1
|
Hassanin AAI, Ramos KS. Circulating Exosomal miRNA Profiles in Non-Small Cell Lung Cancers. Cells 2024; 13:1562. [PMID: 39329746 PMCID: PMC11430728 DOI: 10.3390/cells13181562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
A growing number of studies have shown that microRNAs (miRNAs) can exert oncogenic or tumor suppressor activities in a variety of cancers, including lung cancer. Given their presence in exosome preparations, microRNA molecules may in fact participate in exosomal intercellular transfers and signaling. In the present study, we examined the profile of 25 circulating exosomal microRNAs in ostensibly healthy controls compared to patients with squamous cell lung cancers (SQCLC) or lung adenocarcinomas (LUAD). Eight miRNAs, namely, miR-21-5p, miR-126-3p, miR-210-3p, miR-221-3p, Let-7b-5p, miR-146a-5p, miR-222-3p, and miR-9-5p, were highly enriched in the cohort and selected for further analyses. All miRNAs were readily detected in non-small cell lung cancer (NSCLC) patients of both sexes at all cancer stages, and their levels in exosomes correlated with the clinicopathological characteristics of tumors. Thus, the presence of these miRNAs in circulating exosomes may contribute to the regulation of oncogenic activity in patients with NSCLC.
Collapse
Affiliation(s)
- Abeer A. I. Hassanin
- Center for Genomic and Precision Medicine, Texas A&M Institute of Biosciences and Technology, Texas Medical Center, Houston, TX 77030, USA;
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Kenneth S. Ramos
- Center for Genomic and Precision Medicine, Texas A&M Institute of Biosciences and Technology, Texas Medical Center, Houston, TX 77030, USA;
| |
Collapse
|
2
|
Xin GD, Liu XY, Fan XD, Zhao GJ. Exosomes repairment for sciatic nerve injury: a cell-free therapy. Stem Cell Res Ther 2024; 15:214. [PMID: 39020385 PMCID: PMC11256477 DOI: 10.1186/s13287-024-03837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Sciatic nerve injury (SNI) is a common type of peripheral nerve injury typically resulting from trauma, such as contusion, sharp force injuries, drug injections, pelvic fractures, or hip dislocations. It leads to both sensory and motor dysfunctions, characterized by pain, numbness, loss of sensation, muscle atrophy, reduced muscle tone, and limb paralysis. These symptoms can significantly diminish a patient's quality of life. Following SNI, Wallerian degeneration occurs, which activates various signaling pathways, inflammatory factors, and epigenetic regulators. Despite the availability of several surgical and nonsurgical treatments, their effectiveness remains suboptimal. Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm, originating from the endoplasmic reticulum. They play a crucial role in facilitating intercellular communication and have emerged as highly promising vehicles for drug delivery. Increasing evidence supports the significant potential of exosomes in repairing SNI. This review delves into the pathological progression of SNI, techniques for generating exosomes, the molecular mechanisms behind SNI recovery with exosomes, the effectiveness of combining exosomes with other approaches for SNI repair, and the changes and future outlook for utilizing exosomes in SNI recovery.
Collapse
Affiliation(s)
- Guang-Da Xin
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Xue-Yan Liu
- Cardiology Department, China-Japan Union Hospital of Jilin Universit, Changchun, Jilin Province, 130000, China
| | - Xiao-Di Fan
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Guan-Jie Zhao
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China.
| |
Collapse
|
3
|
Yu T, Yang LL, Zhou Y, Wu MF, Jiao JH. Exosome-mediated repair of spinal cord injury: a promising therapeutic strategy. Stem Cell Res Ther 2024; 15:6. [PMID: 38167108 PMCID: PMC10763489 DOI: 10.1186/s13287-023-03614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Spinal cord injury (SCI) is a catastrophic injury to the central nervous system (CNS) that can lead to sensory and motor dysfunction, which seriously affects patients' quality of life and imposes a major economic burden on society. The pathological process of SCI is divided into primary and secondary injury, and secondary injury is a cascade of amplified responses triggered by the primary injury. Due to the complexity of the pathological mechanisms of SCI, there is no clear and effective treatment strategy in clinical practice. Exosomes, which are extracellular vesicles of endoplasmic origin with a diameter of 30-150 nm, play a critical role in intercellular communication and have become an ideal vehicle for drug delivery. A growing body of evidence suggests that exosomes have great potential for repairing SCI. In this review, we introduce exosome preparation, functions, and administration routes. In addition, we summarize the effect and mechanism by which various exosomes repair SCI and review the efficacy of exosomes in combination with other strategies to repair SCI. Finally, the challenges and prospects of the use of exosomes to repair SCI are described.
Collapse
Affiliation(s)
- Tong Yu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Li-Li Yang
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Ying Zhou
- Department of Operating Room, The Third Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Min-Fei Wu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Jian-Hang Jiao
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China.
| |
Collapse
|
4
|
Rismanbaf A. Improving targeted small molecule drugs to overcome chemotherapy resistance. Cancer Rep (Hoboken) 2024; 7:e1945. [PMID: 37994401 PMCID: PMC10809209 DOI: 10.1002/cnr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Conventional cancer treatments face the challenge of therapeutic resistance, which causes poor treatment outcomes. The use of combination therapies can improve treatment results in patients and is one of the solutions to overcome this challenge. Chemotherapy is one of the conventional treatments that, due to the non-targeted and lack of specificity in targeting cancer cells, can cause serious complications in the short and long-term for patients by damaging healthy cells. Also, the employment of a wide range of strategies for chemotherapy resistance by cancer cells, metastasis, and cancer recurrence create serious problems to achieve the desired results of chemotherapy. Accordingly, targeted therapies can be used as a combination treatment with chemotherapy to both cause less damage to healthy cells, which as a result, they reduce the side effects of chemotherapy, and by targeting the factors that cause therapeutic challenges, can improve the results of chemotherapy in patients. RECENT FINDINGS Small molecules are one of the main targeted therapies that can be used for diverse targets in cancer treatment due to their penetration ability and characteristics. However, small molecules in cancer treatment are facing obstacles that a better understanding of cancer biology, as well as the mechanisms and factors involved in chemotherapy resistance, can lead to the improvement of this type of major targeted therapy. CONCLUSION In this review article, at first, the challenges that lead to not achieving the desired results in chemotherapy and how cancer cells can be resistant to chemotherapy are examined, and at the end, research areas are suggested that more focusing on them, can lead to the improvement of the results of using targeted small molecules as an adjunctive treatment for chemotherapy in the conditions of chemotherapy resistance and metastasis of cancer cells.
Collapse
Affiliation(s)
- Amirhossein Rismanbaf
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
5
|
Hu R, Jahan MS, Tang L. ExoPD-L1: an assistant for tumor progression and potential diagnostic marker. Front Oncol 2023; 13:1194180. [PMID: 37736550 PMCID: PMC10509558 DOI: 10.3389/fonc.2023.1194180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
The proliferation and function of immune cells are often inhibited by the binding of programmed cell-death ligand 1 (PD-L1) to programmed cell-death 1 (PD-1). So far, many studies have shown that this combination poses significant difficulties for cancer treatment. Fortunately, PD-L1/PD-1 blocking therapy has achieved satisfactory results. Exosomes are tiny extracellular vesicle particles with a diameter of 40~160 nm, formed by cells through endocytosis. The exosomes are a natural shelter for many molecules and an important medium for information transmission. The contents of exosomes are composed of DNA, RNA, proteins and lipids etc. They are crucial to antigen presentation, tumor invasion, cell differentiation and migration. In addition to being present on the surface of tumor cells or in soluble form, PD-L1 is carried into the extracellular environment by tumor derived exosomes (TEX). At this time, the exosomes serve as a medium for communication between tumor cells and other cells or tissues and organs. In this review, we will cover the immunosuppressive role of exosomal PD-L1 (ExoPD-L1), ExoPD-L1 regulatory factors and emerging approaches for quantifying and detecting ExoPD-L1. More importantly, we will discuss how targeted ExoPD-L1 and combination therapy can be used to treat cancer more effectively.
Collapse
Affiliation(s)
- Rong Hu
- School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Md Shoykot Jahan
- School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lijun Tang
- School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
6
|
Chen H, Xie G, Luo Q, Yang Y, Hu S. Regulatory miRNAs, circRNAs and lncRNAs in cell cycle progression of breast cancer. Funct Integr Genomics 2023; 23:233. [PMID: 37432486 DOI: 10.1007/s10142-023-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Breast cancer is a complex and heterogeneous disease that poses a significant public health concern worldwide, and it remains a major challenge despite advances in treatment options. One of the main properties of cancer cells is the increased proliferative activity that has lost regulation. Dysregulation of various positive and negative modulators in the cell cycle has been identified as one of the driving factors of breast cancer. In recent years, non-coding RNAs have garnered much attention in the regulation of cell cycle progression, with microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) being of particular interest. MiRNAs are a class of highly conserved and regulatory small non-coding RNAs that play a crucial role in the modulation of various cellular and biological processes, including cell cycle regulation. CircRNAs are a novel form of non-coding RNAs that are highly stable and capable of modulating gene expression at posttranscriptional and transcriptional levels. LncRNAs have also attracted considerable attention because of their prominent roles in tumor development, including cell cycle progression. Emerging evidence suggests that miRNAs, circRNAs and lncRNAs play important roles in the regulation of cell cycle progression in breast cancer. Herein, we summarized the latest related literatures in breast cancer that emphasize the regulatory roles of miRNAs, circRNAs and lncRNAs in cell cycle progress of breast cancer. Further understanding of the precise roles and mechanisms of non-coding RNAs in breast cancer cell cycle regulation could lead to the development of new diagnostic and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Qunying Luo
- Department of Internal Medicine-Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, China
| | - Yisha Yang
- Luoyang Campus, Henan Vocational College of Agriculture, Luoyang, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Wuhan, China.
| |
Collapse
|
7
|
Mezher M, Abdallah S, Ashekyan O, Shoukari AA, Choubassy H, Kurdi A, Temraz S, Nasr R. Insights on the Biomarker Potential of Exosomal Non-Coding RNAs in Colorectal Cancer: An In Silico Characterization of Related Exosomal lncRNA/circRNA–miRNA–Target Axis. Cells 2023; 12:cells12071081. [PMID: 37048155 PMCID: PMC10093117 DOI: 10.3390/cells12071081] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer types, ranking third after lung and breast cancers. As such, it demands special attention for better characterization, which may eventually result in the development of early detection strategies and preventive measures. Currently, components of bodily fluids, which may reflect various disease states, are being increasingly researched for their biomarker potential. One of these components is the circulating extracellular vesicles, namely, exosomes, which are demonstrated to carry various cargo. Of importance, the non-coding RNA cargo of circulating exosomes, especially long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and micro RNAs (miRNAs), may potentially serve as significant diagnostic and prognostic/predictive biomarkers. In this review, we present existing evidence on the diagnostic and prognostic/predictive biomarker value of exosomal non-coding RNAs in CRC. In addition, taking advantage of the miRNA sponging functionality of lncRNAs and circRNAs, we demonstrate an experimentally validated CRC exosomal non-coding RNA-regulated target gene axis benefiting from published miRNA sponging studies in CRC. Hence, we present a set of target genes and pathways downstream of the lncRNA/circRNA–miRNA–target axis along with associated significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which may collectively serve to better characterize CRC and shed light on the significance of exosomal non-coding RNAs in CRC diagnosis and prognosis/prediction.
Collapse
Affiliation(s)
- Maria Mezher
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Samira Abdallah
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ohanes Ashekyan
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ayman Al Shoukari
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hayat Choubassy
- Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Sally Temraz
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
8
|
Armakolas A, Kotsari M, Koskinas J. Liquid Biopsies, Novel Approaches and Future Directions. Cancers (Basel) 2023; 15:1579. [PMID: 36900369 PMCID: PMC10000663 DOI: 10.3390/cancers15051579] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. Early diagnosis and prognosis are vital to improve patients' outcomes. The gold standard of tumor characterization leading to tumor diagnosis and prognosis is tissue biopsy. Amongst the constraints of tissue biopsy collection is the sampling frequency and the incomplete representation of the entire tumor bulk. Liquid biopsy approaches, including the analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating miRNAs, and tumor-derived extracellular vesicles (EVs), as well as certain protein signatures that are released in the circulation from primary tumors and their metastatic sites, present a promising and more potent candidate for patient diagnosis and follow up monitoring. The minimally invasive nature of liquid biopsies, allowing frequent collection, can be used in the monitoring of therapy response in real time, allowing the development of novel approaches in the therapeutic management of cancer patients. In this review we will describe recent advances in the field of liquid biopsy markers focusing on their advantages and disadvantages.
Collapse
Affiliation(s)
- Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Maria Kotsari
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - John Koskinas
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
9
|
Vallejos PA, Fuller RN, Kabagwira J, Kwong ML, Gonda A, McMullen JRW, Le N, Selleck MJ, Miller LD, Perry CC, Senthil M, Wall NR. Exosomal proteins as a source of biomarkers in colon cancer-derived peritoneal carcinomatosis - A pilot study. Proteomics Clin Appl 2023; 17:e2100085. [PMID: 36217952 DOI: 10.1002/prca.202100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 03/15/2023]
Abstract
PURPOSE Peritoneal carcinomatosis (PC), metastasized from colorectal cancer (CRC), remains a highly lethal disease. Outcomes of PC is significantly influenced by the amount of intra-abdominal tumor burden and therefore diagnostic tests that facilitate earlier diagnosis could improve PC treatment and patient outcomes. EXPERIMENTAL DESIGN Using mass-spectrometry-based proteomics, we characterized the protein features of circulating exosomes in the context of CRC PC, CRC with liver metastasis, and primary CRC limited to the colon. We profiled exosomes isolated from patient plasma to identify exosome-associated protein cargoes released by these cancer types. RESULTS Analysis of the resulting data identified metastasis-specific exosome protein signatures. Bioinformatic analyses confirmed enrichment of proteins annotated to vesicle-associated processes and intracellular compartments, as well as representation of cancer hallmark functions and processes. CONCLUSION AND CLINICAL RELEVANCE This research yielded distinct protein profiles for the CRC patient groups and suggests the utility of plasma exosome proteomic analysis for a better understanding of PC development and metastasis.
Collapse
Affiliation(s)
- Paul A Vallejos
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Ryan N Fuller
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Janviere Kabagwira
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Mei Li Kwong
- Department of General Surgery, National Institutes of Health, Bethesda, Maryland, USA
| | - Amber Gonda
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA.,Department of Surgery, Division of Surgical Oncology, University of California at Irvine, Orange, California, USA
| | - James R W McMullen
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Natasha Le
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Matthew J Selleck
- Department of Surgery, Mountain View Hospital, Las Vegas, Nevada, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christopher C Perry
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Maheswari Senthil
- Department of Surgery, Division of Surgical Oncology, University of California at Irvine, Orange, California, USA
| | - Nathan R Wall
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| |
Collapse
|
10
|
Miyazaki K, Wada Y, Okuno K, Murano T, Morine Y, Ikemoto T, Saito Y, Ikematsu H, Kinugasa Y, Shimada M, Goel A. An exosome-based liquid biopsy signature for pre-operative identification of lymph node metastasis in patients with pathological high-risk T1 colorectal cancer. Mol Cancer 2023; 22:2. [PMID: 36609320 PMCID: PMC9817247 DOI: 10.1186/s12943-022-01685-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/25/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND According to current guidelines, more than 70% of patients with invasive submucosal colorectal cancer (T1 CRC) undergo a radical operation with lymph node dissection, even though only ~ 10% have lymph node metastasis (LNM). Hence, there is imperative to develop biomarkers that can help robustly identify LNM-positive patients to prevent such overtreatments. Given the emerging interest in exosomal cargo as a source for biomarker development in cancer, we examined the potential of exosomal miRNAs as LNM prediction biomarkers in T1 CRC. METHODS We analyzed 200 patients with high-risk T1 CRC from two independent cohorts, including a training (n = 58) and a validation cohort (n = 142). Cell-free and exosomal RNAs from pre-operative serum were extracted, followed by quantitative reverse-transcription polymerase chain reactions for a panel of miRNAs. RESULTS A panel of four miRNAs (miR-181b, miR-193b, miR-195, and miR-411) exhibited robust ability for detecting LNM in the exosomal vs. cell-free component. We subsequently established a cell-free and exosomal combination signature, successfully validated in two independent clinical cohorts (AUC, 0.84; 95% CI 0.70-0.98). Finally, we developed a risk-stratification model by including key pathological features, which reduced the false positive rates for LNM by 76% without missing any true LNM-positive patients. CONCLUSIONS Our novel exosomal miRNA-based liquid biopsy signature robustly identifies T1 CRC patients at risk of LNM in a preoperative setting. This could be clinically transformative in reducing the significant overtreatment burden of this malignancy.
Collapse
Affiliation(s)
- Katsuki Miyazaki
- grid.410425.60000 0004 0421 8357Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, 1218 S. Fifth Avenue, Suite 2226, Monrovia, CA 91016 USA ,grid.267335.60000 0001 1092 3579Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yuma Wada
- grid.410425.60000 0004 0421 8357Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, 1218 S. Fifth Avenue, Suite 2226, Monrovia, CA 91016 USA ,grid.267335.60000 0001 1092 3579Department of Surgery, Tokushima University, Tokushima, Japan
| | - Keisuke Okuno
- grid.410425.60000 0004 0421 8357Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, 1218 S. Fifth Avenue, Suite 2226, Monrovia, CA 91016 USA ,grid.265073.50000 0001 1014 9130Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuro Murano
- grid.497282.2Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Yuji Morine
- grid.267335.60000 0001 1092 3579Department of Surgery, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- grid.267335.60000 0001 1092 3579Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yu Saito
- grid.267335.60000 0001 1092 3579Department of Surgery, Tokushima University, Tokushima, Japan
| | - Hiroaki Ikematsu
- grid.497282.2Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Yusuke Kinugasa
- grid.265073.50000 0001 1014 9130Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuo Shimada
- grid.267335.60000 0001 1092 3579Department of Surgery, Tokushima University, Tokushima, Japan
| | - Ajay Goel
- grid.410425.60000 0004 0421 8357Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, 1218 S. Fifth Avenue, Suite 2226, Monrovia, CA 91016 USA ,grid.410425.60000 0004 0421 8357City of Hope Comprehensive Cancer Center, Duarte, CA USA
| |
Collapse
|
11
|
Zhang LJ, Chen F, Liang XR, Ponnusamy M, Qin H, Lin ZJ. Crosstalk among long non-coding RNA, tumor-associated macrophages and small extracellular vesicles in tumorigenesis and dissemination. Front Oncol 2022; 12:1008856. [PMID: 36263199 PMCID: PMC9574020 DOI: 10.3389/fonc.2022.1008856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), which lack protein-coding ability, can regulate cancer cell growth, proliferation, invasion, and metastasis. Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment that have a significant impact on cancer progression. Small extracellular vesicles (sEV) are crucial mediators of intercellular communications. Cancer cell and macrophage-derived sEV can carry lncRNAs that influence the onset and progression of cancer. Dysregulation of lncRNAs, TAMs, and sEV is widely observed in tumors which makes them valuable targets for cancer immunotherapy. In this review, we summarize current updates on the interactions among sEV, lncRNAs, and TAMs in tumors and provide new perspectives on cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Li-jie Zhang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Feng Chen
- Department of General Surgery, Weifang Traditional Chinese Hospital, Weifang, China
| | - Xiao-ru Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | | | - Hao Qin
- Department of Public Health, Weifang Medical University, Weifang, China
| | - Zhi-juan Lin
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
- *Correspondence: Zhi-juan Lin,
| |
Collapse
|
12
|
A Transcriptomic Liquid Biopsy Assay for Predicting Resistance to Neoadjuvant Therapy in Esophageal Squamous Cell Carcinoma. Ann Surg 2022; 276:101-110. [PMID: 35703443 PMCID: PMC9276630 DOI: 10.1097/sla.0000000000005473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to establish a liquid-biopsy assay to predict response to neoadjuvant therapy (NAT) in esophageal squamous cell carcinoma (ESCC) patients. SUMMARY BACKGROUND DATA Pretreatment prediction of resistance to NAT is of great significance for the selection of treatment options in ESCC patients. In this study, we comprehensively translated tissue-based microRNA (miRNA) and messenger RNA (mRNA) expression biomarkers into a liquid biopsy assay. METHODS We analyzed 186 clinical ESCC samples, which included 128 formalin-fixed paraffin-embedded and a matched subset of 58 serum samples, from 2 independent institutions. We performed quantitative reverse-transcription polymerase chain reaction, and developed a resistance-prediction model using the logistic regression analyses. RESULTS We first evaluated the potential of 4-miRNAs and 3-mRNAs panel, which robustly predicted resistance to NAT [area under the curve (AUC): 0.85]. Moreover, addition of tumor size to this panel increased predictive potential to establish a combination signature (AUC: 0.92). We successfully validated this signature performance in independent cohort, and our model was more accurate when the signature was combined with clinical predictors (AUC: 0.81) to establish a NAT resistance risk (NATRR) model. Finally, we successfully translated our NATRR model into a liquid biopsy assay (AUC: 0.78), and a multivariate regression analysis revealed this model as an independent predictor for response to NAT (odds ratio: 6.10; P < 0.01). CONCLUSIONS We successfully developed a liquid biopsy-based assay that allows robust prediction of response to NAT in ESCC patients, and our assay provides fundamentals of developing precision-medicine.
Collapse
|
13
|
Dhar R, Mallik S, Devi A. Exosomal microRNAs (exoMIRs): micromolecules with macro impact in oral cancer. 3 Biotech 2022; 12:155. [DOI: 10.1007/s13205-022-03217-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
|
14
|
Yang M, Sun M, Zhang H. The Interaction Between Epigenetic Changes, EMT, and Exosomes in Predicting Metastasis of Colorectal Cancers (CRC). Front Oncol 2022; 12:879848. [PMID: 35712512 PMCID: PMC9197117 DOI: 10.3389/fonc.2022.879848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Worldwide, colorectal cancer (CRC) ranks as the third most common malignancy, and the second most deadly with nearly one million attributable deaths in 2020. Metastatic disease is present in nearly 25% of newly diagnosed CRC, and despite advances in chemotherapy, less than 20% will remain alive at 5 years. Epigenetic change plays a key role in the epithelial-to-mesenchymal transition (EMT), which is a crucial phenotype for metastasis and mainly includes DNA methylation, non-coding RNAs (ncRNAs), and N6-methyladenosine (m6A) RNA, seemingly valuable biomarkers in CRCs. For ncRNAs, there exists a “molecular sponge effect” between long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs). The detection of exosomes is a novel method in CRC monitoring, especially for predicting metastasis. There is a close relationship between exosomes and EMT in CRCs. This review summarizes the close relationship between epigenetic changes and EMT in CRCs and emphasizes the crucial function of exosomes in regulating the EMT process.
Collapse
|
15
|
Hao YJ, Yang CY, Chen MH, Chang LW, Lin CP, Lo LC, Huang SC, Lyu YY, Jiang JK, Tseng FG. Potential Values of Circulating microRNA-21 to Predict Early Recurrence in Patients with Colorectal Cancer after Treatments. J Clin Med 2022; 11:2400. [PMID: 35566526 PMCID: PMC9100254 DOI: 10.3390/jcm11092400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 12/09/2022] Open
Abstract
Insufficient prognosis of local recurrence contributes to the poor progression-free survival rate and death in colorectal cancer (CRC) patients. Various biomarkers have been explored in predicting CRC recurrence. This study investigated the expressions of plasma/exosomal microRNA-21 (miR-21) in 113 CRC patients by qPCR, their values of predicting CRC recurrence, and the possibility to improve the prognostic efficacy in early CRC recurrence in stratified patients by combined biomarkers including circulating miR-21s, circulating tumour cells/microemboli (CTCs/CTM), and serum carcinoembryonic antigen (CEA)/carbohydrate antigen 19-9 (CA19-9). Expressions of plasma and exosomal miR-21s were significantly correlated (p < 0.0001) in all and late-stage patients, presenting similar correlations with other biomarkers. However, stage IV patients stratified by a high level of exosomal miR-21 and stage I to III patients stratified by a high level of plasma miR-21 displayed significantly worse survival outcomes in predicting CRC recurrence, suggesting their different values to predict CRC recurrence in stratified patients. Comparable and even better performances in predicting CRC recurrence in late-stage patients were found by CTCs/CTM from our blood samples as sensitive biomarkers. Improved prognosing efficacy in CRC recurrence and better outcomes to significantly differentiate recurrence in stratified patients could be obtained by analysing combined biomarkers.
Collapse
Affiliation(s)
- Yun-Jie Hao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-J.H.); (M.-H.C.); (L.-W.C.)
- School of Engineering, University of Liverpool, Liverpool L69 3BX, UK
| | - Chih-Yung Yang
- Department of Teaching and Research, Taipei City Hospital, Taipei 10341, Taiwan;
- Commission for General Education, National United University, Miaoli 36003, Taiwan
- General Education Center, University of Taipei, Taipei 110014, Taiwan
| | - Ming-Hsien Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-J.H.); (M.-H.C.); (L.-W.C.)
| | - Lu-Wey Chang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-J.H.); (M.-H.C.); (L.-W.C.)
| | - Chien-Ping Lin
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan; (C.-P.L.); (L.-C.L.); (Y.-Y.L.)
| | - Liang-Chuan Lo
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan; (C.-P.L.); (L.-C.L.); (Y.-Y.L.)
| | - Sheng-Chieh Huang
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan;
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - You-You Lyu
- Institute of Microbiology and Immunology, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan; (C.-P.L.); (L.-C.L.); (Y.-Y.L.)
| | - Jeng-Kai Jiang
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan;
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.-J.H.); (M.-H.C.); (L.-W.C.)
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan
| |
Collapse
|
16
|
Xiong H, Huang Z, Yang Z, Lin Q, Yang B, Fang X, Liu B, Chen H, Kong J. Recent Progress in Detection and Profiling of Cancer Cell-Derived Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007971. [PMID: 34075696 DOI: 10.1002/smll.202007971] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/23/2021] [Indexed: 05/24/2023]
Abstract
Exosomes, known as nanometer-sized vesicles (30-200 nm), are secreted by many types of cells. Cancer-derived exosomes have great potential to be biomarkers for early clinical diagnosis and evaluation of cancer therapeutic efficacy. Conventional detection methods are limited to low sensitivity and reproducibility. There are hundreds of papers published with different detection methods in recent years to address these challenges. Therefore, in this review, pioneering researches about various detection strategies are comprehensively summarized and the analytical performance of these tests is evaluated. Furthermore, the exosome molecular composition (protein and nucleic acid) profiling, a single exosome profiling, and their application in clinical cancer diagnosis are reviewed. Finally, the principles and applications of machine learning method in exosomes researches are presented.
Collapse
Affiliation(s)
- Huiwen Xiong
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Zhipeng Huang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Zhejun Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Qiuyuan Lin
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Bin Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Xueen Fang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Hui Chen
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Jilie Kong
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
17
|
Chautard R, Corset L, Ibrahim S, Desvignes C, Paintaud G, Baroukh N, Guéguinou M, Lecomte T, Raoul W. Panitumumab and cetuximab affect differently miRNA expression in colorectal cancer cells. Biomark Med 2021; 15:685-696. [PMID: 34169732 DOI: 10.2217/bmm-2020-0520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Background & aim: Resistance to anti-EGFR monoclonal antibodies in metastatic colorectal cancer (CRC) is frequent and prognostic biomarkers are lacking. MicroRNAs (miR) are good candidates in this context. We aimed to characterize cetuximab and panitumumab exposure influence on miR expression in colorectal cancer cells to identify those regulating the EGFR pathway and implicated in resistance to treatment. Finally, we aimed to identify miR expression in serum of patients with advanced CRC treated with cetuximab or panitumumab. Results: Cetuximab and panitumumab exposure induced significant expression variations of 17 miR out of a miRnome panel of 752. Six of those miR interacted with at least one downstream element of the EGFR pathway. Conclusion: After the bioinformatics two-phase process, five miR rarely described before could be potential actors of anti-EGFR monoclonal antibody resistance: miR-95-3p, miR-139-5p, miR-145-5p, miR-429 and miR-1247-5p. In vivo, we detected the expression of miR-139-5p and miR-145-5p in serum of patients with metastatic CRC.
Collapse
Affiliation(s)
- Romain Chautard
- Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, France
- Université de Tours, EA 7501, GICC, France
| | - Laetitia Corset
- Université de Tours, EA 7501, GICC, France
- CNRS ERL 7001 LNOx, Université de Tours, France
| | | | - Céline Desvignes
- CHRU de Tours, Centre Pilote de suivi Biologique des traitements par Anticorps (CePiBAc), Tours, France
- Université de Tours, Tours, EA 4245 T2I, France
| | - Gilles Paintaud
- CHRU de Tours, Centre Pilote de suivi Biologique des traitements par Anticorps (CePiBAc), Tours, France
- Université de Tours, Tours, EA 4245 T2I, France
| | | | | | - Thierry Lecomte
- Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, France
- Université de Tours, EA 7501, GICC, France
| | - William Raoul
- Université de Tours, EA 7501, GICC, France
- Inserm UMR 1069, Nutrition Croissance et Cancer (N2C), Université de Tours, France
| |
Collapse
|
18
|
Li S, Yi M, Dong B, Tan X, Luo S, Wu K. The role of exosomes in liquid biopsy for cancer diagnosis and prognosis prediction. Int J Cancer 2021; 148:2640-2651. [PMID: 33180334 PMCID: PMC8049049 DOI: 10.1002/ijc.33386] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022]
Abstract
Liquid biopsy is a revolutionary strategy in cancer diagnosis and prognosis prediction, which is used to analyze cancer cells or cancer-derived products through biofluids such as blood, urine and so on. Exosomes play a crucial role in mediating cell communication. A growing number of studies have reported that exosomes are involved in tumorigenesis, tumor growth, metastasis and drug resistance by delivering cargos including nucleic acids and protein. Thus, exosomes, as a new type of liquid biopsy, have the potential to be diagnostic or prognostic biomarkers. Herein, we elaborate on the current methods and introduce novel techniques for exosome isolation and characterization. Moreover, we elucidate the advantages of exosomes compared to other biological components in liquid biopsy and summarize the different exosomal biomarkers in cancer diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bing Dong
- Department of Medical OncologyThe Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer HospitalZhengzhouChina
| | - Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Suxia Luo
- Department of Medical OncologyThe Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer HospitalZhengzhouChina
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Medical OncologyThe Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer HospitalZhengzhouChina
| |
Collapse
|
19
|
Huang Z, Lin Q, Yang B, Ye X, Chen H, Weng W, Kong J. Cascade signal amplification for sensitive detection of exosomes by integrating tyramide and surface-initiated enzymatic polymerization. Chem Commun (Camb) 2021; 56:12793-12796. [PMID: 32966397 DOI: 10.1039/d0cc04881j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel cascade signal amplification based on tyramide signal amplification (TSA) and surface-initiated enzymatic polymerization (SIEP) was first reported for the sensitive and template-free detection of colorectal cancer (CRC) exosomes. This assay exhibited 20.9-fold signal amplification with a low detection limit of 12.8 particles per μL. Furthermore, accurate and reproducible results were obtained for detecting exosomes in serum samples, suggesting its potential application in exosomes analysis and clinical diagnostics.
Collapse
Affiliation(s)
- Zhipeng Huang
- Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Qiuyuan Lin
- Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Bin Yang
- Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Xin Ye
- Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai 200438, China.
| |
Collapse
|
20
|
Dias F, Almeida C, Teixeira AL, Morais M, Medeiros R. LAT1 and ASCT2 Related microRNAs as Potential New Therapeutic Agents against Colorectal Cancer Progression. Biomedicines 2021; 9:biomedicines9020195. [PMID: 33669301 PMCID: PMC7920065 DOI: 10.3390/biomedicines9020195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
The development and progression of colorectal cancer (CRC) have been associated with genetic and epigenetic alterations and more recently with changes in cell metabolism. Amino acid transporters are key players in tumor development, and it is described that tumor cells upregulate some AA transporters in order to support the increased amino acid (AA) intake to sustain the tumor additional needs for tumor growth and proliferation through the activation of several signaling pathways. LAT1 and ASCT2 are two AA transporters involved in the regulation of the mTOR pathway that has been reported as upregulated in CRC. Some attempts have been made in order to develop therapeutic approaches to target these AA transporters, however none have reached the clinical setting so far. MiRNA-based therapies have been gaining increasing attention from pharmaceutical companies and now several miRNA-based drugs are currently in clinical trials with promising results. In this review we combine a bioinformatic approach with a literature review in order to identify a miRNA profile with the potential to target both LAT1 and ASCT2 with potential to be used as a therapeutic approach against CRC.
Collapse
Affiliation(s)
- Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center—LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (C.A.); (M.M.); (R.M.)
| | - Cristina Almeida
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center—LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (C.A.); (M.M.); (R.M.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center—LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (C.A.); (M.M.); (R.M.)
- Correspondence: ; Tel.: +351-225084000 (ext. 5410)
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center—LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (C.A.); (M.M.); (R.M.)
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center—LAB2, E Bdg 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.D.); (C.A.); (M.M.); (R.M.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
| |
Collapse
|
21
|
Toden S, Zumwalt TJ, Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188491. [PMID: 33316377 PMCID: PMC7856203 DOI: 10.1016/j.bbcan.2020.188491] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Recent advances have begun to clarify the physiological and pathological roles of non-coding RNAs (ncRNAs) in various diseases, including cancer. Among these, microRNAs (miRNAs) have been the most studied and have emerged as key players that are involved in the regulation of important growth regulatory pathways in cancer pathogenesis. The ability of a single ncRNA to modulate the expression of multiple downstream gene targets and associated pathways, have provided a rationale to pursue them for therapeutic drug development in cancer. In this context, early data from pre-clinical studies have demonstrated that synthetic miRNA-based therapeutic molecules, along with various protective coating approaches, has allowed for their efficient delivery and anti-tumor activity. In fact, some of the miRNA-based cancer therapeutic strategies have shown promising results even in early-phase human clinical trials. While the enthusiasm for ncRNA-based cancer therapeutics continue to evolve, the field is still in the midst of unraveling a more precise understanding of the molecular mechanisms and specific downstream therapeutic targets of other lesser studied ncRNAs such as the long-non-coding RNAs, transfer RNAs, circular RNAs, small nucleolar RNAs, and piwi-interacting RNAs. This review article provides the current state of knowledge and the evolving principles for ncRNA-based therapeutic approaches in cancer, and specifically highlights the importance of data to date and the approaches that are being developed to overcome the challenges associated with their delivery and mitigating the off-target effects in human cancers.
Collapse
Affiliation(s)
- Shusuke Toden
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Timothy J Zumwalt
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
22
|
Anticancer effects of miR-124 delivered by BM-MSC derived exosomes on cell proliferation, epithelial mesenchymal transition, and chemotherapy sensitivity of pancreatic cancer cells. Aging (Albany NY) 2020; 12:19660-19676. [PMID: 33040049 PMCID: PMC7732307 DOI: 10.18632/aging.103997] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study aims to explore the roles of miR-124 in pancreatic tumor and potential vehicles. RESULTS The miR-124 expression levels decreased in pancreatic adenocarcinoma tissues and cancer cell lines AsPC-1, PANC1, BxPC-3 and SW1990. Furthermore, the elevated expression of miR-124 in AsPC-1 and PANC1 via miR-124 mimic transfection-induced apoptosis, metastasis and epithelial mesenchymal transition was suppressed, and the EZH2 overexpression partly reversed the protective effects of miR-124 against pancreatic tumors. In addition, the expression of miR-124 was detected in exosomes extracted from miR-124-transfected BM-MSCs, and these exosomes delivered miR-124 into pancreatic cancer cells, and presented the anti-tumor effects in vitro and in vivo. CONCLUSION MiR-124-carried BM-MSC-derived exosomes have potential applications for the treatment of pancreatic tumors. METHODS The expression of miR-124 and EZH2 was determined in both pancreatic cancer tissues and cell lines. miR-124 or EZH2 was overexpressed in AsPC-1 and PANC1 cells. Then, the effects on cell viability. apoptosis, invasion, migration and epithelial mesenchymal transition were evaluated. Afterwards, the roles of miR-124 on the expression and function of EZH2 in pancreatic tumors were determined by dual luciferase reporter assay. Subsequently, miR-124 was transfected to bone marrow mesenchymal stromal cells (BM-MSCs), and the BM-MSCs derived exosomes were isolated and co-cultured with AsPC-1 and PANC1 cells, or injected into pancreatic cancer tumor-bearing mice.
Collapse
|
23
|
Wei R, Chen L, Qin D, Guo Q, Zhu S, Li P, Min L, Zhang S. Liquid Biopsy of Extracellular Vesicle-Derived miR-193a-5p in Colorectal Cancer and Discovery of Its Tumor-Suppressor Functions. Front Oncol 2020; 10:1372. [PMID: 33014778 PMCID: PMC7461920 DOI: 10.3389/fonc.2020.01372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
Previously, abnormal extracellular vesicle (EV) sorting of miR-193a was identified in colorectal cancer (CRC) progression. Although a reduced level of miR-193a-5p in plasma/serum has been reported in many different types of cancer, the EV-derived miR-193a-5p level in CRC and its potential application as a minimally invasive biomarker are still unknown. Here, we evaluated the circulating EV-derived miR-193a-5p expression levels in a cohort of 101 participants by real-time quantitative polymerase chain reaction (RT-qPCR). We found that plasma EV-miR-193a-5p decreased significantly in CRC patients as compared with precancerous colorectal adenoma (CA) and non-cancerous control (NC) individuals. The circulating EV-miR-193a-5p showed an area under the receiver operating characteristic curve (AUC) of 0.740 in distinguishing CRC from CA and an AUC of 0.759 in distinguishing CRC from NC. Furthermore, the suppression on CRC cells of miR-193a-5p was verified by transwell, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), EdU, RT-qPCR, and western blotting. Bioinformatic analysis predicted 32 genes, which were the most likely miR-193a-5p targeted and mainly focused on tumor progression. Among them, we revealed that miR-193a-5p could inhibit CRC migration and invasion via targeting tumor-associated genes like CUT-like homeobox 1 (CUX1) and intersectin 1 (ITSN1). In conclusion, miR-193a-5p could suppress CRC development, and decreased plasma EV-miR-193a-5p could be a promising biomarker for human CRC detection.
Collapse
Affiliation(s)
- Rui Wei
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Chen
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Da Qin
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qingdong Guo
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shengtao Zhu
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Li
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Min
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shutian Zhang
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Chu YL, Li H, Ng PLA, Kong ST, Zhang H, Lin Y, Tai WCS, Yu ACS, Yim AKY, Tsang HF, Cho WCS, Wong SCC. The potential of circulating exosomal RNA biomarkers in cancer. Expert Rev Mol Diagn 2020; 20:665-678. [PMID: 32188269 DOI: 10.1080/14737159.2020.1745064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/17/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION There are great potentials of using exosomal RNAs (exoRNA) as biomarkers in cancers. The isolation of exoRNA requires the use of ultracentrifugation to isolate cell-free RNA followed by detection using real-time PCR, microarray, next-generation sequencing, or Nanostring nCounter system. The use of exoRNA enrichment panels has largely increased the detection sensitivity and specificity when compared to traditional diagnostic tests. Moreover, using exoRNA as biomarkers can assist the early detection of chemo and radioresistance cancer, and in turn opens up the possibility of personalized treatment to patients. Finally, exoRNA can be detected at an early stage of cancer recurrence to improve the survival rate. AREAS COVERED In this review, the authors summarized the detection methods of exoRNA as well as its potential as a biomarker in cancer diagnosis and chemo and radioresistance. EXPERT OPINION The application of exoRNAs in clinical diagnosis is still in its infancy. Further researches on extracellular vesicles isolation, detection protocols, exoRNA classes and subclasses, and the regulatory biological pathways have to be performed before exoRNA can be applied translationally.
Collapse
Affiliation(s)
- Yin Lam Chu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Harriet Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Pik Lan Amanda Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Siu Ting Kong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College , Guangzhou, Guangdong, China
| | - Yusheng Lin
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College , Shantou, Guangdong, China
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, Faculty of Applied Sciences and Textiles, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region , Kowloon, China
| | | | | | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | | | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| |
Collapse
|
25
|
Huang Z, Lin Q, Ye X, Yang B, Zhang R, Chen H, Weng W, Kong J. Terminal deoxynucleotidyl transferase based signal amplification for enzyme-linked aptamer-sorbent assay of colorectal cancer exosomes. Talanta 2020; 218:121089. [PMID: 32797865 DOI: 10.1016/j.talanta.2020.121089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Abstract
Exosomes have received increasingly significant attention and have shown great clinical value as biomarkers for a number of diseases. However, there is still a lack of a highly sensitive and visualized method for the detection of exosomes in numerous samples simultaneously. Here, we developed a high-throughput, colorimetric and simple method to detect colorectal cancer (CRC) exosomes based on terminal deoxynucleotidyl transferase (TdT)-aided ultraviolet signal amplification. Anti-A33, a CRC exosomal protein marker, was selected as a capture probe, and a facility-prepared EpCAM (CRC exosomal protein) aptamer-Au-primer complex was used as a signal probe. After the CRC exosomes were captured onto the surface of 96-well plates, the primer was extended to the poly(biotin-adenine) chains with the help of TdT, resulting in an increase in the binding amount of avidin-modified horseradish peroxidase (Av-HRP) for H2O2-mediated oxidation of 3,3',5,5'-tetramethyl benzidine (TMB) in enzyme-linked aptamer-sorbent assay (ELASA). The results showed that the incorporation of ploy(biotin-A) enabled approximately 10.4-fold signal amplification. This approach achieved a linear range of 9.75 × 103-1.95 × 106 particles/μL for CRC cell-derived exosomes. The feasibility of the developed assay was evaluated using clinical serum samples. CRC patients (n = 16) could be clearly and successfully distinguished from healthy individuals (n = 9). Furthermore, this proposed platform holds considerable potential for the detection of different targets, simply by changing the aptamer and antibody.
Collapse
Affiliation(s)
- Zhipeng Huang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Qiuyuan Lin
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Xin Ye
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Bin Yang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Ren Zhang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Hui Chen
- Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
26
|
Zhang Y, Liu H, Liu X, Guo Y, Wang Y, Dai Y, Zhuo J, Wu B, Wang H, Zhang X. Identification of an exosomal long non-coding RNAs panel for predicting recurrence risk in patients with colorectal cancer. Aging (Albany NY) 2020; 12:6067-6088. [PMID: 32246818 PMCID: PMC7185113 DOI: 10.18632/aging.103006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/24/2020] [Indexed: 12/17/2022]
Abstract
Recurrence is a major cause of cancer-related deaths in colorectal cancer (CRC) patients, but the current strategies are limited to predict this clinical behavior. Our aim is to develop a recurrence prediction model based on long non-coding RNAs (lncRNAs) in exosomes of serum to improve the prediction accuracy. In discovery phase, 11 lncRNAs were found to be associated with CRC recurrence in tissues using high-throughput lncRNAs microarray and reverse transcription quantitative real-time PCR. And, 9 of them were correlated with their expression levels of serum exosomes. In training phase, a model based on 5-exosomal lncRNAs (exolncRNAs) panel was constructed, and showed high distinguish capability for recurrent CRC patients. ROC showed the panel was superior to serum CEA and CA19-9 in prediction of CRC recurrence. In both training and test sets, high-risk patients defined by the 5-exolncRNAs panel had poor recurrence free and overall survival. And, COX model showed it was an independent factor for CRC prognosis. Moreover, there was a significant relationship in detection of 5-exolncRNAs between plasma samples and paired serum samples. In summary, the 5-exolncRNAs panel robustly stratifies CRC patients’ risk of recurrence, enabling more accurate prediction of prognosis.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan 250031, Shandong Province, China
| | - Hui Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xinfeng Liu
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan 250031, Shandong Province, China
| | - Yulian Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yanlei Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yonggang Dai
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan 250031, Shandong Province, China
| | - Jinhua Zhuo
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan 250031, Shandong Province, China
| | - Bing Wu
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan 250031, Shandong Province, China
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
27
|
Srivastava A, Amreddy N, Pareek V, Chinnappan M, Ahmed R, Mehta M, Razaq M, Munshi A, Ramesh R. Progress in extracellular vesicle biology and their application in cancer medicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1621. [PMID: 32131140 PMCID: PMC7317410 DOI: 10.1002/wnan.1621] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Under the broader category of extracellular vesicles (EVs), exosomes are now well recognized for their contribution and potential for biomedical research. During the last ten years, numerous technologies for purification and characterization of EVs have been developed. This enhanced knowledge has resulted in the development of novel applications of EVs. This review is an attempt to capture the exponential growth observed in EV science in the last decade and discuss the future potential to improve our understanding of EVs, develop technologies to overcome current limitations, and advance their utility for human benefit, especially in cancer medicine. This article is categorized under:Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Narsireddy Amreddy
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Vipul Pareek
- Department of Hematology and Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mahendran Chinnappan
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rebaz Ahmed
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Meghna Mehta
- Department of Radiation Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mohammad Razaq
- Department of Hematology and Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anupama Munshi
- Department of Radiation Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rajagopal Ramesh
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
28
|
Baassiri A, Nassar F, Mukherji D, Shamseddine A, Nasr R, Temraz S. Exosomal Non Coding RNA in LIQUID Biopsies as a Promising Biomarker for Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21041398. [PMID: 32092975 PMCID: PMC7073025 DOI: 10.3390/ijms21041398] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, with a high mortality rate, especially in those that are diagnosed in late stages of the disease. The current screening blood-based markers, such as carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9), have low sensitivity and specificity. Meanwhile, other modalities are either expensive or invasive. Therefore, recent research has shifted towards a minimally invasive test, namely, liquid biopsy. Exosomes are favorable molecules sought in blood samples, since they are abundant, stable in circulation, and harbor genetic information and other biomolecules that could serve as biomarkers or even therapeutic targets. Furthermore, exosomal noncoding RNAs, such as miRNAs, lncRNAs, and circRNAs, have demonstrated the diagnostic potential to detect CRC at an early stage with a higher sensitivity and specificity than CEA and CA19-9 alone. Moreover, they have prognostic potential that is TNM stage specific and could serve as predictive biomarkers for the most common chemotherapeutic drug and combination regimen in CRC, which are 5-FU and FOLFOX, respectively. Therefore, in this review, we focus on the role of these exosomal noncoding RNAs as diagnostic, prognostic, and predictive biomarkers. In addition, we discuss the advantages and challenges of exosomes as a liquid biopsy target.
Collapse
Affiliation(s)
- Amro Baassiri
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon;
| | - Farah Nassar
- Department of Internal Medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon; (F.N.); (D.M.); (A.S.)
| | - Deborah Mukherji
- Department of Internal Medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon; (F.N.); (D.M.); (A.S.)
| | - Ali Shamseddine
- Department of Internal Medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon; (F.N.); (D.M.); (A.S.)
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon;
- Correspondence: (R.N.); (S.T.); Tel.: +96-1135-000 (ext. 4812) (R.N.); +96-1137-4374 (S.T.)
| | - Sally Temraz
- Department of Internal Medicine, Hematology/Oncology division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon; (F.N.); (D.M.); (A.S.)
- Correspondence: (R.N.); (S.T.); Tel.: +96-1135-000 (ext. 4812) (R.N.); +96-1137-4374 (S.T.)
| |
Collapse
|
29
|
ElKhouly AM, Youness RA, Gad MZ. MicroRNA-486-5p and microRNA-486-3p: Multifaceted pleiotropic mediators in oncological and non-oncological conditions. Noncoding RNA Res 2020; 5:11-21. [PMID: 31993547 PMCID: PMC6971376 DOI: 10.1016/j.ncrna.2020.01.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Despite historically known as "junk" DNA, nowadays non-coding RNA transcripts (ncRNAs) are considered as fundamental players in various physiological and pathological conditions. Nonetheless, any alteration in their expression level has been reported to be directly associated with the incidence and aggressiveness of several diseases. MicroRNAs (miRNAs) are the well-studied members of the ncRNAs family. Several reports have highlighted their crucial roles in the post-transcriptional manipulation of several signaling pathways in different pathological conditions. In this review, our main focus is the multifaceted microRNA-486 (miR-486). miR-486-5p and miR-486-3p have been reported to have central roles in several types oncological and non-oncological conditions such as lung, liver, breast cancers and autism, intervertebral disc degeneration and metabolic syndrome, respectively. Moreover, we spotted the light onto the pleiotropic role of miR-486-5p in acting as competing endogenous RNA with other members of ncRNAs family such as long non-coding RNAs.
Collapse
Affiliation(s)
- Aisha M ElKhouly
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - R A Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - M Z Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
30
|
Aziz NB, Mahmudunnabi RG, Umer M, Sharma S, Rashid MA, Alhamhoom Y, Shim YB, Salomon C, Shiddiky MJA. MicroRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors. Analyst 2020; 145:2038-2057. [DOI: 10.1039/c9an02263e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is the most aggressive of all gynaecological malignancies and is the leading cause of cancer-associated mortality worldwide.
Collapse
Affiliation(s)
- Nahian Binte Aziz
- School of Environment and Science
- Griffith University
- Nathan Campus
- Australia
- School of Chemistry & Molecular Biosciences
| | - Rabbee G. Mahmudunnabi
- Department of Molecular Science Technology and Institute of BioPhysio Sensor Technology (IBST)
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Muhammad Umer
- Queensland Micro and nanotechnology Centre
- Griffith University
- Nathan Campus
- Australia
| | - Shayna Sharma
- Exosome Biology Laboratory
- Centre for Clinical Diagnostics
- University of Queensland Centre for Clinical Research
- Royal Brisbane and Women's Hospital
- The University of Queensland
| | - Md Abdur Rashid
- Department of Pharmaceutics
- College of Pharmacy
- King Khalid University
- Abha
- Kingdom of Saudi Arabia
| | - Yahya Alhamhoom
- Department of Pharmaceutics
- College of Pharmacy
- King Khalid University
- Abha
- Kingdom of Saudi Arabia
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST)
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Carlos Salomon
- Exosome Biology Laboratory
- Centre for Clinical Diagnostics
- University of Queensland Centre for Clinical Research
- Royal Brisbane and Women's Hospital
- The University of Queensland
| | - Muhammad J. A. Shiddiky
- School of Environment and Science
- Griffith University
- Nathan Campus
- Australia
- Queensland Micro and nanotechnology Centre
| |
Collapse
|
31
|
Verma HK. Exosomes facilitate chemoresistance in gastric cancer: Future challenges and openings. PRECISION RADIATION ONCOLOGY 2019. [DOI: 10.1002/pro6.1081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Henu Kumar Verma
- Stem cell labInstitute for Endocrinology and Oncology via pansini 5 80131 Naples Campania Italy
| |
Collapse
|
32
|
Tang Y, Zhao Y, Song X, Song X, Niu L, Xie L. Tumor-derived exosomal miRNA-320d as a biomarker for metastatic colorectal cancer. J Clin Lab Anal 2019; 33:e23004. [PMID: 31420913 PMCID: PMC6868417 DOI: 10.1002/jcla.23004] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND To identify specific exosomal microRNAs (miRNAs) as serum biomarkers for prediction of metastasis in patients with colorectal cancer (CRC). MATERIALS AND METHODS Serum exosomes were isolated from patients with metastatic CRC (n = 34) and non-metastatic CRC (n = 108) by ultracentrifugation and characterized using transmission electron microscopy, qNano, and Western blot. Differential exosomal miRNAs were screened by sequencing and validated by qPCR in metastatic and non-metastatic CRC patients. RESULTS After sequence analysis, KEGG analysis showed that differential genes were associated with Rap1 signaling pathway and pathways in cancer, 6 upregulated exosomal miRNAs (miR-224-5p, miR-548d-5p, miR-200a-3p, miR-320d, miR-200b-3p, and miR-1246), and 3 downregulated exosomal miRNAs (novel_246, novel_301, and miR-27a-5p) were screened with fold change >1.5, among which miR-320d was selected as the best candidate involved in CRC metastasis. Validation analysis revealed exosomal miR-320d could significantly distinguish metastatic from non-metastatic CRC patients (P = .019), with AUC of 0.633 for the diagnosis of patients with metastatic CRC. Besides, the combination of miR-320d and CEA had an area under curve (AUC) of 0.804 for the diagnosis of patients with metastatic CRC. CONCLUSION Serum exosomal miR-320d is a promising non-invasive diagnostic biomarker for distinguishing metastatic from non-metastatic CRC.
Collapse
Affiliation(s)
- Youyong Tang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yajing Zhao
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xingguo Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Limin Niu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
33
|
Korn RL, Rahmanuddin S, Borazanci E. Use of Precision Imaging in the Evaluation of Pancreas Cancer. Cancer Treat Res 2019; 178:209-236. [PMID: 31209847 DOI: 10.1007/978-3-030-16391-4_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreas cancer is an aggressive and fatal disease that will become one of the leading causes of cancer mortality by 2030. An all-out effort is underway to better understand the basic biologic mechanisms of this disease ranging from early development to metastatic disease. In order to change the course of this disease, diagnostic radiology imaging may play a vital role in providing a precise, noninvasive method for early diagnosis and assessment of treatment response. Recent progress in combining medical imaging, advanced image analysis and artificial intelligence, termed radiomics, can offer an innovate approach in detecting the earliest changes of tumor development as well as a rapid method for the detection of response. In this chapter, we introduce the principles of radiomics and demonstrate how it can provide additional information into tumor biology, early detection, and response assessments advancing the goals of precision imaging to deliver the right treatment to the right person at the right time.
Collapse
Affiliation(s)
- Ronald L Korn
- Virginia G Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA. .,Translational Genomics Research Institute, An Affiliate of City of Hope, Phoenix, AZ, USA. .,Imaging Endpoints Core Lab, Scottsdale, AZ, USA.
| | | | - Erkut Borazanci
- Virginia G Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA.,Translational Genomics Research Institute, An Affiliate of City of Hope, Phoenix, AZ, USA
| |
Collapse
|
34
|
Zhou J, Guo H, Yang Y, Zhang Y, Liu H. A meta-analysis on the prognosis of exosomal miRNAs in all solid tumor patients. Medicine (Baltimore) 2019; 98:e15335. [PMID: 31008992 PMCID: PMC6494361 DOI: 10.1097/md.0000000000015335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/05/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It has been reported that the encapsulated miRNAs from exosomes are potential biomarkers of tumors prognosis. Yet, the results are controversial, so it is obliged to do a meta-analysis to reach a definite conclusion. MATERIALS AND METHODS Studies were searched for published in PubMed, Embase, and Web of Science databases until April 20, 2018. A meta-analysis was conducted to appraise the role of exosomal miRNAs in prognosis of cancer patients. RESULTS The different exosomal miRNAs expression was remarkably related to overall survival (OS) (hazard ratio [HR] = 2.02, 95% confidence interval [CI]: 1.84-2.21) and disease-free survival (DFS) (HR = 2.43, 95% CI: 1.86-3.17) of cancer patients. High exosomal miR-21 expression was associated with poor OS (HR = 2.59; 95% CI: 1.71-3.90) and DFS (HR = 1.84; 95% CI: 1.37-2.47). High exosomal miR-451a expression was associated with poor OS (HR = 4.81; 95% CI: 2.33-9.93) and DFS (HR = 2.64; 95% CI: 1.62-4.31). High exosomal miR-1290 expression was associated with poor OS (HR = 1.73; 95% CI: 1.29-2.33). Low exosomal miR-638 expression was associated with poor OS (HR = 2.25; 95% CI: 1.46-3.46). CONCLUSION The expression levels of exosomal miRNAs, particularly miR-21, miR-451a, miR-1290, and miR-638 could strongly predict prognosis of solid tumor patients and might be a potential target for tumor treatment.
Collapse
Affiliation(s)
| | - Hui Guo
- The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, China
| | | | | | | |
Collapse
|
35
|
Maacha S, Bhat AA, Jimenez L, Raza A, Haris M, Uddin S, Grivel JC. Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer 2019; 18:55. [PMID: 30925923 PMCID: PMC6441157 DOI: 10.1186/s12943-019-0965-7] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment represents a complex network, in which tumor cells not only communicate with each other but also with stromal and immune cells. Current research has demonstrated the vital role of the tumor microenvironment in supporting tumor phenotype via a sophisticated system of intercellular communication through direct cell-to-cell contact or by classical paracrine signaling loops of cytokines or growth factors. Recently, extracellular vesicles have emerged as an important mechanism of cellular interchange of bioactive molecules. Extracellular vesicles isolated from tumor and stromal cells have been implicated in various steps of tumor progression, such as proliferation, angiogenesis, metastasis, and drug resistance. Inhibition of extracellular vesicles secretion, and thus of the transfer of oncogenic molecules, holds promise for preventing tumor growth and drug resistance. This review focuses on the role of extracellular vesicles in modulating the tumor microenvironment by addressing different aspects of the bidirectional interactions among tumor and tumor-associated cells. The contribution of extracellular vesicles to drug resistance will also be discussed as well as therapeutic strategies targeting extracellular vesicles production for the treatment of cancer.
Collapse
Affiliation(s)
- Selma Maacha
- Division of Translational Medicine, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Ajaz A Bhat
- Division of Translational Medicine, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Lizandra Jimenez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Haris
- Division of Translational Medicine, Sidra Medicine, PO BOX 26999, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jean-Charles Grivel
- Division of Translational Medicine, Sidra Medicine, PO BOX 26999, Doha, Qatar.
| |
Collapse
|
36
|
Wang L, Zhao S, Yu M. Mechanism of Low Expression of miR-30a-5p on Epithelial-Mesenchymal Transition and Metastasis in Ovarian Cancer. DNA Cell Biol 2019; 38:341-351. [PMID: 30839226 DOI: 10.1089/dna.2018.4396] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metastasis of ovarian cancer is regulated by microRNAs. This study focused on the effects of miR-30a-5p on ovarian cancer migration and invasion. Our results showed that the miR-30a-5p and mucin type O-glycan biosynthesis are closely related to ovarian cancer, and that miR-30a-5p was downregulated in ovarian cancer cells. miR-30a-5p overexpression reduced cell viability and inhibited migration and invasion in HO-8910 and HO-8910PM cells. S phase kinase-associated protein 2 (SKP2), B cell lymphoma 9 (BCL9), and NOTHC1 are direct target genes of miR-30a-5p. MTDH, SKP2, BCL9, and NOTCH1 genes were overexpressed in ovarian cancer cells, and they are direct target genes of miR-30a-5p. miR-30a-5p overexpression inhibited epithelial-mesenchymal transition (EMT) process, while upregulation of SKP2, BCL9, and NOTCH1 gene expression levels reduced the inhibition of EMT process by miR-30a-5p. miR-30a-5p was lowly expressed in ovarian cancer, and such a phenomenon is related to ovarian cancer metastasis. miR-30a-5p might inhibit the migration and invasion of ovarian cancer cells by downregulating the expression of SKP2, BCL9, and NOTCH1 genes.
Collapse
Affiliation(s)
- Lei Wang
- The Second Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shanshan Zhao
- The Second Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Mingxin Yu
- The Second Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
37
|
Chen B, Xia Z, Deng YN, Yang Y, Zhang P, Zhu H, Xu N, Liang S. Emerging microRNA biomarkers for colorectal cancer diagnosis and prognosis. Open Biol 2019; 9:180212. [PMID: 30958116 PMCID: PMC6367136 DOI: 10.1098/rsob.180212] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/02/2019] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) are one abundant class of small, endogenous non-coding RNAs, which regulate various biological processes by inhibiting expression of target genes. miRNAs have important functional roles in carcinogenesis and development of colorectal cancer (CRC), and emerging evidence has indicated the feasibility of miRNAs as robust cancer biomarkers. This review summarizes the progress in miRNA-related research, including study of its oncogene or tumour-suppressor roles and the advantages of miRNA biomarkers for CRC diagnosis, treatment and recurrence prediction. Along with analytical technique improvements in miRNA research, use of the emerging extracellular miRNAs is feasible for CRC diagnosis and prognosis.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No. 17, 3rd Section of People's South Road, Chengdu 610041, People's Republic of China
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, People's Republic of China
| | - Zijing Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No. 17, 3rd Section of People's South Road, Chengdu 610041, People's Republic of China
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Ya-Nan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No. 17, 3rd Section of People's South Road, Chengdu 610041, People's Republic of China
| | - Yanfang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No. 17, 3rd Section of People's South Road, Chengdu 610041, People's Republic of China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100034, People's Republic of China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No. 17, 3rd Section of People's South Road, Chengdu 610041, People's Republic of China
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100034, People's Republic of China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No. 17, 3rd Section of People's South Road, Chengdu 610041, People's Republic of China
| |
Collapse
|
38
|
Bjørnetrø T, Redalen KR, Meltzer S, Thusyanthan NS, Samiappan R, Jegerschöld C, Handeland KR, Ree AH. An experimental strategy unveiling exosomal microRNAs 486-5p, 181a-5p and 30d-5p from hypoxic tumour cells as circulating indicators of high-risk rectal cancer. J Extracell Vesicles 2019; 8:1567219. [PMID: 30728923 PMCID: PMC6352936 DOI: 10.1080/20013078.2019.1567219] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 12/17/2022] Open
Abstract
Tumour hypoxia contributes to poor treatment outcome in locally advanced rectal cancer (LARC) and circulating extracellular vesicles (EVs) as potential biomarkers of tumour hypoxia and adverse prognosis have not been fully explored. We examined EV miRNAs from hypoxic colorectal cancer cell lines as template for relevant miRNAs in LARC patients participating in a prospective biomarker study (NCT01816607). Five cell lines were cultured under normoxia (21% O2) or hypoxia (0.2% O2) for 24 h, and exosomes were isolated by differential ultracentrifugation. Using a commercial kit, exosomes were precipitated from 24 patient plasma samples collected at the time of diagnosis. Exosome size distribution and protein cargo were determined by cryo-electron microscopy, nanoparticle tracking analysis, immunoblotting and flow cytometry. The vesicles harboured strong cell line-specific miRNA profiles with 35 unique miRNAs differentially expressed between hypoxic and normoxic cells. Six of these miRNAs were considered candidate-circulating markers of tumour hypoxia in the patients based on the frequency or magnitude of variance in hypoxic versus normoxic cell line experiments and prevalence in patient plasma. Of these, low plasma levels of exosomal miR-486-5p and miR-181a-5p were associated with organ-invasive primary tumour (p = 0.029) and lymph node metastases (p = 0.024), respectively, both attributes of adverse LARC prognosis. In line with this, the plasma level of exosomal miR-30d-5p was elevated in patients who experienced metastatic progression (p = 0.036). Our strategy confirmed that EVs from colorectal cancer cell lines were exosomes containing the oxygen-sensitive miRNAs 486-5p, 181a-5p and 30d-5p, which were retrieved as circulating markers of high-risk LARC.
Collapse
Affiliation(s)
- Tonje Bjørnetrø
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kathrine Røe Redalen
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
The utility of serum exosomal microRNAs in hepatocellular carcinoma. Biomed Pharmacother 2019; 111:1221-1227. [PMID: 30841435 DOI: 10.1016/j.biopha.2018.12.131] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer worldwide and the third most common cause of cancer-associated deaths each year. Due to the invasive, fast growth and insidious onset of HCC, most patients are diagnosed at an advanced stage, reducing the effectiveness of radical surgery. Therefore, effective early detection and diagnostic methods are crucial for improving the treatment and prognosis of HCC patients. Exosomes are 40- to 100-nm-sized vesicles that are released from many cell types into the extracellular space, and extensive evidence has suggested that exosomes are involved in the occurrence and development of HCC. Recently, the presence of microRNAs (miRNAs) in exosomes has been verified. Such miRNAs can be internalized by neighboring or distant cells to subsequently regulate multiple target genes in recipient cells at the posttranscriptional level and affect the processes of cell proliferation, differentiation and apoptosis. Herein, we summarize the current knowledge about the potential utility of serum exosomal miRNAs in the diagnosis and treatment of HCC.
Collapse
|
40
|
Mousavi S, Moallem R, Hassanian SM, Sadeghzade M, Mardani R, Ferns GA, Khazaei M, Avan A. Tumor-derived exosomes: Potential biomarkers and therapeutic target in the treatment of colorectal cancer. J Cell Physiol 2019; 234:12422-12432. [PMID: 30637729 DOI: 10.1002/jcp.28080] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related death in men and women in many countries. Early detection of CRC helps to prevent the advanced stages of the disease, and may thereby improve the survival of these patients. A noninvasive test with high specificity and sensitivity is required for this. Exosomes are lipid bilayer membrane nanovesicles that are released into most body fluids and especially in the microenvironment of cancer. They carry various proteins, lipids, and nucleic materials such as DNA, RNA, messenger RNA (mRNA), and microRNA (miRNA), and may also alter the function of target cells. In this review, we aimed to describe the biogenesis, composition, function, and the role of tumor-derived exosomes in cancer progression. Moreover, their applications in tumor diagnosis and treatment are described, with a particular focus on CRC.
Collapse
Affiliation(s)
- Sousan Mousavi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roya Moallem
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Sadeghzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Mardani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology and School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Min L, Chen L, Liu S, Yu Y, Guo Q, Li P, Zhu S. Loss of Circulating Exosomal miR-92b is a Novel Biomarker of Colorectal Cancer at Early Stage. Int J Med Sci 2019; 16:1231-1237. [PMID: 31588188 PMCID: PMC6775270 DOI: 10.7150/ijms.34540] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
Early diagnosis of colorectal cancer (CRC) is clinically critical but technically challenging, especially in a minimal-invasive way. Emerging evidence suggests that exosome-encapsulated microRNAs (miRNAs) is a kind of promising cancer biomarker. Here we investigated the predictive potential of exosomal miR-92b in plasma samples obtained from 114 participants [40 CRC, 22 colorectal adenomas (CA), 52 non-neoplasm controls (NC)] by RT-qPCR. We found that exosomal miR-92b level was significantly down-regulated in CRC patients compared with CA and NC patients, especially in CRC at stage II, regardless of lymph node metastasis and invasive depth. The AUC in distinguishing CRC, CA and NC from each other ranged from 0.631 to 0.793, while a higher AUC of 0.830 was achieved in differentiating CRC at clinical stage II/III from NC individuals. Additionally, a logistic model integrating miR-92b with age showed a significantly improved accuracy in distinguishing CRC patients from NC (AUC increased from 0.793 to 0.867). Taken together, our findings indicated that decreased expression of exosome-derived miR-92b in plasma is a promising biomarker for early detection of CRC.
Collapse
Affiliation(s)
- Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease. No.95, Yong'an Rd, Xicheng District, Beijing,100050, P. R. China
| | - Lei Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease. No.95, Yong'an Rd, Xicheng District, Beijing,100050, P. R. China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease. No.95, Yong'an Rd, Xicheng District, Beijing,100050, P. R. China
| | - Yang Yu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease. No.95, Yong'an Rd, Xicheng District, Beijing,100050, P. R. China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease. No.95, Yong'an Rd, Xicheng District, Beijing,100050, P. R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease. No.95, Yong'an Rd, Xicheng District, Beijing,100050, P. R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease. No.95, Yong'an Rd, Xicheng District, Beijing,100050, P. R. China
| |
Collapse
|
42
|
Zhang C, Ji Q, Yang Y, Li Q, Wang Z. Exosome: Function and Role in Cancer Metastasis and Drug Resistance. Technol Cancer Res Treat 2018; 17:1533033818763450. [PMID: 29681222 PMCID: PMC5949932 DOI: 10.1177/1533033818763450] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As a kind of nanometric lipidic vesicles, exosomes have been presumed to play a leading role in the regulation of tumor microenvironment through exosomes-mediated transfer of proteins and genetic materials. Tumor-derived exosomes are recognized as a critical determinant of the tumor progression. Intriguingly, some current observations have identified that exosomes are essential for several intercellular exchanges of proteins, messenger RNAs, noncoding RNAs (including long noncoding RNAs and microRNAs) as well as to the process of cancer metastasis and drug resistance. Herein, we review the role of exosomes and their molecular cargos in cancer invasion and metastasis, summarize how they interact with antitumor agents, and highlight their translational implications.
Collapse
Affiliation(s)
- Chengcheng Zhang
- 1 Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,2 Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ji
- 2 Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Yang
- 2 Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- 2 Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhongqi Wang
- 1 Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
43
|
Wei C, Li Y, Huang K, Li G, He M. Exosomal miR-1246 in body fluids is a potential biomarker for gastrointestinal cancer. Biomark Med 2018; 12:1185-1196. [PMID: 30235938 DOI: 10.2217/bmm-2017-0440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM The aim was to systematically evaluate whether exosomal miRNAs could be regarded as potential minimally invasive biomarkers of diagnosis for gastrointestinal cancer. METHODS A systematic review and meta analysis of exosomal miRNA expression in gastrointestinal cancer were performed. RESULTS A total of 370 articles were retrieved from PubMed and EMBASE. The summary receiver operating characteristic curves of three miRNAs (miR-21, miR-1246 and miR-4644) were drawn, miR-21, miR-1246 and miR-4644 exhibited sensitivities of 0.66, 0.920 and 0.750, respectively; specificities were 0.87, 0.958 and 0.769, respectively; and areas under the curve for discriminating gastrointestinal cancer patients from control subjects were 0.876, 0.969 and 0.827, respectively. CONCLUSION Exosome miR-1246 had the highest level of diagnostic efficiency, which indicated that miR-1246 could be a biomarker.
Collapse
Affiliation(s)
- Chunmeng Wei
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Yasi Li
- College of Arts & Sciences, Stony Brook University, NY 11790, USA
| | - Kaiming Huang
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China.,Key Laboratory of High-Incidence Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, PR China
| |
Collapse
|
44
|
Ruiz-López L, Blancas I, Garrido JM, Mut-Salud N, Moya-Jódar M, Osuna A, Rodríguez-Serrano F. The role of exosomes on colorectal cancer: A review. J Gastroenterol Hepatol 2018; 33:792-799. [PMID: 29156509 DOI: 10.1111/jgh.14049] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
Exosomes are extracellular microvesicles released from cells, which are involved in many biological and pathological processes, mainly because of their role in intercellular communication. Exosomes derived from colorectal cancer (CRC) cells are related to oncogenesis, tumor cell survival, chemo-resistance, and metastasis. The role of the exosomes in these processes involves the transfer of proteins, RNAs, or mutant versions of proto-oncogenes to the target cells. In recent years, great efforts have been made to identify useful biomarkers in CRC exosomes for diagnosis, prediction of prognosis, and treatment response. This review focuses on recent studies on CRC exosomes, considering isolation, cargo, biomarkers, and the effects of exosomes on the development and progression of CRC, including resistance to antitumor therapy.
Collapse
Affiliation(s)
- Lidia Ruiz-López
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
| | - Isabel Blancas
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Oncology, San Cecilio University Hospital, Granada, Spain
| | - José M Garrido
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Cardiovascular Surgery, Virgen de las Nieves University Hospital, Granada, Spain
| | - Nuria Mut-Salud
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
| | - Marta Moya-Jódar
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
| | - Antonio Osuna
- Molecular Biochemistry and Parasitology Research Group, Department of Parasitology, Institute of Biotechnology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Fernando Rodríguez-Serrano
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| |
Collapse
|
45
|
DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta 2018; 184:219-226. [PMID: 29674035 DOI: 10.1016/j.talanta.2018.02.083] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 12/16/2022]
Abstract
Exosomes have proved to be an effective cancer biomarker with significant potential, and several cell-specific molecules have been found in colorectal cancer (CRC) exosomes. Nevertheless, it is challenging to use exosomes in clinical lab diagnostics due to their nanoscale and the lack of a convenient and effective detection platform. Here, we developed a DNase I enzyme-aided fluorescence amplification method for CRC exosome detection, based on graphene oxide (GO)-DNA aptamer (CD63 and EpCAM aptamers) interactions. The fluorescence of fluorophore-labeled aptamers quenched by GO, recovered after incubation with samples containing CRC exosomes. The DNase I enzyme digested the single-stranded DNA aptamers on the exosome surface and the exosomes were able to interact with more fluorescent aptamer probes, resulting in an increase of signal amplification. The limit of detection for CRC exosomes is 2.1 × 104 particles/μl. Consequently, a rapid and effective method with high sensitivity was established. The method was verified in 19 clinical blood serum samples to distinguish healthy and CRC patients, showing significant diagnostic power. Moreover, it can be expanded to other kinds of cancer exosomes, in addition to CRC.
Collapse
|
46
|
Yan S, Liu G, Jin C, Wang Z, Duan Q, Xu J, Xu D. MicroRNA-6869-5p acts as a tumor suppressor via targeting TLR4/NF-κB signaling pathway in colorectal cancer. J Cell Physiol 2018; 233:6660-6668. [PMID: 29206292 DOI: 10.1002/jcp.26316] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/04/2017] [Indexed: 12/18/2022]
Abstract
Many studies have implicated that microRNAs (miRNAs), as non-coding RNAs, play important roles in the development and progression of colorectal cancer (CRC). However, little is known about the role of a newly identified miRNA, miR-6869-5p, in CRC. We aim to investigate the modifying effects and underlying mechanisms of miR-6869-5 in colorectal carcinogenesis and progression. Significantly reduced levels of miR-6869-5p were observed in both serum exosomes tumor tissue samples from patients with CRC. The prediction of targets of miR-6869-5p in databases of targetscan, microRNA. ORG and miRDBA revealed that toll-like receptor 4 (TLR4) is a potential target for this miRNA. MiR-6869-5p could inhibit cell proliferation and the production of inflammatory cytokines (TNF-α and IL-6) in CRC cells via directly targeting TLR4. The protective effect of miR-6869-5p from colorectal carcinogenesis was dependent on TLR4/NF-κB signaling pathway. In addition, the 3-year survival was poor among CRC patients with decreased levels of miR-6869-5p in serum exosomes. Thus, miR-6869-5p may serve as a tumor suppressor in CRC, and serum exosomal miR-6869-5p is a promising circulating biomarker for the prediction of CRC prognosis.
Collapse
Affiliation(s)
- Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guoyan Liu
- Department of Dermatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengwen Jin
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Zengfang Wang
- Department of Gynecology and Obstetrics, Weifang Hospital of Maternal and Child Health, Weifang, China
| | - Quanhong Duan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jiang Xu
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Hospital of Xuzhou Medical University, Huai'an, China
| | - Donghua Xu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang, China.,Clinical Medicine College, Weifang Medical University, Weifang, China
| |
Collapse
|
47
|
Manning S, Danielson KM. The immunomodulatory role of tumor-derived extracellular vesicles in colorectal cancer. Immunol Cell Biol 2018; 96:733-741. [PMID: 29575270 DOI: 10.1111/imcb.12038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide with rising mortality rates predicted in the coming decades. In light of this, there is a continued need for improvement in our understanding of CRC biology and the development of novel treatment options. Tumor-derived extracellular vesicles (tEVs) have emerged as both novel cancer biomarkers and functional mediators of carcinogenesis. tEVs are released by tumor cells in abundance and play an important role in mediating tumor cell-immune cell interactions in the tumor microenvironment. Furthermore, tEVs are released into the circulation in humans where they could also interact with circulating immune cells. This review aims to describe CRC-specific tEVs and what is currently known about their role in immunomodulation. In particular, we discuss the ability of CRC-derived tEVs to affect monocyte differentiation into macrophages and dendritic cells, and their effects on T-cell viability and activity. Finally, the potential for tEVs in the development of immunotherapies will be discussed.
Collapse
Affiliation(s)
- Stephanie Manning
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
| | - Kirsty M Danielson
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
48
|
Dragomir M, Chen B, Calin GA. Exosomal lncRNAs as new players in cell-to-cell communication. Transl Cancer Res 2018; 7:S243-S252. [PMID: 30148073 DOI: 10.21037/tcr.2017.10.46] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neoplastic cells use various intercellular communication mechanisms in order to adapt to the local microenvironment, manipulate the immune system, and facilitate metastasis. Exosomes release is a new mechanism of cell-to-cell communication. These nanovesicles enclose various types of molecules including lipids, proteins, DNA, messenger RNA (mRNA) and non-coding RNAs [microRNA and long non-coding RNA (lncRNA)]. lncRNAs are over 200 nt long transcripts, that exhibit no coding potential, but are crucial regulators of physiological processes and are deregulated in cancer. In this review, we will discuss the role of exosomal lncRNAs in cancer, which is an incipient research field that could bring new insights to the vast domain of intercellular communication. Exosomal lncRNAs seem to be promising biomarkers for any type of cancer. The exact role of exosomal lncRNAs is not fully revealed. Several studies show that cancer derived exosomal lncRNAs are functional and can transmit to neighboring cells different phenotypic patterns, like drug resistance and increased angiogenesis. We further discuss the mechanistic function of exosomal lncRNAs, and hypothesize that the crowded exosomal content can be a suitable place of RNA species crosstalk. Finally, we assume that lncRNAs could be a loading vehicle for miRNAs, mRNAs and other complex molecules into the exosome but future studies are required to confirm these hypotheses.
Collapse
Affiliation(s)
- Mihnea Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Baoqing Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
Yan S, Jiang Y, Liang C, Cheng M, Jin C, Duan Q, Xu D, Yang L, Zhang X, Ren B, Jin P. Exosomal miR-6803-5p as potential diagnostic and prognostic marker in colorectal cancer. J Cell Biochem 2018; 119:4113-4119. [PMID: 29240249 DOI: 10.1002/jcb.26609] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Accumulating data have suggested exosome-delivered microRNAs (miRNAs) play critical role in carcinogenesis and cancer progression. However, little is known about the influence of exosomal miR-6803-5p on the development and prognosis of colorectal cancer (CRC). Levels of serum exosomal miR-6803-5p were determined by microarray analysis and verified by quantitative real-time PCR (qRT-PCR). Outcomes of overall survival (OS) and disease-free survival (DFS) of CRC patients were estimated by Kaplan-Meier analysis. We used cox regression analysis to investigate the association between exosomes-encapsulated miR-6803-5p and the clinicopathological factors of CRC patients. The exosomal miR-6803-5p was significantly increased in serum samples from patients with CRC in contrast to healthy controls. Significantly higher levels of serum exosomal miR-6803-5p were observed in CRC patients at later TNM stage or with lymph node metastasis as well as liver metastasis. Patients with elevated levels of serum exosomal miR-6803-5p had much poorer OS and DFS. Cox regression analysis revealed high levels of exosomal miR-6803-5p was associated with poor prognosis in CRC independent of other confounding factors. Thus, exosomal miR-6803-5p is a potential diagnostic and prognostic biomarker for patients with CRC.
Collapse
Affiliation(s)
- Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ye Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Caihong Liang
- Department of Cardiovascular, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Chengwen Jin
- Functional Laboratory, Clinical Medicine College of Weifang Medical University, Weifang, China
| | - Quanhong Duan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Donghua Xu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Lu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Bin Ren
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Peng Jin
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
50
|
Gheytanchi E, Madjd Z, Janani L, Rasti A, Ghods R, Atyabi F, Asadi-Lari MH, Babashah S. Exosomal microRNAs as potential circulating biomarkers in gastrointestinal tract cancers: a systematic review protocol. Syst Rev 2017; 6:228. [PMID: 29149908 PMCID: PMC5693515 DOI: 10.1186/s13643-017-0624-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metastasis is the most frequent type of recurrence in gastrointestinal (GI) cancers, and there is an emerging potential for new diagnostic and therapeutic approaches, especially in the cases of metastatic GI carcinomas. The expression profiles of circulating exosomal microRNAs are of particular interest as novel non-invasive diagnostic and prognostic biomarkers for improved detection of GI cancers in body fluids, especially in the serum of patients with recurrent cancers. The aim of this study is to systematically review primary studies and identify the miRNA profiles of serum exosomes of GI cancers. METHODS AND DESIGN This systematic review will be reported in line with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidance. Relevant studies will be identified through a comprehensive search of the following main electronic databases: PubMed, Web of Science, Embase, Scopus, and Google Scholar, with no language restrictions (up to July 2017). Full copies of articles will be identified by a defined search strategy and will be considered for inclusion against pre-defined criteria. The quality assessment of the included studies will be performed by the Newcastle-Ottawa Scale (NOS). Data will be analyzed using Stata software V.12. Publication bias will be assessed by funnel plots, Beggs' and Eggers' tests. The levels of evidence for primary outcomes will be evaluated using the GRADE criteria. DISCUSSION The analysis of circulating exosomal miRNA profiles provides attractive screening and non-invasive diagnostic tools for the majority of solid tumors including GI cancers. There is limited information regarding the relationship between serum exosomal miRNA profiles and the pathological condition of patients with different GI cancers. Since there is no specific biomarker for GI cancers, we aim to suggest a number of circulating exosomal miRNA candidates as potential multifaceted GI cancer biomarkers for clinical utility. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42017057129.
Collapse
Affiliation(s)
- Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Arezoo Rasti
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asadi-Lari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|