parasitic miRNAs was evaluated on these miRNA extracts using miRCURY Locked Nucleic Acid (LNA) Universal RT microRNA PCR system. Of the 17 miRNAs evaluated, only 7 miRNAs were found to show detectable signal in a number of samples: bma-miR-236-1, bma-miR-71, ov-miR71-22nt, ov-miR-71-23nt, ov-miR-100d, ov-bantam-a, and ov-miR-87-3p. Subsequent melting curve analysis, however, indicated that the signals observed for ov-miR-71 variants and ov-miR-87-3p are non-specific. The other miRNAs only showed positive signal in one or few samples with Cq values just below the cutoff. Our data indicate that parasitic miRNAs are not present in circulation at a sufficiently high level to be used as biomarker for O. volvulus infection or treatment monitoring using LNA-based RT-qPCR analysis.
Collapse
Affiliation(s)
- Ole Lagatie
- Janssen Diagnostics, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Linda Batsa Debrah
- Kumasi Centre for Collaborative Research, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lieven J Stuyver
- Janssen Diagnostics, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
28
|
Wang J, Wang Y, Wang H, Guo J, Wang H, Wu Y, Liu J. MicroRNA Transcriptome of Poly I:C-Stimulated Peripheral Blood Mononuclear Cells Reveals Evidence for MicroRNAs in Regulating Host Response to RNA Viruses in Pigs. Int J Mol Sci 2016; 17:ijms17101601. [PMID: 27669219 PMCID: PMC5085634 DOI: 10.3390/ijms17101601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 01/16/2023] Open
Abstract
MicroRNAs (miRNAs) are one family of small noncoding RNAs that function to modulate the activity of specific mRNA targets in animals. To understand the role of miRNAs in regulating genes involved in the host immune response to RNA viruses, we profiled and characterized the miRNAs of swine peripheral blood mononuclear cells (PBMC) stimulated with poly I:C, a synthetic dsRNA analog, by miRNA-sequencing (miRNA-seq). We identified a total of 905 miRNAs, of which 503 miRNAs were firstly exploited herein with no annotation in the latest miRBase 21.0. Expression analysis demonstrated that poly I:C stimulation can elicit significantly differentially expressed (DE) miRNAs in Dapulian (n = 20), one Chinese indigenous breed, as well as Landrace (n = 23). By integrating the mRNA expression profiles of the same sample with miRNA profiles, we carried out function analyses of the target genes of these DE miRNAs, with the results indicating that target genes were most enriched in some immune-related pathways and gene ontology (GO) terms, suggesting that DE miRNAs play an important role in the regulation of host to poly I:C stimulation. Furthermore, we also detected 43 and 61 significantly DE miRNAs between the two breeds in the control sample groups and poly I:C stimulation groups, respectively, which may be involved in regulation of the different characteristics of the two breeds. This study describes for the first time the PBMC miRNA transcriptomic response to poly I:C stimulation in pigs, which not only contributes to a broad view of the pig miRNAome but improves our understanding of miRNA function in regulating host immune response to RNA viruses.
Collapse
Affiliation(s)
- Jiying Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yanping Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Haifei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jianfeng Guo
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Huaizhong Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Ying Wu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Jianfeng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Campomenosi P, Gini E, Noonan DM, Poli A, D'Antona P, Rotolo N, Dominioni L, Imperatori A. A comparison between quantitative PCR and droplet digital PCR technologies for circulating microRNA quantification in human lung cancer. BMC Biotechnol 2016; 16:60. [PMID: 27538962 PMCID: PMC4991011 DOI: 10.1186/s12896-016-0292-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022] Open
Abstract
Background Selected microRNAs (miRNAs) that are abnormally expressed in the serum of patients with lung cancer have recently been proposed as biomarkers of this disease. The measurement of circulating miRNAs, however, requires a highly reliable quantification method. Quantitative real-time PCR (qPCR) is the most commonly used method, but it lacks reliable endogenous reference miRNAs for normalization of results in biofluids. When used in absolute quantification, it must rely on the use of external calibrators. Droplet digital PCR (ddPCR) is a recently introduced technology that overcomes the normalization issue and may facilitate miRNA measurement. Here we compared the performance of absolute qPCR and ddPCR techniques for quantifying selected miRNAs in the serum. Results In the first experiment, three miRNAs, proposed in the literature as lung cancer biomarkers (miR-21, miR-126 and let-7a), were analyzed in a set of 15 human serum samples. Four independent qPCR and four independent ddPCR amplifications were done on the same samples and used to estimate the precision and correlation of miRNA measurements obtained with the two techniques. The precision of the two methods was evaluated by calculating the Coefficient of Variation (CV) of the four independent measurements obtained with each technique. The CV was similar or smaller in ddPCR than in qPCR for all miRNAs tested, and was significantly smaller for let-7a (p = 0.028). Linear regression analysis of the miRNA values obtained with qPCR and ddPCR showed strong correlation (p < 0.001). To validate the correlation obtained with the two techniques in the first experiment, in a second experiment the same miRNAs were measured in a larger cohort (70 human serum samples) by both qPCR and ddPCR. The correlation of miRNA analyses with the two methods was significant for all three miRNAs. Moreover, in our experiments the ddPCR technique had higher throughput than qPCR, at a similar cost-per-sample. Conclusions Analyses of serum miRNAs performed with qPCR and ddPCR were largely concordant. Both qPCR and ddPCR can reliably be used to quantify circulating miRNAs, however, ddPCR revealed similar or greater precision and higher throughput of analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0292-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Campomenosi
- Department of Biotechnology and Life Sciences (DBSV) and "The Protein Factory", University of Insubria, Via JH Dunant, 3, 21100, Varese, Italy. .,The Protein Factory, Centro Interuniversitario di Ricerca in Biotecnologie Proteiche, Politecnico di Milano, ICRM-CNR Milano and University of Insubria, Varese, Italy.
| | - Elisabetta Gini
- Department of Biotechnology and Life Sciences (DBSV) and "The Protein Factory", University of Insubria, Via JH Dunant, 3, 21100, Varese, Italy.,Department of Surgical Sciences and Human Morphology, DSCM, University of Insubria, Via Guicciardini, 9, 21100, Varese, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences (DBSV) and "The Protein Factory", University of Insubria, Via JH Dunant, 3, 21100, Varese, Italy.,Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy
| | - Albino Poli
- Department of Public Health and Community Medicine, University of Verona, Verona, Italy
| | - Paola D'Antona
- Department of Biotechnology and Life Sciences (DBSV) and "The Protein Factory", University of Insubria, Via JH Dunant, 3, 21100, Varese, Italy.,Department of Surgical Sciences and Human Morphology, DSCM, University of Insubria, Via Guicciardini, 9, 21100, Varese, Italy
| | - Nicola Rotolo
- Department of Surgical Sciences and Human Morphology, DSCM, University of Insubria, Via Guicciardini, 9, 21100, Varese, Italy
| | - Lorenzo Dominioni
- Department of Surgical Sciences and Human Morphology, DSCM, University of Insubria, Via Guicciardini, 9, 21100, Varese, Italy
| | - Andrea Imperatori
- Department of Surgical Sciences and Human Morphology, DSCM, University of Insubria, Via Guicciardini, 9, 21100, Varese, Italy
| |
Collapse
|