1
|
Jiang M, Fiering S, Shao Q. Combining energy-based focal ablation and immune checkpoint inhibitors: preclinical research and clinical trials. Front Oncol 2023; 13:1153066. [PMID: 37251920 PMCID: PMC10211342 DOI: 10.3389/fonc.2023.1153066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Energy-based focal therapy (FT) uses targeted, minimally invasive procedures to destroy tumors while preserving normal tissue and function. There is strong emerging interest in understanding how systemic immunity against the tumor can occur with cancer immunotherapy, most notably immune checkpoint inhibitors (ICI). The motivation for combining FT and ICI in cancer management relies on the synergy between the two different therapies: FT complements ICI by reducing tumor burden, increasing objective response rate, and reducing side effects of ICI; ICI supplements FT by reducing local recurrence, controlling distal metastases, and providing long-term protection. This combinatorial strategy has shown promising results in preclinical study (since 2004) and the clinical trials (since 2011). Understanding the synergy calls for understanding the physics and biology behind the two different therapies with distinctive mechanisms of action. In this review, we introduce different types of energy-based FT by covering the biophysics of tissue-energy interaction and present the immunomodulatory properties of FT. We discuss the basis of cancer immunotherapy with the emphasis on ICI. We examine the approaches researchers have been using and the results from both preclinical models and clinical trials from our exhaustive literature research. Finally, the challenges of the combinatory strategy and opportunities of future research is discussed extensively.
Collapse
Affiliation(s)
- Minhan Jiang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Dartmouth Cancer Center, Dartmouth Geisel School of Medicine and Dartmouth Health, Lebanon, NH, United States
| | - Qi Shao
- Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Conforti A, Salvatori E, Lione L, Compagnone M, Pinto E, Shorrock C, Hayward JA, Sun Y, Liang BM, Palombo F, Viscount B, Aurisicchio L. Linear DNA amplicons as a novel cancer vaccine strategy. J Exp Clin Cancer Res 2022; 41:195. [PMID: 35668533 PMCID: PMC9169303 DOI: 10.1186/s13046-022-02402-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND DNA-based vaccines represent a simple, safe and promising strategy for harnessing the immune system to fight infectious diseases as well as various forms of cancer and thus are considered an important tool in the cancer immunotherapy toolbox. Nonetheless, the manufacture of plasmid DNA vaccines has several drawbacks, including long lead times and the need to remove impurities from bacterial cultures. Here we report the development of polymerase chain reaction (PCR)-produced amplicon expression vectors as DNA vaccines and their in vivo application to elicit antigen-specific immune responses in animal cancer models. METHODS Plasmid DNA and amplicon expression was assessed both in vitro, by Hela cells transfection, and in vivo, by evaluating luciferase expression in wild-type mice through optical imaging. Immunogenicity induced by DNA amplicons was assessed by vaccinating wild-type mice against a tumor-associated antigen, whereas the antitumoral effect of DNA amplicons was evaluated in a murine cancer model in combination with immune-checkpoint inhibitors (ICIs). RESULTS Amplicons encoding tumor-associated-antigens, such as telomerase reverse transcriptase or neoantigens expressed by murine tumor cell lines, were able to elicit antigen-specific immune responses and proved to significantly impact tumor growth when administered in combination with ICIs. CONCLUSIONS These results strongly support the further exploration of the use of PCR-based amplicons as an innovative immunotherapeutic approach to cancer treatment.
Collapse
Affiliation(s)
- Antonella Conforti
- Takis, Via Castel Romano 100, 00128 Rome, Italy
- Evvivax, Via Castel Romano 100, 00128 Rome, Italy
| | | | - Lucia Lione
- Takis, Via Castel Romano 100, 00128 Rome, Italy
| | | | | | - Clay Shorrock
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - James A. Hayward
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - Yuhua Sun
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - Ben Minghwa Liang
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - Fabio Palombo
- Takis, Via Castel Romano 100, 00128 Rome, Italy
- Neomatrix, Via Castel Romano 100, 00128 Rome, Italy
| | - Brian Viscount
- Applied DNA Sciences, 50 Health Sciences Drive, Stony Brook, NY 11790 USA
| | - Luigi Aurisicchio
- Takis, Via Castel Romano 100, 00128 Rome, Italy
- Evvivax, Via Castel Romano 100, 00128 Rome, Italy
- Neomatrix, Via Castel Romano 100, 00128 Rome, Italy
| |
Collapse
|
3
|
Conforti A, Marra E, Palombo F, Roscilli G, Ravà M, Fumagalli V, Muzi A, Maffei M, Luberto L, Lione L, Salvatori E, Compagnone M, Pinto E, Pavoni E, Bucci F, Vitagliano G, Stoppoloni D, Pacello ML, Cappelletti M, Ferrara FF, D'Acunto E, Chiarini V, Arriga R, Nyska A, Di Lucia P, Marotta D, Bono E, Giustini L, Sala E, Perucchini C, Paterson J, Ryan KA, Challis AR, Matusali G, Colavita F, Caselli G, Criscuolo E, Clementi N, Mancini N, Groß R, Seidel A, Wettstein L, Münch J, Donnici L, Conti M, De Francesco R, Kuka M, Ciliberto G, Castilletti C, Capobianchi MR, Ippolito G, Guidotti LG, Rovati L, Iannacone M, Aurisicchio L. COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2 RBD, elicits protective responses in animal models. Mol Ther 2022; 30:311-326. [PMID: 34547465 PMCID: PMC8483992 DOI: 10.1016/j.ymthe.2021.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax-a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)-induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started.
Collapse
Affiliation(s)
- Antonella Conforti
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy; Evvivax Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | | | - Fabio Palombo
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy; Neomatrix Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | | | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alessia Muzi
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | - Mariano Maffei
- Evvivax Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | - Laura Luberto
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | - Lucia Lione
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, Haharuv 18, PO Box 184, Timrat 36576, Israel
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Davide Marotta
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Elisa Bono
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Eleonora Sala
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Chiara Perucchini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Jemma Paterson
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Kathryn Ann Ryan
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Amy-Rose Challis
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Giulia Matusali
- National Institute for Infectious Diseases Lazzaro Spallanzani, Via Portuense 292, 00149 Rome, Italy
| | - Francesca Colavita
- National Institute for Infectious Diseases Lazzaro Spallanzani, Via Portuense 292, 00149 Rome, Italy
| | | | | | - Nicola Clementi
- Vita-Salute San Raffaele University, 20132 Milan, Italy; Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Nicasio Mancini
- Vita-Salute San Raffaele University, 20132 Milan, Italy; Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany
| | - Lukas Wettstein
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany
| | - Lorena Donnici
- INGM-Istituto Nazionale di Genetica Molecolare "Romeo ed Erica Invernizzi," Milan, Italy
| | - Matteo Conti
- INGM-Istituto Nazionale di Genetica Molecolare "Romeo ed Erica Invernizzi," Milan, Italy
| | - Raffaele De Francesco
- INGM-Istituto Nazionale di Genetica Molecolare "Romeo ed Erica Invernizzi," Milan, Italy; National Cancer Institute Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gennaro Ciliberto
- National Cancer Institute Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Concetta Castilletti
- National Institute for Infectious Diseases Lazzaro Spallanzani, Via Portuense 292, 00149 Rome, Italy
| | - Maria Rosaria Capobianchi
- National Institute for Infectious Diseases Lazzaro Spallanzani, Via Portuense 292, 00149 Rome, Italy
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases Lazzaro Spallanzani, Via Portuense 292, 00149 Rome, Italy
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Lucio Rovati
- Rottapharm Biotech s.r.l., Via Valosa di Sopra 9, 20900 Monza, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy; Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Luigi Aurisicchio
- Takis Biotech, Via Castel Romano 100, 00128 Rome, Italy; Evvivax Biotech, Via Castel Romano 100, 00128 Rome, Italy; Neomatrix Biotech, Via Castel Romano 100, 00128 Rome, Italy.
| |
Collapse
|
4
|
Ramot Y, Caselli G, Aurisicchio L, Andreini I, Marra E, Luberto L, Stoppoloni D, Pacello ML, Monetini L, Nyska A. Toxicity and Local Tolerance of COVID- eVax, a Plasmid DNA Vaccine for SARS-CoV-2, Delivered by Electroporation. Toxicol Pathol 2021; 49:1255-1268. [PMID: 34493107 DOI: 10.1177/01926233211042263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
COVID-19 is a rapidly spreading disease, posing a huge hazard to global health. The plasmid vaccine pTK1A-TPA-SpikeA (named COVID-eVax) encodes the severe acute respiratory syndrome coronavirus 2 S protein receptor-binding domain, developed for intramuscular injection followed by electroporation (EP). The aim of this study was to assess the systemic toxicity and local tolerance of COVID-eVax delivered intramuscularly followed by EP in Sprague Dawley (SD) rats. The animals were killed 2 days and 4 weeks after the last injection (30-day and 57-day, respectively). No mortality was observed, and no signs of toxicity were evident, including injection site reactions. A lasting and specific immune response was observed in all treated animals, confirming the relevance of the rat as a toxicological model for this vaccine. Histopathological evaluation revealed muscle fiber necrosis associated with subchronic inflammation at the injection sites (at the 30-day time point), with a clear trend for recovery at the 57-day time point, which is expected following EP, and considered a desirable effect to mount the immune response against the target antigen. In conclusion, the intramuscular EP-assisted DNA vaccine, COVID-eVax showed an excellent safety profile in SD rats under these experimental conditions and supports its further development for use in humans.
Collapse
Affiliation(s)
- Yuval Ramot
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Dermatology, 58884Hadassah Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Riccardo F, Barutello G, Petito A, Tarone L, Conti L, Arigoni M, Musiu C, Izzo S, Volante M, Longo DL, Merighi IF, Papotti M, Cavallo F, Quaglino E. Immunization against ROS1 by DNA Electroporation Impairs K-Ras-Driven Lung Adenocarcinomas . Vaccines (Basel) 2020; 8:vaccines8020166. [PMID: 32268572 PMCID: PMC7349290 DOI: 10.3390/vaccines8020166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is still the leading cause of cancer death worldwide. Despite the introduction of tyrosine kinase inhibitors and immunotherapeutic approaches, there is still an urgent need for novel strategies to improve patient survival. ROS1, a tyrosine kinase receptor endowed with oncoantigen features, is activated by chromosomal rearrangement or overexpression in NSCLC and in several tumor histotypes. In this work, we have exploited transgenic mice harboring the activated K-Ras oncogene (K-RasG12D) that spontaneously develop metastatic NSCLC as a preclinical model to test the efficacy of ROS1 immune targeting. Indeed, qPCR and immunohistochemical analyses revealed ROS1 overexpression in the autochthonous primary tumors and extrathoracic metastases developed by K-RasG12D mice and in a derived transplantable cell line. As proof of concept, we have evaluated the effects of the intramuscular electroporation (electrovaccination) of plasmids coding for mouse- and human-ROS1 on the progression of these NSCLC models. A significant increase in survival was observed in ROS1-electrovaccinated mice challenged with the transplantable cell line. It is worth noting that tumors were completely rejected, and immune memory was achieved, albeit only in a few mice. Most importantly, ROS1 electrovaccination was also found to be effective in slowing the development of autochthonous NSCLC in K-RasG12D mice.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Angela Petito
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Chiara Musiu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Stefania Izzo
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Marco Volante
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), 10126 Torino, Italy;
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Mauro Papotti
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
- Correspondence: (F.C.); (E.Q.); Tel.: +39-011670-6457 (F.C. & E.Q.)
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
- Correspondence: (F.C.); (E.Q.); Tel.: +39-011670-6457 (F.C. & E.Q.)
| |
Collapse
|
6
|
Tarone L, Barutello G, Iussich S, Giacobino D, Quaglino E, Buracco P, Cavallo F, Riccardo F. Naturally occurring cancers in pet dogs as pre-clinical models for cancer immunotherapy. Cancer Immunol Immunother 2019; 68:1839-1853. [PMID: 31222484 PMCID: PMC11028358 DOI: 10.1007/s00262-019-02360-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Despite the significant progress in tumor prevention, early detection, diagnosis and treatment made over recent decades, cancer is still an enormous public health challenge all around the world, with the number of people affected increasing every year. A great deal of effort is therefore being devoted to the search for novel safe, effective and economically sustainable treatments for the growing population of neoplastic patients. One main obstacle to this process is the extremely low percentage of therapeutic approaches that, after successfully passing pre-clinical testing, actually demonstrate activity when finally tested in humans. This disappointing and expensive failure rate is partly due to the pre-clinical murine models used for in vivo testing, which cannot faithfully recapitulate the multifaceted nature and evolution of human malignancies. These features are better mirrored in natural disease models, i.e., companion animals affected by cancers. Herein, we discuss the relevance of spontaneous canine tumors for the evaluation of the safety and anti-tumor activity of novel therapeutic strategies before in-human trials, and present our experience in the development of a vaccine that targets chondroitin sulphate proteoglycan (CSPG)4 as an example of these comparative oncology studies.
Collapse
Affiliation(s)
- Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Largo Braccini, 2, 10095, Grugliasco, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Largo Braccini, 2, 10095, Grugliasco, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Largo Braccini, 2, 10095, Grugliasco, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126, Turin, Italy.
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126, Turin, Italy
| |
Collapse
|
7
|
Tel-eVax: a genetic vaccine targeting telomerase for treatment of canine lymphoma. J Transl Med 2018; 16:349. [PMID: 30537967 PMCID: PMC6290499 DOI: 10.1186/s12967-018-1738-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND we have recently shown that Tel-eVax, a genetic vaccine targeting dog telomerase (dTERT) and based on Adenovirus (Ad)/DNA Electro-Gene-Transfer (DNA-EGT) technology can induce strong immune response and increase overall survival (OS) of dogs affected by multicentric Diffuse Large B cell Lymphoma (DLBCL) when combined to COP therapy in a double-arm study. Here, we have utilized a clinically validated device for veterinary electroporation called Vet-ePorator™, based on Cliniporator™ technology currently utilized and approved in Europe for electrochemotherapy applications and adapted to electrogenetransfer (EGT). METHODS 17 dogs affected by DLBCL were vaccinated using two Ad vector injections (Prime phase) followed by DNA-EGT (Boost phase) by means of a Vet-ePorator™ device and treated in the same time with a 27-week Madison Wisconsin CHOP protocol. The immune response was measured by ELISA assays using pool of peptides. RESULTS No significant adverse effects were observed. The OS of vaccine/CHOP animals was 64.5 weeks, in line with the previous study. Dogs developed antibodies against the immunizing antigen. CONCLUSIONS Tel-eVax in combination with CHOP is safe and immunogenic in lymphoma canine patients. These data confirm the therapeutic efficacy of dTERT vaccine and hold promise for the treatment of dogs affected by other cancer types. More importantly, our findings may translate to human clinical trials and represent new strategies for cancer treatment.
Collapse
|
8
|
Abstract
Anti-tumor electrochemotherapy, which consists in increasing anti-cancer drug uptake by means of electroporation, is now implanted in about 140 cancer treatment centers in Europe. Its use is supported by the English National Institute for Health and Care Excellence for the palliative treatment of skin metastases, and about 13,000 cancer patients were treated by this technology by the end of 2015. Efforts are now focused on turning this local anti-tumor treatment into a systemic one. Electrogenetherapy, that is the electroporation-mediated transfer of therapeutic genes, is currently under clinical evaluation and has brought excitement to enlarge the anti-cancer armamentarium. Among the promising electrogenetherapy strategies, DNA vaccination and cytokine-based immunotherapy aim at stimulating anti-tumor immunity. We review here the interests and state of development of both electrochemotherapy and electrogenetherapy. We then emphasize the potent beneficial outcome of the combination of electrochemotherapy with immunotherapy, such as immune checkpoint inhibitors or strategies based on electrogenetherapy, to simultaneously achieve excellent local debulking anti-tumor responses and systemic anti-metastatic effects.
Collapse
|
9
|
Clinical Use of DNA Vaccines. HANDBOOK OF ELECTROPORATION 2017. [PMCID: PMC7153459 DOI: 10.1007/978-3-319-32886-7_106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Owing to their unique advantages in simplicity, safety, scalability, and possibility of repeated administrations, DNA vaccines represent an appealing and competitive immunization approach for a wide array of conditions, including but not limited to infectious diseases and cancer immunotherapy. Despite the exciting efficacy observed in preclinical studies, DNA vaccines have faced challenges in inducing strong immune responses in humans. This unexpected poor immunogenicity has severely hampered the translation of DNA vaccines from investigational medications to licensed products. To overcome this obstacle, tremendous efforts have been made to improve antigen expression and enhance immunogenicity. Among these endeavors, in vivo DNA electroporation (EP) has proved to be a breakthrough technology capable of mediating efficient DNA uptake and resulting in enhanced antigen expression and vaccine immunogenicity. EP-mediated DNA delivery has become one of the major platforms used in clinical trials to evaluate DNA vaccines in humans. In this chapter, in addition to EP delivery, other progress made in DNA vaccine development including plasmid optimization, antigen design, and immunologic adjuvants is also reviewed. Finally, the use of DNA vaccines in the context of clinical trials for infectious diseases and cancer immunotherapy is summarized. Specifically, the strategies that allow DNA vaccines to overcome antigenic diversity for viral infection and break immune tolerance for cancer therapy are explored. Based on the advantages of DNA vaccines and the immense progress, led by the electroporation-mediated vaccine delivery, DNA vaccines appear to have the potential to fundamentally transform the vaccine field, providing important benefits for preventing and curing diseases.
Collapse
|
10
|
Heller R, Teissie J, Rols MP, Gehl J, Sersa G, Mir LM, Neal RE, Bhonsle S, Davalos R, Beebe S, Hargrave B, Nuccitelli R, Jiang C, Cemazar M, Tamzali Y, Tozon N. Medical Applications. BIOELECTRICS 2017:275-388. [DOI: 10.1007/978-4-431-56095-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Kostrzak A, Caval V, Escande M, Pliquet E, Thalmensi J, Bestetti T, Julithe M, Fiette L, Huet T, Wain-Hobson S, Langlade-Demoyen P. APOBEC3A intratumoral DNA electroporation in mice. Gene Ther 2016; 24:74-83. [PMID: 27858943 DOI: 10.1038/gt.2016.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/26/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Human APOBEC3A (A3A) cytidine deaminase shows pro-apoptotic properties resulting from hypermutation of genomic DNA, induction of double-stranded DNA breaks (DSBs) and G1 cell cycle arrest. Given this, we evaluated the antitumor efficacy of A3A by intratumoral electroporation of an A3A expression plasmid. DNA was repeatedly electroporated into B16OVA, B16Luc tumors of C57BL/6J mice as well as the aggressive fibrosarcoma Sarc2 tumor of HLA-A*0201/DRB1*0101 transgenic mice using noninvasive plate electrodes. Intratumoral electroporation of A3A plasmid DNA resulted in regression of ~50% of small B16OVA melanoma tumors that did not rebound in the following 2 months without treatment. Larger or more aggressive tumors escaped regression when so treated. As APOBEC3A was much less efficient in provoking hypermutation and DSBs in B16OVA cells compared with human or quail cells, it is likely that APOBEC3A would be more efficient in a human setting than in a mouse model.
Collapse
Affiliation(s)
- A Kostrzak
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - V Caval
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | - M Escande
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - E Pliquet
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - J Thalmensi
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - T Bestetti
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - M Julithe
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - L Fiette
- Human Histopathology and Animal Models, Infection & Epidemiology Department, Institut Pasteur, Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - T Huet
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - S Wain-Hobson
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France.,Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | - P Langlade-Demoyen
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France.,Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Aurisicchio L, Roscilli G, Marra E, Luberto L, Mancini R, La Monica N, Ciliberto G. Superior Immunologic and Therapeutic Efficacy of a Xenogeneic Genetic Cancer Vaccine Targeting Carcinoembryonic Human Antigen. Hum Gene Ther 2016; 26:386-98. [PMID: 25869226 DOI: 10.1089/hum.2014.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have generated a xenogeneic vaccine against human carcinoembryonic antigen (hCEACAM-5 or commonly hCEA) using as immunogen rhesus CEA (rhCEA). RhCEA cDNA was codon-usage optimized (rhCEAopt) and delivered by sequential DNA electro-gene-transfer (DNA-EGT) and adenoviral (Ad) vector. RhCEAopt was capable to break tolerance to CEA in hCEA transgenic mice and immune responses were detected against epitopes distributed over the entire length of the protein. Xenovaccination with rhCEA resulted in the activation of CD4+ T-cell responses in addition to self-reactive CD8+ T-cells, the development of high-titer antibodies against hCEA, and significant antitumor effects upon challenge with hCEA+ tumor cells. The superior activity of rhCEAopt compared with hCEAopt was confirmed in hCEA/HHD double-transgenic mice, where potent CD8+ T-cell responses against specific human HLA A*0201 hCEA epitopes were detected. Our data show that xenogeneic gene-based vaccination with rhCEA is a viable approach to break tolerance against CEA, thus suggesting further development in the clinical setting.
Collapse
Affiliation(s)
| | | | | | - Laura Luberto
- 1 Takis srl, 00128 Rome, Italy .,2 Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia ," Catanzaro, Italy
| | - Rita Mancini
- 3 Department of Clinical and Molecular Medicine, University of Rome "La Sapienza ," Rome, Italy .,4 Laboratory of Research and Diagnostics, Department of Surgery "P. Valdoni," University of Rome "La Sapienza ," Rome, Italy
| | | | | |
Collapse
|
13
|
Lanzardo S, Conti L, Rooke R, Ruiu R, Accart N, Bolli E, Arigoni M, Macagno M, Barrera G, Pizzimenti S, Aurisicchio L, Calogero RA, Cavallo F. Immunotargeting of Antigen xCT Attenuates Stem-like Cell Behavior and Metastatic Progression in Breast Cancer. Cancer Res 2015; 76:62-72. [PMID: 26567138 DOI: 10.1158/0008-5472.can-15-1208] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/30/2015] [Indexed: 01/06/2023]
Abstract
Resistance to therapy and lack of curative treatments for metastatic breast cancer suggest that current therapies may be missing the subpopulation of chemoresistant and radioresistant cancer stem cells (CSC). The ultimate success of any treatment may well rest on CSC eradication, but specific anti-CSC therapies are still limited. A comparison of the transcriptional profiles of murine Her2(+) breast tumor TUBO cells and their derived CSC-enriched tumorspheres has identified xCT, the functional subunit of the cystine/glutamate antiporter system xc(-), as a surface protein that is upregulated specifically in tumorspheres. We validated this finding by cytofluorimetric analysis and immunofluorescence in TUBO-derived tumorspheres and in a panel of mouse and human triple negative breast cancer cell-derived tumorspheres. We further show that downregulation of xCT impaired tumorsphere generation and altered CSC intracellular redox balance in vitro, suggesting that xCT plays a functional role in CSC biology. DNA vaccination based immunotargeting of xCT in mice challenged with syngeneic tumorsphere-derived cells delayed established subcutaneous tumor growth and strongly impaired pulmonary metastasis formation by generating anti-xCT antibodies able to alter CSC self-renewal and redox balance. Finally, anti-xCT vaccination increased CSC chemosensitivity to doxorubicin in vivo, indicating that xCT immunotargeting may be an effective adjuvant to chemotherapy.
Collapse
Affiliation(s)
- Stefania Lanzardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | - Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | | | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Marco Macagno
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Raffaele Adolfo Calogero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy.
| |
Collapse
|
14
|
Tagliamonte M, Petrizzo A, Tornesello ML, Buonaguro FM, Buonaguro L. Antigen-specific vaccines for cancer treatment. Hum Vaccin Immunother 2015; 10:3332-46. [PMID: 25483639 DOI: 10.4161/21645515.2014.973317] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vaccines targeting pathogens are generally effective and protective because based on foreign non-self antigens which are extremely potent in eliciting an immune response. On the contrary, efficacy of therapeutic cancer vaccines is still disappointing. One of the major reasons for such poor outcome, among others, is the difficulty of identifying tumor-specific target antigens which should be unique to the tumors or, at least, overexpressed on the tumors as compared to normal cells. Indeed, this is the only option to overcome the peripheral immune tolerance and elicit a non toxic immune response. New and more potent strategies are now available to identify specific tumor-associated antigens for development of cancer vaccine approaches aiming at eliciting targeted anti-tumor cellular responses. In the last years this aspect has been addressed and many therapeutic vaccination strategies based on either whole tumor cells or specific antigens have been and are being currently evaluated in clinical trials. This review summarizes the current state of cancer vaccines, mainly focusing on antigen-specific approaches.
Collapse
Key Words
- APCs, antigen-presenting cell
- BCG, Bacille Calmette-Guerin
- BCR, B-cell receptor
- CDCA1, cell division cycle associated 1
- CRC, colorectal cancer
- CT, Cancer-testis
- CTL, cytotoxic T-lympocites
- DCs, dendritic cells
- EGT, electro-gene-transfer
- FDA, Food & drug administration
- GB, glioblastoma
- GM-CSF, granulocyte macrophage-colony stimulating factor
- HER2, human epidermal growth factor receptor 2
- HLA, human leukocyte antigen
- HPV, human papillomavirus
- HSPs, stress/heat shock proteins
- IFNg, interferon gamma
- Ig Id, immunoglobulin idiotype
- LPs, long peptides
- MAGE-A1, Melanoma-associated antigen 1
- MHC, major histocompatibility complex
- MS, mass spectrometry
- MVA, modified vaccinia strain Ankara
- NSCLC, non-small-cell lung carcinoma
- PAP, prostatic acid phosphatase
- PRRs, Pattern Recognition Receptors
- PSA, Prostate-specific antigen
- RCR, renal cell cancer
- SSX-2, Synovial sarcoma X breakpoint 2
- TAAs, tumor-associated antigens
- TACAs, Tumor-associated carbohydrate antigens
- TARP, T-cell receptor gamma alternate reading frame protein
- TLRs, Toll-Like Receptors
- TPA, transporter associated with antigen processing
- WES, whole exome sequencing
- WGS, whole genome sequencing
- cancer vaccine
- clinical trials
- epitopes
- hTERT, human Telomerase reverse transcriptase
- immunotherapeutics
- mCRPC, metastatic castrate-resistant prostate cancer
- tumor-associated antigens
Collapse
Affiliation(s)
- Maria Tagliamonte
- a Laboratory of Molecular Biology and Viral Oncology; Department of Experimental Oncology; Istituto Nazionale per lo Studio e la Cura dei Tumori; "Fondazione Pascale" - IRCCS ; Naples , Italy
| | | | | | | | | |
Collapse
|
15
|
Broderick KE, Humeau LM. Electroporation-enhanced delivery of nucleic acid vaccines. Expert Rev Vaccines 2014; 14:195-204. [PMID: 25487734 DOI: 10.1586/14760584.2015.990890] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The naked delivery of nucleic acid vaccines is notoriously inefficient, and an enabling delivery technology is required to direct efficiently these constructs intracellularly. A delivery technology capable of enhancing nucleic acid uptake in both cells in tissues and in culture is electroporation (EP). EP is a physical delivery mechanism that increases the permeability of mammalian cell membranes and allows the trafficking of large macromolecules into the cell. EP has now been used extensively in the clinic and been shown to be an effective method to increase both the uptake of the construct and the breadth and magnitude of the resulting immune responses. Excitingly, 2014 saw the announcement of the first EP-enhanced DNA vaccine Phase II trial demonstrating clinical efficacy. This review seeks to introduce the reader to EP as a technology to enhance the delivery of DNA and RNA vaccines and highlight several published clinical trials using this delivery modality.
Collapse
Affiliation(s)
- Kate E Broderick
- Inovio Pharmaceuticals Inc., 660 West Germantown Pike, Suite 110, Plymouth Meeting, PA 19462, USA
| | | |
Collapse
|
16
|
Abstract
Plasmid or non-viral gene therapy offers an alternative to classic viral gene delivery that negates the need for a biological vector. In this case, delivery is enhanced by a variety of approaches including lipid or polymer conjugation, particle-mediated delivery, hydrodynamic delivery, ultrasound or electroporation. Electroporation was originally used as a laboratory tool to deliver DNA to bacterial and mammalian cells in culture. Electrode development allowed this technique to be modified for in vivo use. After preclinical therapeutic studies, clinical delivery of cell impermeant chemotherapeutic agents progressed to clinical delivery of plasmid DNA. One huge benefit of this delivery technique is its malleability. The pulse protocol used for plasmid delivery can be fine-tuned to control the levels and duration of subsequent transgene expression. This fine-tuning allows transgene expression to be tailored to each therapeutic application. Effective and appropriate expression induces the desired clinical response that is a critical component for any gene therapy. This chapter focuses on clinical trials using in vivo electroporation or electrotransfer as a plasmid delivery method. The first clinical trial was initiated in 2004, and now more than fifty trials use electric fields for gene delivery. Safety and tolerability has been demonstrated by several groups, and early clinical efficacy results are promising in both cancer therapeutic and infectious disease vaccine applications.
Collapse
Affiliation(s)
- Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; School of Medical Diagnostics and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Loree C Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; School of Medical Diagnostics and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
17
|
Optimization of a gene electrotransfer procedure for efficient intradermal immunization with an hTERT-based DNA vaccine in mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14045. [PMID: 26015983 PMCID: PMC4362362 DOI: 10.1038/mtm.2014.45] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/30/2014] [Accepted: 07/11/2014] [Indexed: 12/30/2022]
Abstract
DNA vaccination consists in administering an antigen-encoding plasmid in order to trigger a specific immune response. This specific vaccine strategy is of particular interest to fight against various infectious diseases and cancer. Gene electrotransfer is the most efficient and safest non-viral gene transfer procedure and specific electrical parameters have been developed for several target tissues. Here, a gene electrotransfer protocol into the skin has been optimized in mice for efficient intradermal immunization against the well-known telomerase tumor antigen. First, the luciferase reporter gene was used to evaluate gene electrotransfer efficiency into the skin as a function of the electrical parameters and electrodes, either non-invasive or invasive. In a second time, these parameters were tested for their potency to generate specific cellular CD8 immune responses against telomerase epitopes. These CD8 T-cells were fully functional as they secreted IFNγ and were endowed with specific cytotoxic activity towards target cells. This simple and optimized procedure for efficient gene electrotransfer into the skin using the telomerase antigen is to be used in cancer patients for the phase 1 clinical evaluation of a therapeutic cancer DNA vaccine called INVAC-1.
Collapse
|
18
|
Cavallo F, Aurisicchio L, Mancini R, Ciliberto G. Xenogene vaccination in the therapy of cancer. Expert Opin Biol Ther 2014; 14:1427-42. [DOI: 10.1517/14712598.2014.927433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Parmiani G, Cimminiello C, Maccalli C. Increasing immunogenicity of cancer vaccines to improve their clinical outcome. Expert Rev Vaccines 2014; 12:1111-3. [PMID: 24124873 DOI: 10.1586/14760584.2013.839274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Giorgio Parmiani
- Unit of Immuno-Biotherapy of Melanoma and Solid Tumors, San Raffaele Scientific Institute, Milano, Italy
| | | | | |
Collapse
|
20
|
Buonaguro L, Aurisicchio L, Buonaguro FM, Ciliberto G. New developments in cancer vaccines. Expert Rev Vaccines 2014; 12:1109-10. [PMID: 24124872 DOI: 10.1586/17476348.2013.838013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Luigi Buonaguro
- Deptartment of Experimental Oncology, Laboratory Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Pascale" - IRCCS, Via Mariano Semmola 142, 80131 Napoli, Italy
| | | | | | | |
Collapse
|
21
|
Calvet CY, André FM, Mir LM. Dual therapeutic benefit of electroporation-mediated DNA vaccination in vivo: Enhanced gene transfer and adjuvant activity. Oncoimmunology 2014; 3:e28540. [PMID: 25050220 PMCID: PMC4077865 DOI: 10.4161/onci.28540] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/08/2023] Open
Abstract
DNA vaccination consists of administering an antigen-coding nucleotide sequence. In order to improve the efficacy of DNA vaccines, electroporation is one of the most commonly used methods to enhance DNA uptake. Here, we discuss additional immunological effects of electroporation that are key aspects for inducing immunity in response to DNA vaccines.
Collapse
Affiliation(s)
- Christophe Y Calvet
- Univ Paris-Sud; Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses; UMR 8203; Villejuif, France ; CNRS; Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses; UMR 8203; Villejuif, France ; Gustave Roussy; Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses; UMR 8203; Villejuif, France
| | - Franck M André
- Univ Paris-Sud; Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses; UMR 8203; Villejuif, France ; CNRS; Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses; UMR 8203; Villejuif, France ; Gustave Roussy; Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses; UMR 8203; Villejuif, France
| | - Lluis M Mir
- Univ Paris-Sud; Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses; UMR 8203; Villejuif, France ; CNRS; Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses; UMR 8203; Villejuif, France ; Gustave Roussy; Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses; UMR 8203; Villejuif, France
| |
Collapse
|
22
|
Riccardo F, Bolli E, Macagno M, Arigoni M, Cavallo F, Quaglino E. Chimeric DNA Vaccines: An Effective Way to Overcome Immune Tolerance. Curr Top Microbiol Immunol 2014; 405:99-122. [PMID: 25294003 DOI: 10.1007/82_2014_426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The fact that cancer immunotherapy is considered to be a safe and successful weapon for use in combination with surgery, radiation, and chemotherapy treatments means that it has recently been chosen as Breakthrough of the Year 2013 by Science editors. Anticancer vaccines have been extensively tested, in this field, both in preclinical cancer models and in the clinic. However, tumor-associated antigens (TAAs) are often self-tolerated molecules and cancer patients suffer from strong immunosuppressive effects, meaning that the triggering of an effective anti-tumor immune response is difficult. One possible means to overcome immunological tolerance to self-TAAs is of course the use of vaccines that code for xenogeneic proteins. However, a low-affinity antibody response against the self-homologous protein expressed by cancer cells is generally induced by xenovaccination. This issue becomes extremely limiting when working with tumors in which the contribution of the humoral rather than the cellular immune response is required if tumor growth is to be hampered. A possible way to avoid this problem is to use hybrid vaccines which code for chimeric proteins that include both homologous and xenogeneic moieties. In fact, a superior protective anti-tumor immune response against ErbB2+ transplantable and autochthonous mammary tumors was observed over plasmids that coded for the fully rat or fully human proteins when hybrid plasmids that coded for chimeric rat/human ErbB2 protein were tested in ErbB2 transgenic mice. In principle, these findings may become the basis for a new rational means of designing effective vaccines against TAAs.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Marco Macagno
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|