1
|
Li Z, Murthy AK, Hao L, Andrew L, Anderson AS. Factor H binding protein (FHbp): An evaluation of genotypic diversity across Neisseria meningitidis serogroups. Hum Vaccin Immunother 2024; 20:2409502. [PMID: 39387286 PMCID: PMC11469366 DOI: 10.1080/21645515.2024.2409502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Neisseria meningitidis serogroups A, B, C, W, X, and Y cause invasive meningococcal disease (IMD) worldwide. Factor H binding protein (FHbp), a key meningococcal virulence factor, is an antigen included in both licensed meningococcal serogroup B (MenB) vaccines. This review examines the biology and epidemiology of FHbp and assesses the ability and potential of FHbp vaccine antigens to protect against IMD. Using evidence from the literature and the contemporary PubMLST database, we discuss analyses of MenB genotypes on the representation of the most prevalent multilocus sequence typing (MLST)/clonal complexes, FHbp subfamily distribution, and FHbp and porin A (PorA) variants. We further discuss that the similar genotypes, distribution, and diversity of FHbp variant types have remained stable over long time periods, supporting the potential for FHbp-containing, protein-based vaccines to protect against IMD, including MenB-FHbp (Trumenba®), which contains two lipidated FHbp antigens (one each from both FHbp subfamilies: A and B).
Collapse
Affiliation(s)
- Zhenghui Li
- Pfizer Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | | | - Li Hao
- Pfizer Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | - Lubomira Andrew
- Pfizer Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | | |
Collapse
|
2
|
Veggi D, Chesterman CC, Santini L, Huang Y, Pacchiani N, Sierra J, Chen L, Laliberte J, Bianchi F, Cozzi R, Frigimelica E, Maione D, Finco O, Bottomley MJ. Bactericidal human monoclonal antibody 1B1 shows specificity for meningococcal factor H binding protein variant 2 and displaces human factor H. FASEB Bioadv 2024; 6:235-248. [PMID: 39114449 PMCID: PMC11301264 DOI: 10.1096/fba.2023-00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 08/10/2024] Open
Abstract
Thousands of disease cases and hundreds of deaths occur globally each year due to invasive meningococcal disease. Neisseria meningitidis serogroup B (MenB) is the leading cause of such disease in developed countries. Two vaccines, 4CMenB and MenB-fHbp, that protect against MenB are available and include one or two forms respectively of factor H binding protein (fHbp), a key protective antigen. Studies of circulating meningococci have identified over 1380 different fHbp amino acid sequences, which form three immunologically distinct clusters, termed variants 1, 2, and 3. Neither of the current vaccines contains a variant 2 antigen, which is less well characterized than fHbp variants 1 and 3. We characterized the interaction of fHbp variant 2 with humAb 1B1 using biochemical methods and live meningococcal assays. Further, we determined the crystal structure of the complex at 2.4 Å resolution, clearly revealing the epitope and providing the first detailed report of an antibody with distinct specificity for fHbp variant 2. Extensive mutagenesis and binding studies elucidated key hotspots in the interface. This combination of structural and functional studies provides a molecular explanation for the bactericidal potency and specificity of humAb 1B1 for fHbp variant 2. Our studies, focused on fHbp variant 2, expand the understanding of this previously under characterized group of the vast family of variants of fHbp, a virulence factor present on all meningococci. Moreover, the definition of a protective conformational epitope on fHbp variant 2 may support the design and development of novel variant 2-containing MenB vaccines affording greater breadth of protection.
Collapse
|
3
|
Paulikat AD, Schwudke D, Hammerschmidt S, Voß F. Lipidation of pneumococcal proteins enables activation of human antigen-presenting cells and initiation of an adaptive immune response. Front Immunol 2024; 15:1392316. [PMID: 38711516 PMCID: PMC11070533 DOI: 10.3389/fimmu.2024.1392316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Streptococcus pneumoniae remains a significant global threat, with existing vaccines having important limitations such as restricted serotype coverage and high manufacturing costs. Pneumococcal lipoproteins are emerging as promising vaccine candidates due to their surface exposure and conservation across various serotypes. While prior studies have explored their potential in mice, data in a human context and insights into the impact of the lipid moiety remain limited. In the present study, we examined the immunogenicity of two pneumococcal lipoproteins, DacB and MetQ, both in lipidated and non-lipidated versions, by stimulation of primary human immune cells. Immune responses were assessed by the expression of common surface markers for activation and maturation as well as cytokines released into the supernatant. Our findings indicate that in the case of MetQ lipidation was crucial for activation of human antigen-presenting cells such as dendritic cells and macrophages, while non-lipidated DacB demonstrated an intrinsic potential to induce an innate immune response. Nevertheless, immune responses to both proteins were enhanced by lipidation. Interestingly, following stimulation of dendritic cells with DacB, LipDacB and LipMetQ, cytokine levels of IL-6 and IL-23 were significantly increased, which are implicated in triggering potentially important Th17 cell responses. Furthermore, LipDacB and LipMetQ were able to induce proliferation of CD4+ T cells indicating their potential to induce an adaptive immune response. These findings contribute valuable insights into the immunogenic properties of pneumococcal lipoproteins, emphasizing their potential role in vaccine development against pneumococcal infections.
Collapse
Affiliation(s)
- Antje D. Paulikat
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Li S, Wang Y, Yang R, Zhu X, Bai H, Deng X, Bai J, Zhang Y, Xiao Y, Li Z, Liu Z, Zhou Z. Outer membrane protein OMP76 of Riemerella anatipestifer contributes to complement evasion and virulence by binding to duck complement factor vitronectin. Virulence 2023; 14:2223060. [PMID: 37326479 PMCID: PMC10281475 DOI: 10.1080/21505594.2023.2223060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Riemerella anatipestifer is an important bacterial pathogen in poultry. Pathogenic bacteria recruit host complement factors to resist the bactericidal effect of serum complement. Vitronectin (Vn) is a complementary regulatory protein that inhibits the formation of the membrane attack complex (MAC). Microbes use outer membrane proteins (OMPs) to hijack Vn for complement evasion. However, the mechanism by which R. anatipestifer achieves evasion is unclear. This study aimed to characterise OMPs of R. anatipestifer which interact with duck Vn (dVn) during complement evasion. Far-western assays and comparison of wild-type and mutant strains that were treated with dVn and duck serum demonstrated particularly strong binding of OMP76 to dVn. These data were confirmed with Escherichia coli strains expressing and not expressing OMP76. Combining tertiary structure analysis and homology modelling, truncated and knocked-out fragments of OMP76 showed that a cluster of critical amino acids in an extracellular loop of OMP76 mediate the interaction with dVn. Moreover, binding of dVn to R. anatipestifer inhibited MAC deposition on the bacterial surface thereby enhancing survival in duck serum. Virulence of the mutant strain ΔOMP76 was attenuated significantly relative to the wild-type strain. Furthermore, adhesion and invasion abilities of ΔOMP76 decreased, and histopathological changes showed that ΔOMP76 was less virulent in ducklings. Thus, OMP76 is a key virulence factor of R. anatipestifer. The identification of OMP76-mediated evasion of complement by recruitment of dVn contributes significantly to the understanding of the molecular mechanism by which R. anatipestifer escapes host innate immunity and provides a new target for the development of subunit vaccines.
Collapse
Affiliation(s)
- Sen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yanhua Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Rongkun Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaotong Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Hongying Bai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiao Bai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhengfei Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Kanduc D. Molecular Mimicry between Meningococcal B Factor H-Binding Protein and Human Proteins. Glob Med Genet 2023; 10:311-314. [PMID: 38025196 PMCID: PMC10653992 DOI: 10.1055/s-0043-1776985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
This study calls attention on molecular mimicry and the consequent autoimmune cross reactivity as the molecular mechanism that can cause adverse events following meningococcal B vaccination and warns against active immunizations based on entire antigen.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
6
|
Zai X, Zhang Z, Zhou C, Zhao F, Zhang Y, Wang X, Li R, Li Y, Zhao X, Wang S, Yang Y, Yin Y, Zhang J, Xu J, Chen W. Precise modification of the surface charge of antigen enhances vaccine immunogenicity. Innovation (N Y) 2023; 4:100451. [PMID: 37342672 PMCID: PMC10277596 DOI: 10.1016/j.xinn.2023.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Aluminum (alum) adjuvant is the most extensively used protein subunit vaccine adjuvant, and its effectiveness and safety have been widely recognized. The surface charge of the antigen determines its electrostatic adsorption to alum adjuvant, which directly affects the immune efficacy of the protein vaccine. In our study, we precisely modified its surface charge by inserting charged amino acids into the flexible region of the SARS-CoV-2 receptor-binding domain (RBD), achieving electrostatic adsorption and a site-specific anchor between the immunogen and alum adjuvant. This innovative strategy extended the bioavailability of the RBD and directionally displayed the neutralizing epitopes, thereby significantly enhancing humoral and cellular immunity. Furthermore, the required dose of antigen and alum adjuvant was greatly reduced, which improved the safety and accessibility of the protein subunit vaccine. On this basis, the wide applicability of this novel strategy to a series of representative pathogen antigens such as SARS-RBD, MERS-RBD, Mpox-M1, MenB-fHbp, and Tularemia-Tul4 was further confirmed. Charge modification of antigens provides a straightforward approach for antigenicity optimization of alum-adjuvanted vaccines, which has great potential to be adopted as a global defense against infectious diseases.
Collapse
Affiliation(s)
- Xiaodong Zai
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhiling Zhang
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chuge Zhou
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Fangxin Zhao
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yue Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaolin Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ruihua Li
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yaohui Li
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaofan Zhao
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shuyi Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yilong Yang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ying Yin
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jun Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Junjie Xu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
7
|
Inklaar MR, Barillas-Mury C, Jore MM. Deceiving and escaping complement - the evasive journey of the malaria parasite. Trends Parasitol 2022; 38:962-974. [PMID: 36089499 PMCID: PMC9588674 DOI: 10.1016/j.pt.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023]
Abstract
During its life cycle, Plasmodium, the malaria parasite, is exposed to the human and mosquito complement systems. Early experiments demonstrated that activation of complement can pose a serious threat to parasites, but recent studies revealed complement-evasion mechanisms important for parasite survival. Blood-stage parasites and gametes recruit regulators to neutralize human complement activation, while ookinetes inhibit mosquito complement by disrupting epithelial nitration in response to midgut invasion. Here we provide an in-depth overview of the evasion mechanisms currently known and speculate on the existence of others not yet identified. Finally, we discuss how these mechanisms could provide novel targets for urgently needed malaria vaccines and therapeutics.
Collapse
Affiliation(s)
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboudumc, The Netherlands.
| |
Collapse
|
8
|
Alfini R, Brunelli B, Bartolini E, Carducci M, Luzzi E, Ferlicca F, Buccato S, Galli B, Lo Surdo P, Scarselli M, Romagnoli G, Cartocci E, Maione D, Savino S, Necchi F, Delany I, Micoli F. Investigating the Role of Antigen Orientation on the Immune Response Elicited by Neisseria meningitidis Factor H Binding Protein on GMMA. Vaccines (Basel) 2022; 10:1182. [PMID: 35893831 PMCID: PMC9331691 DOI: 10.3390/vaccines10081182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
GMMA are outer membrane vesicles (OMVs) released from Gram-negative bacteria genetically modified to enhance OMVs formation that have been shown to be optimal systems to enhance immunogenicity of protein antigens. Here, we selected Neisseria meningitidis factor H binding protein (fHbp) and used the conjugation chemistry as a tool to alter antigen orientation on GMMA. Indeed, fHbp was randomly linked to GMMA or selectively attached via the N-terminus to mimic native presentation of the protein on the bacterial surface. Interestingly, protein and peptide array analyses confirmed that antibodies induced by the selective and the random conjugates showed a pattern very similar to fHbp natively expressed on bacterial surfaces or to the recombinant protein mixed with GMMA, respectively. However, the two conjugates elicited antibodies with similar serum bactericidal activity against meningococcal strains, superior to the protein alone or physically mixed with GMMA. Presentation of fHbp on GMMA strongly enhances the functional immune response elicited by the protein but its orientation on the bacterial surface does not have an impact. This study demonstrates the flexibility of the GMMA platform as a display and delivery system for enhancing antigen immunogenicity and further supports the use of such promising technology for the development of effective vaccines.
Collapse
Affiliation(s)
- Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (M.C.); (F.N.)
| | - Brunella Brunelli
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Erika Bartolini
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (M.C.); (F.N.)
| | - Enrico Luzzi
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Francesca Ferlicca
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Scilla Buccato
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Barbara Galli
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Paola Lo Surdo
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Maria Scarselli
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Giacomo Romagnoli
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Elena Cartocci
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Domenico Maione
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Silvana Savino
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Francesca Necchi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (M.C.); (F.N.)
| | - Isabel Delany
- GSK, 53100 Siena, Italy; (B.B.); (E.B.); (E.L.); (F.F.); (S.B.); (B.G.); (P.L.S.); (M.S.); (G.R.); (E.C.); (D.M.); (S.S.); (I.D.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (M.C.); (F.N.)
| |
Collapse
|
9
|
Kunjantarachot A, Phanaksri T. Effective Platform for the Production of Recombinant Outer Membrane Vesicles in Gram-Negative Bacteria. J Microbiol Biotechnol 2022; 32:621-629. [PMID: 32522965 PMCID: PMC9628879 DOI: 10.4014/jmb.2003.03023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Bacterial outer membrane vesicles (OMVs) typically contain multiple immunogenic molecules that include antigenic proteins, making them good candidates for vaccine development. In animal models, vaccination with OMVs has been shown to confer protective immune responses against many bacterial diseases. It is possible to genetically introduce heterologous protein antigens to the bacterial host that can then be produced and relocated to reside within the OMVs by means of the host secretion mechanisms. Accordingly, in this study we sought to develop a novel platform for recombinant OMV (rOMV) production in the widely used bacterial expression host species, Escherichia coli. Three different lipoprotein signal peptides including their Lol signals and tether sequences-from Neisseria meningitidis fHbp, Leptospira interrogans LipL32, and Campylobactor jejuni JlpA-were combined upstream to the GFPmut2 model protein, resulting in three recombinant plasmids. Pilot expression studies showed that the fusion between fHbp and GFPmut2 was the only promising construct; therefore, we used this construct for large-scale expression. After inducing recombinant protein expression, the nanovesicles were harvested from cell-free culture media by ultrafiltration and ultracentrifugation. Transmission electron microscopy demonstrated that the obtained rOMVs were closed, circular single-membrane particles, 20-200 nm in size. Western blotting confirmed the presence of GFPmut2 in the isolated vesicles. Collectively, although this is a non-optimized, proof-of-concept study, it demonstrates the feasibility of this platform in directing target proteins into the vesicles for OMV-based vaccine development.
Collapse
Affiliation(s)
- Anthicha Kunjantarachot
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand,Corresponding author Phone: +662-564 4440-9 Ext. 4453 Fax: +662-564-4440-9 E-mail:
| | - Teva Phanaksri
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
10
|
Veggi D, Malito E, Lo Surdo P, Pansegrau W, Rippa V, Wahome N, Savino S, Masignani V, Pizza M, Bottomley MJ. Structural characterization of a cross-protective natural chimera of factor H binding protein from meningococcal serogroup B strain NL096. Comput Struct Biotechnol J 2022; 20:2070-2081. [PMID: 35601959 PMCID: PMC9079162 DOI: 10.1016/j.csbj.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Invasive meningococcal disease can cause fatal sepsis and meningitis and is a global health threat. Factor H binding protein (fHbp) is a protective antigen included in the two currently available vaccines against serogroup B meningococcus (MenB). FHbp is a remarkably variable surface-exposed meningococcal virulence factor with over 1300 different amino acid sequences identified so far. Based on this variability, fHbp has been classified into three variants, two subfamilies or nine modular groups, with low degrees of cross-protective activity. Here, we report the crystal structure of a natural fHbp cross-variant chimera, named variant1-2,3.x expressed by the MenB clinical isolate NL096, at 1.2 Å resolution, the highest resolution of any fHbp structure reported to date. We combined biochemical, site-directed mutagenesis and computational biophysics studies to deeply characterize this rare chimera. We determined the structure to be composed of two adjacent domains deriving from the three variants and determined the molecular basis of its stability, ability to bind Factor H and to adopt the canonical three-dimensional fHbp structure. These studies guided the design of loss-of-function mutations with potential for even greater immunogenicity. Moreover, this study represents a further step in the understanding of the fHbp biological and immunological evolution in nature. The chimeric variant1-2,3.x fHbp protein emerges as an intriguing cross-protective immunogen and suggests that identification of such naturally occurring hybrid proteins may result in stable and cross-protective immunogens when seeking to design and develop vaccines against highly variable pathogens.
Collapse
Affiliation(s)
- Daniele Veggi
- Corresponding author at: GSK Vaccines srl, Via Fiorentina 1, Siena 53100, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Facchetti A, Wheeler JX, Vipond C, Whiting G, Lavender H, Feavers IM, Maiden MCJ, Maharjan S. Factor H binding protein (fHbp)-mediated differential complement resistance of a serogroup C Neisseria meningitidis isolate from cerebrospinal fluid of a patient with invasive meningococcal disease. Access Microbiol 2021; 3:000255. [PMID: 34712903 PMCID: PMC8549389 DOI: 10.1099/acmi.0.000255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/03/2021] [Indexed: 11/01/2022] Open
Abstract
During an outbreak of invasive meningococcal disease (IMD) at the University of Southampton, UK, in 1997, two Neisseria meningitidis serogroup C isolates were retrieved from a student ('Case'), who died of IMD, and a close contact ('Carrier') who, after mouth-to-mouth resuscitation on the deceased, did not contract the disease. Genomic comparison of the isolates demonstrated extensive nucleotide sequence identity, with differences identified in eight genes. Here, comparative proteomics was used to measure differential protein expression between the isolates and investigate whether the differences contributed to the clinical outcomes. A total of six proteins were differentially expressed: four proteins (methylcitrate synthase, PrpC; hypothetical integral membrane protein, Imp; fructose-1,6-bisphosphate aldolase, Fba; aldehyde dehydrogenase A, AldA) were upregulated in the Case isolate, while one protein (Type IV pilus-associated protein, PilC2) was downregulated. Peptides for factor H binding protein (fHbp), a major virulence factor and antigenic protein, were only detected in the Case, with a single base deletion (ΔT366) in the Carrier fHbp causing lack of its expression. Expression of fHbp resulted in an increased resistance of the Case isolate to complement-mediated killing in serum. Complementation of fHbp expression in the Carrier increased its serum resistance by approximately 8-fold. Moreover, a higher serum bactericidal antibody titre was seen for the Case isolate when using sera from mice immunized with Bexsero (GlaxoSmithKline), a vaccine containing fHbp as an antigenic component. This study highlights the role of fHbp in the differential complement resistance of the Case and the Carrier isolates. Expression of fHbp in the Case resulted in its increased survival in serum, possibly leading to active proliferation of the bacteria in blood and death of the student through IMD. Moreover, enhanced killing of the Case isolate by sera raised against an fHbp-containing vaccine, Bexsero, underlines the role and importance of fHbp in infection and immunity.
Collapse
Affiliation(s)
- Alessandra Facchetti
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Jun X Wheeler
- Division of Analytical Biological Sciences, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Caroline Vipond
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Gail Whiting
- Division of Analytical Biological Sciences, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Martin C J Maiden
- Department of Zoology, Peter Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Sunil Maharjan
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
12
|
Eichner H, Karlsson J, Spelmink L, Pathak A, Sham LT, Henriques-Normark B, Loh E. RNA thermosensors facilitate Streptococcus pneumoniae and Haemophilus influenzae immune evasion. PLoS Pathog 2021; 17:e1009513. [PMID: 33914847 PMCID: PMC8084184 DOI: 10.1371/journal.ppat.1009513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial meningitis is a major cause of death and disability in children worldwide. Two human restricted respiratory pathogens, Streptococcus pneumoniae and Haemophilus influenzae, are the major causative agents of bacterial meningitis, attributing to 200,000 deaths annually. These pathogens are often part of the nasopharyngeal microflora of healthy carriers. However, what factors elicit them to disseminate and cause invasive diseases, remain unknown. Elevated temperature and fever are hallmarks of inflammation triggered by infections and can act as warning signals to pathogens. Here, we investigate whether these respiratory pathogens can sense environmental temperature to evade host complement-mediated killing. We show that productions of two vital virulence factors and vaccine components, the polysaccharide capsules and factor H binding proteins, are temperature dependent, thus influencing serum/opsonophagocytic killing of the bacteria. We identify and characterise four novel RNA thermosensors in S. pneumoniae and H. influenzae, responsible for capsular biosynthesis and production of factor H binding proteins. Our data suggest that these bacteria might have independently co-evolved thermosensing abilities with different RNA sequences but distinct secondary structures to evade the immune system.
Collapse
Affiliation(s)
- Hannes Eichner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Jens Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Laura Spelmink
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Anuj Pathak
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Lok-To Sham
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Clinical Microbiology, Bioclinicum, Karolinska University Hospital, Solna, Sweden
- Lee Kong Chian School of Medicine and Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Edmund Loh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Clinical Microbiology, Bioclinicum, Karolinska University Hospital, Solna, Sweden
- Lee Kong Chian School of Medicine and Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Spinsanti M, Brignoli T, Bodini M, Fontana LE, De Chiara M, Biolchi A, Muzzi A, Scarlato V, Delany I. Deconvolution of intergenic polymorphisms determining high expression of Factor H binding protein in meningococcus and their association with invasive disease. PLoS Pathog 2021; 17:e1009461. [PMID: 33770146 PMCID: PMC8026042 DOI: 10.1371/journal.ppat.1009461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/07/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neisseria meningitidis is a strictly human pathogen and is the major cause of septicemia and meningitis worldwide. Factor H binding protein (fHbp) is a meningococcal surface-exposed lipoprotein that binds the human Complement factor H allowing the bacterium to evade the host innate immune response. FHbp is also a key antigen in two vaccines against N. meningitidis serogroup B. Although the fHbp gene is present in most circulating meningococcal strains, level of fHbp expression varies among isolates and has been correlated to differences in promoter sequences upstream of the gene. Here we elucidated the sequence determinants that control fHbp expression in globally circulating strains. We analyzed the upstream fHbpintergenic region (fIR) of more than 5800 strains representative of the UK circulating isolates and we identified eleven fIR sequence alleles which represent 88% of meningococcal strains. By engineering isogenic recombinant strains where fHbp expression was under the control of each of the eleven fIR alleles, we confirmed that the fIR sequence determines a specific and distinct level of expression. Moreover, we identified the molecular basis for variation in expression through polymorphisms within key regulatory regions that are known to affect fHbp expression. We experimentally established three expression groups, high–medium–low, that correlated directly with the susceptibility to killing mediated by anti-fHbp antibodies and the ability of the meningococcal strain to survive within human serum. By using this sequence classification and information about the variant, we predicted fHbp expression in the panel of UK strains and we observed that strains with higher expressing fIR alleles are more likely associated with invasive disease. Overall, our findings can contribute to understand and predict vaccine coverage mediated by fHbp as well as to shed light on the role of this virulence factor in determining an invasive phenotype. Complement plays a key role in the immunity against Neisseria meningitidis. The meningococcus uses the Factor H binding protein (fHbp), to bind a negative regulator of the alternative complement pathway, factor H, to its surface thus preventing complement deposition and lysis. The use of fHbp as an antigen in two licensed vaccines highlights its public health relevance. Therefore the levels of this antigen produced by the bacterium are pivotal on the one hand for the survival of N. meningitidis in blood and on the other hand for the susceptibility to vaccine-induced killing antibodies. Here, we identify the predominant nucleotide sequences that drive distinct levels of the fHbp antigen in circulating meningococcal strains. We cluster them into distinct groups with increasing levels and observe that strains expressing higher fHbp amounts are associated with invasive disease. Our findings show that the nucleotide sequence of the fHbp promoter can be used for the prediction of antigen levels of any given strain and consequently for both the assessment of its sensitivity to killing by fHbp antibodies and its likelihood to cause invasive disease.
Collapse
Affiliation(s)
| | - Tarcisio Brignoli
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | | | | | | | | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | |
Collapse
|
14
|
McGuire MK, Randall AZ, Seppo AE, Järvinen KM, Meehan CL, Gindola D, Williams JE, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Foster JA, Otoo GE, Rodríguez JM, Pareja RG, Bode L, McGuire MA, Campo JJ. Multipathogen Analysis of IgA and IgG Antigen Specificity for Selected Pathogens in Milk Produced by Women From Diverse Geographical Regions: The INSPIRE Study. Front Immunol 2021; 11:614372. [PMID: 33643297 PMCID: PMC7905217 DOI: 10.3389/fimmu.2020.614372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Breastfeeding provides defense against infectious disease during early life. The mechanisms underlying this protection are complex but likely include the vast array of immune cells and components, such as immunoglobulins, in milk. Simply characterizing the concentrations of these bioactives, however, provides only limited information regarding their potential relationships with disease risk in the recipient infant. Rather, understanding pathogen and antigen specificity profiles of milk-borne immunoglobulins might lead to a more complete understanding of how maternal immunity impacts infant health and wellbeing. Milk produced by women living in 11 geographically dispersed populations was applied to a protein microarray containing antigens from 16 pathogens, including diarrheagenic E. coli, Shigella spp., Salmonella enterica serovar Typhi, Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis and other pathogens of global health concern, and specific IgA and IgG binding was measured. Our analysis identified novel disease-specific antigen responses and suggests that some IgA and IgG responses vary substantially within and among populations. Patterns of antibody reactivity analyzed by principal component analysis and differential reactivity analysis were associated with either lower-to-middle-income countries (LMICs) or high-income countries (HICs). Antibody levels were generally higher in LMICs than HICs, particularly for Shigella and diarrheagenic E. coli antigens, although sets of S. aureus, S. pneumoniae, and some M. tuberculosis antigens were more reactive in HICs. Differential responses were typically specific to canonical immunodominant antigens, but a set of nondifferential but highly reactive antibodies were specific to antigens possibly universally recognized by antibodies in human milk. This approach provides a promising means to understand how breastfeeding and human milk protect (or do not protect) infants from environmentally relevant pathogens. Furthermore, this approach might lead to interventions to boost population-specific immunity in at-risk breastfeeding mothers and their infants.
Collapse
Affiliation(s)
- Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Arlo Z Randall
- Antigen Discovery Incorporated, Irvine, CA, United States
| | - Antti E Seppo
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Kirsi M Järvinen
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Courtney L Meehan
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Debela Gindola
- Department of Anthropology, Hawassa University, Awasa, Ethiopia
| | - Janet E Williams
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Daniel W Sellen
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | | | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru, Kenya
| | - Sophie E Moore
- Department of Women and Children's Health, King's College London, London, United Kingdom.,MRC Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Andrew M Prentice
- MRC Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - James A Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Gloria E Otoo
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | - Juan M Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | | | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Mark A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Joseph J Campo
- Antigen Discovery Incorporated, Irvine, CA, United States
| |
Collapse
|
15
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
16
|
Neisseria meningitidis Urethritis Outbreak Isolates Express a Novel Factor H Binding Protein Variant That Is a Potential Target of Group B-Directed Meningococcal (MenB) Vaccines. Infect Immun 2020; 88:IAI.00462-20. [PMID: 32958529 DOI: 10.1128/iai.00462-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Factor H binding protein (FHbp) is an important Neisseria meningitidis virulence factor that binds a negative regulator of the alternative complement pathway, human factor H (FH). Binding of FH increases meningococcal resistance to complement-mediated killing. FHbp also is reported to prevent interaction of the antimicrobial peptide (AMP) LL-37 with the meningococcal surface and meningococcal killing. FHbp is a target of two licensed group B-directed meningococcal (MenB) vaccines. We found a new FHbp variant, peptide allele identification no. 896 (ID 896), was highly expressed by an emerging meningococcal pathotype, the nonencapsulated urethritis clade (US_NmUC). This clade has been responsible for outbreaks of urethritis in multiple U.S. cities since 2015, other mucosal infections, and cases of invasive meningococcal disease. FHbp ID 896 is a member of the variant group 1 (subfamily B), bound protective anti-FHbp monoclonal antibodies, bound high levels of human FH, and enhanced the resistance of the clade to complement-mediated killing in low levels of human complement likely present at human mucosal surfaces. Interestingly, expression of FHbp ID 896 resulted in augmented killing of the clade by LL-37. FHbp ID 896 of the clade was recognized by antibodies elicited by FHbp in MenB vaccines.
Collapse
|
17
|
Federico S, Pozzetti L, Papa A, Carullo G, Gemma S, Butini S, Campiani G, Relitti N. Modulation of the Innate Immune Response by Targeting Toll-like Receptors: A Perspective on Their Agonists and Antagonists. J Med Chem 2020; 63:13466-13513. [PMID: 32845153 DOI: 10.1021/acs.jmedchem.0c01049] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are a class of proteins that recognize pathogen-associated molecular patterns (PAMPs) and damaged-associated molecular patterns (DAMPs), and they are involved in the regulation of innate immune system. These transmembrane receptors, localized at the cellular or endosomal membrane, trigger inflammatory processes through either myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-β (TRIF) signaling pathways. In the last decades, extensive research has been performed on TLR modulators and their therapeutic implication under several pathological conditions, spanning from infections to cancer, from metabolic disorders to neurodegeneration and autoimmune diseases. This Perspective will highlight the recent discoveries in this field, emphasizing the role of TLRs in different diseases and the therapeutic effect of their natural and synthetic modulators, and it will discuss insights for the future exploitation of TLR modulators in human health.
Collapse
Affiliation(s)
- Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
18
|
Sharma S, Bhatnagar R, Gaur D. Complement Evasion Strategies of Human Pathogenic Bacteria. Indian J Microbiol 2020; 60:283-296. [PMID: 32655196 PMCID: PMC7329968 DOI: 10.1007/s12088-020-00872-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Human pathogens need to overcome an elaborate network of host defense mechanisms in order to establish their infection, colonization, proliferation and eventual dissemination. The interaction of pathogens with different effector molecules of the immune system results in their neutralization and elimination from the host. The complement system is one such integral component of innate immunity that is critically involved in the early recognition and elimination of the pathogen. Hence, under this immune pressure, all virulent pathogens capable of inducing active infections have evolved immune evasive strategies that primarily target the complement system, which plays an essential and central role for host defense. Recent reports on several bacterial pathogens have elucidated the molecular mechanisms underlying complement evasion, inhibition of opsonic phagocytosis and cell lysis. This review aims to comprehensively summarize the recent findings on the various strategies adopted by pathogenic bacteria to escape complement-mediated clearance.
Collapse
Affiliation(s)
- Shikhar Sharma
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067 India
| |
Collapse
|
19
|
Methods to evaluate serogroup B meningococcal vaccines: From predictions to real-world evidence. J Infect 2020; 81:862-872. [PMID: 32745637 DOI: 10.1016/j.jinf.2020.07.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023]
Abstract
Serogroup B meningococci (MenB) remain a prominent cause of invasive meningococcal disease (IMD). The protein-based multicomponent 4CMenB and the bivalent MenB-FHbp are the only currently available vaccines against MenB-caused IMD. Efficacy studies are not possible, due to the low incidence of IMD. Therefore, the vaccines' immunogenicity has been evaluated against several target strains chosen to quantify complement-mediated killing induced by each vaccine component in the serum bactericidal antibody assay. However, due to the wide genetic diversity and different expression levels of vaccine antigens across MenB strains, vaccine performance may differ from one strain to another. Here, we review the methods used to predict MenB strain coverage for 4CMenB and MenB-FHbp. Phenotypic assays such as the meningococcal antigen typing system (MATS, 4CMenB-specific) and the flow cytometric meningococcal antigen surface expression assay (MEASURE; MenB-FHbp-specific) were developed. Genomic approaches are also available, such as genetic MATS (gMATS) and the Bexsero antigen sequence type (BAST) scheme, both 4CMenB-specific. All methods allow tentative predictions of coverage across MenB strains, including that afforded by each vaccine antigen, and are rapid and reproducible. Real-world data on vaccine effectiveness are needed to confirm predictions obtained by these methods.
Collapse
|
20
|
Natali EN, Principato S, Ferlicca F, Bianchi F, Fontana LE, Faleri A, Pansegrau W, Surdo PL, Bartolini E, Santini L, Brunelli B, Giusti F, Veggi D, Ferlenghi I, Norais N, Scarselli M. Synergic complement-mediated bactericidal activity of monoclonal antibodies with distinct specificity. FASEB J 2020; 34:10329-10341. [PMID: 32725956 DOI: 10.1096/fj.201902795r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023]
Abstract
The classical complement pathway is triggered when antigen-bound immunoglobulins bind to C1q through their Fc region. While C1q binds to a single Fc with low affinity, a higher avidity stable binding of two or more of C1q globular heads initiates the downstream reactions of the complement cascade ultimately resulting in bacteriolysis. Synergistic bactericidal activity has been demonstrated when monoclonal antibodies recognize nonoverlapping epitopes of the same antigen. The aim of the present work was to investigate the synergistic effect between antibodies directed toward different antigens. To this purpose, we investigated the bactericidal activity induced by combinations of monoclonal antibodies (mAbs) raised against factor H-binding protein (fHbp) and Neisserial Heparin-Binding Antigen (NHBA), two major antigens included in Bexsero, the vaccine against Meningococcus B, for prevention from this devastating disease in infants and adolescents. Collectively, our results show that mAbs recognizing different antigens can synergistically activate complement even when each single Mab is not bactericidal, reinforcing the evidence that cooperative immunity induced by antigen combinations can represent a remarkable added value of multicomponent vaccines. Our study also shows that the synergistic effect of antibodies is modulated by the nature of the respective epitopes, as well as by the antigen density on the bacterial cell surface.
Collapse
Affiliation(s)
- Eriberto Noel Natali
- GSK, Siena, Italy.,CERM, Department of Chemistry, University of Florence, Florence, Italy
| | - Silvia Principato
- GSK, Siena, Italy.,Department of Biological Sciences, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Beernink PT. Effect of complement Factor H on antibody repertoire and protection elicited by meningococcal capsular group B vaccines containing Factor H binding protein. Hum Vaccin Immunother 2020; 16:703-712. [PMID: 31526219 DOI: 10.1080/21645515.2019.1664241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Bacteria produce surface ligands for host complement regulators including Factor H (FH), which allows the bacteria to evade immunity. Meningococcal Factor H binding protein (FHbp) is both a virulence factor and a vaccine antigen. Antibodies to FHbp can neutralize its function by inhibiting binding of FH to the bacteria and confer robust complement-mediated protection. However, in the presence of human or primate FH, antibodies to FHbp do not inhibit FH binding and the protective antibody responses are decreased. This immune suppression can be overcome by modification of the FHbp antigen to decrease FH binding, which modulates the antibody repertoire to inhibit FH binding and increase protection. When FHbp is present at sufficient density on the bacterial surface, two or more antibodies can synergize to activate the complement system. Thus, modification of FHbp antigens to decrease FH binding expands the anti-FHbp antibody repertoire and increases the potential for synergistic activity.
Collapse
Affiliation(s)
- Peter T Beernink
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA.,Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Azevedo AC, Franco NEC, de Carvalho Rocha MR, Andrade C, Torres MC, de Filippis I. Molecular surveillance of brazilian meningococcal isolates serogroup c in the pre and post-men-c-vaccination period: Emergence of ST-3780. INFECTION GENETICS AND EVOLUTION 2020; 78:104079. [DOI: 10.1016/j.meegid.2019.104079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022]
|
23
|
Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood-Brain Barrier. Int J Mol Sci 2019; 20:ijms20215393. [PMID: 31671896 PMCID: PMC6862235 DOI: 10.3390/ijms20215393] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Infections of the central nervous system (CNS) are still a major cause of morbidity and mortality worldwide. Traversal of the barriers protecting the brain by pathogens is a prerequisite for the development of meningitis. Bacteria have developed a variety of different strategies to cross these barriers and reach the CNS. To this end, they use a variety of different virulence factors that enable them to attach to and traverse these barriers. These virulence factors mediate adhesion to and invasion into host cells, intracellular survival, induction of host cell signaling and inflammatory response, and affect barrier function. While some of these mechanisms differ, others are shared by multiple pathogens. Further understanding of these processes, with special emphasis on the difference between the blood-brain barrier and the blood-cerebrospinal fluid barrier, as well as virulence factors used by the pathogens, is still needed.
Collapse
|
24
|
Seib KL, Haag AF, Oriente F, Fantappiè L, Borghi S, Semchenko EA, Schulz BL, Ferlicca F, Taddei AR, Giuliani MM, Pizza M, Delany I. The meningococcal vaccine antigen GNA2091 is an analogue of YraP and plays key roles in outer membrane stability and virulence. FASEB J 2019; 33:12324-12335. [DOI: 10.1096/fj.201900669r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kate L. Seib
- Institute for GlycomicsGriffith UniversityGold CoastQueenslandAustralia
| | | | | | | | | | | | - Benjamin L. Schulz
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Anna Rita Taddei
- Interdepartmental Centre of Electron Microscopy (CIME)Tuscia UniversityTusciaItaly
| | | | | | | |
Collapse
|
25
|
Klein NP, Block SL, Essink B, Barbi S, Smolenov I, Keshavan P. Antibody persistence and booster response following MenACWY-CRM vaccination in children as assessed by two different assay methods. Vaccine 2019; 37:4460-4467. [PMID: 31279564 DOI: 10.1016/j.vaccine.2019.06.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The quadrivalent meningococcal conjugate vaccine MenACWY-CRM has been shown to be immunogenic and well-tolerated in infants and toddlers. We evaluated antibody persistence for up to 4 years after vaccination with MenACWY-CRM in the first years of life and response to a booster dose administered at 60 months of age. METHODS This was phase 3b, open-label, multicenter extension trial (NCT01148017). We assessed by hSBA and rSBA the persistence of antibody responses to serogroups ACWY in 203 healthy 60-month-olds receiving 4 doses of MenACWY-CRM during infancy (ACWY-4 group), or 2 doses at 12/13 and 15 months or 1 dose at 18 months of age (ACWY-2 group). We administered a MenACWY-CRM dose to 224 primed and 45 naïve 60-month-olds and evaluated safety and antibody response 1 month later. RESULTS Antibody persistence measured by both assays was higher in primed than naïve 60-month-olds. The percentages of primed children with hSBA titers ≥8 was low for serogroup A (6-25%) and moderate for serogroups C (27-43%), Y (69-74%) and W (56-69%). For all serogroups, hSBA antibody geometric mean titers (GMTs) tended to be higher in the ACWY-2 than the ACWY-4 group. Post-booster/single dose, ≥96% of primed and ≥73% of naïve children had hSBA titers ≥8 against each serogroup, and hSBA GMTs were higher in primed children. The booster dose was well-tolerated and no safety concern was identified. We further assessed persistence using rSBA across different age groups and detected no overall correlation between rSBA and hSBA titers. CONCLUSIONS Primary vaccination of infants/toddlers with MenACWY-CRM resulted in moderate antibody persistence against serogroups C, W and Y for up to 4 years after the last priming dose. Regardless of priming schedule, a MenACWY-CRM booster dose at 60 months of age induced a robust immune response against all serogroups and was well-tolerated in all children.
Collapse
Affiliation(s)
- Nicola P Klein
- Kaiser Permanente Vaccine Study Center, 1 Kaiser Plaza, 16th Floor, Oakland, CA 94612, United States.
| | - Stan L Block
- Kentucky Pediatric and Adult Research, INC, 201 S 5th St, Bardstown, KY 40004, United States
| | - Brandon Essink
- Meridian Clinical Research, 3323 N 107th St, Omaha, NE 6813, United States.
| | - Silvia Barbi
- GSK, Hullenbergweg 81-87, 1101 CL Amsterdam, the Netherlands.
| | - Igor Smolenov
- GSK, Hullenbergweg 81-87, 1101 CL Amsterdam, the Netherlands
| | | |
Collapse
|
26
|
Masignani V, Pizza M, Moxon ER. The Development of a Vaccine Against Meningococcus B Using Reverse Vaccinology. Front Immunol 2019; 10:751. [PMID: 31040844 PMCID: PMC6477034 DOI: 10.3389/fimmu.2019.00751] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/20/2019] [Indexed: 12/04/2022] Open
Abstract
The discovery of vaccine antigens through whole genome sequencing (WGS) contrasts with the classical hypothesis-driven laboratory-based analysis of microbes to identify components to elicit protective immunity. This radical change in scientific direction and action in vaccine research is captured in the term reverse vaccinology. The complete genome sequence of an isolate of Neisseria meningitidis serogroup B (MenB) was systematically analyzed to identify proteins predicted to be secreted or exported to the outer membrane. This identified hundreds of genes coding for potential surface-exposed antigens. These were amplified, cloned in expression vectors and used to immunize mice. Antisera against 350 recombinant antigens were obtained and analyzed in a panel of immunological assays from which 28 were selected as potentially protective based on the -antibody dependent, complement mediated- serum bactericidal activity assay. Testing of these candidate vaccine antigens, using a large globally representative strain collection of Neisseria species isolated from cases of disease and carriage, indicated that no single component would be sufficient to induce broad coverage and that a “universal” vaccine should contain multiple antigens. The final choice of antigens to be included was based on cross-protective ability, assayed by serum bactericidal activity and maximum coverage of the extensive antigenic variability of MenB strains. The resulting multivalent vaccine formulation selected consisted of three recombinant antigens (Neisserial Heparin Binding Antigen or NHBA, Factor H binding protein or fHbp and Neisseria Adhesin A or NadA). To improve immunogenicity and potential strain coverage, an outer membrane vesicle component obtained from the epidemic New Zealand strain (OMVNz) was added to the formulation to create a four component vaccine, called 4CMenB. A series of phase 2 and 3 clinical trials were conducted to evaluate safety and tolerability and to estimate the vaccine effectiveness of human immune responses at different ages and how these were affected by various factors including concomitant vaccine use and lot-to-lot consistency. 4CMenB was approved in Europe in 2013 and introduced in the National Immunization Program in the UK starting from September 2015 when the vaccine was offered to all newborns using a 2, 4, and 12 months schedule., The effectiveness against invasive MenB disease measured at 11 months after the study start and 5 months after the second vaccination was 83% and there have been no safety concerns.
Collapse
Affiliation(s)
| | | | - E Richard Moxon
- Department of Pediatrics, Oxford University, Oxford, United Kingdom
| |
Collapse
|
27
|
Watson PS, Novy P, Bekkat-Berkani R, Strubbe F, Banzhoff A. Optimizing the timing of 4CMenB vaccination in adolescents and young adults based on immune persistence and booster response data. Expert Rev Vaccines 2019; 18:343-352. [PMID: 30741040 DOI: 10.1080/14760584.2019.1580579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Meningococcal disease has an incidence peak spread over several years during adolescence and young adulthood in the United States. Meningococcal serogroup B (MenB) vaccines have been introduced relatively recently and may help protect individuals in these age groups. Currently there is insufficient long-term experience to determine the duration of disease protection after any MenB vaccine. Understanding antibody persistence after primary vaccination and responses to booster can help inform MenB vaccination strategies and optimize disease prevention. Areas covered: Four studies in adolescents/young adults vaccinated with meningococcal B vaccine 4CMenB were reviewed with the aim to compare findings across studies and draw key learnings. The studies varied by geographic location, population characteristics, and timing of antibody measurement relative to primary vaccination. Expert opinion: Antibody persistence data for 4CMenB are substantial, extending 7.5 years post-primary vaccination. Vaccination at age 16-18 years may help protect adolescents throughout their highest age-based risk period. Similar robust responses to a single booster dose were observed 4 and 7.5 years after primary vaccination. In outbreak settings it is beneficial to have received prior vaccination; residual circulating antibodies may provide protection, and a single dose induces booster responses within 7 days, which is quicker than administration of a 2-dose series to vaccine-naïve individuals.
Collapse
|
28
|
Genus-Wide Comparative Genomics Analysis of Neisseria to Identify New Genes Associated with Pathogenicity and Niche Adaptation of Neisseria Pathogens. Int J Genomics 2019; 2019:6015730. [PMID: 30775379 PMCID: PMC6350579 DOI: 10.1155/2019/6015730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022] Open
Abstract
N. gonorrhoeae and N. meningitidis, the only two human pathogens of Neisseria, are closely related species. But the niches they survived in and their pathogenic characteristics are distinctly different. However, the genetic basis of these differences has not yet been fully elucidated. In this study, comparative genomics analysis was performed based on 15 N. gonorrhoeae, 75 N. meningitidis, and 7 nonpathogenic Neisseria genomes. Core-pangenome analysis found 1111 conserved gene families among them, and each of these species groups had opening pangenome. We found that 452, 78, and 319 gene families were unique in N. gonorrhoeae, N. meningitidis, and both of them, respectively. Those unique gene families were regarded as candidates that related to their pathogenicity and niche adaptation. The relationships among them have been partly verified by functional annotation analysis. But at least one-third genes for each gene set have not found the certain functional information. Simple sequence repeat (SSR), the basis of gene phase variation, was found abundant in the membrane or related genes of each unique gene set, which may facilitate their adaptation to variable host environments. Protein-protein interaction (PPI) analysis found at least five distinct PPI clusters in N. gonorrhoeae and four in N. meningitides, and 167 and 52 proteins with unknown function were contained within them, respectively.
Collapse
|
29
|
Welsch JA, Senders S, Essink B, Klein T, Smolenov I, Pedotti P, Barbi S, Verma B, Toneatto D. Breadth of coverage against a panel of 110 invasive disease isolates, immunogenicity and safety for 2 and 3 doses of an investigational MenABCWY vaccine in US adolescents - Results from a randomized, controlled, observer-blind phase II study. Vaccine 2018; 36:5309-5317. [PMID: 30061029 DOI: 10.1016/j.vaccine.2018.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neisseria meningitidis serogroups A, B, C, W and Y cause most meningococcal disease worldwide. An investigational MenABCWY vaccine combining serogroup B antigens and a meningococcal ACWY CRM197-glycoconjugate vaccine (MenACWY-CRM) could provide protection against all 5 serogroups. Complement mediated bactericidal activity induced by MenABCWY was tested against a panel of 110 randomly-selected serogroup B strains causing invasive disease in the US to evaluate the vaccine's breadth of coverage (BoC). METHODS We conducted this observer-blind study (NCT02140762) and its extension (NCT02285777) in 8 centers in the US. Adolescents aged 10-18 years were randomized (1:1) to receive either 3 MenABCWY doses (MenABCWY group), on a 0, 2, 6-month (M) schedule or a single MenACWY-CRM dose at M2 and placebo at 0,6-M (Control group). MenABCWY BoC was calculated as (1 - relative risk) × 100 (relative risk = ratio between the percentage of samples seronegative at 1:4 dilution against the selected strains in the MenABCWY vs Control group). BoC was determined at 1 M and 4 M after 2 and 3 doses, using an endogenous complement serum bactericidal assay. Immunogenicity and safety were assessed. RESULTS 301 and 189 adolescents were vaccinated in the parent and extension study, respectively. At 1 M post-vaccination, the BoC of MenABCWY across the 110 serogroup B strains was 67% (95%CI: 65-69) after 2 doses and 71% (95%CI: 69-73) after 3 doses. BoC decreased to 44% (95%CI: 41-47) and 51% (95%CI: 48-55) at 4 M after 2 and 3 MenABCWY doses, respectively. Robust immune responses to antigen-specific test strains for each serogroup were observed at all timepoints in the MenABCWY group. No reactogenicity or safety concerns arose during the study. CONCLUSION Two or 3 doses of MenABCWY showed similar BoC against the panel of invasive US serogroup B isolates and comparable immunogenicity against the antigen-specific test strains, with no safety concerns identified.
Collapse
Affiliation(s)
- Jo Anne Welsch
- GSK, 14200 Shady Grove Road, Rockville, MD 20850, United States.
| | - Shelly Senders
- Senders Pediatrics, 2054 South Green Road, South Euclid, OH 44121, United States.
| | - Brandon Essink
- Meridian Clinical Research, 3323 N 107th St, Omaha, NE 68134, United States.
| | - Thomas Klein
- Family Medicine East, Chtd, 1709 S Rock Rd, Wichita, KS 67207-5150, United States.
| | - Igor Smolenov
- GSK, Hullenbergweg 81-89, 1101 CL Amsterdam, The Netherlands.
| | - Paola Pedotti
- GSK, Hullenbergweg 81-89, 1101 CL Amsterdam, The Netherlands.
| | - Silvia Barbi
- GSK, Hullenbergweg 81-89, 1101 CL Amsterdam, The Netherlands.
| | - Bikash Verma
- GSK, 350 Massachusetts Ave, Cambridge, 02139 MA, United States.
| | | |
Collapse
|
30
|
Ma J, Wang Y, Xu N, Jin L, Liu J, Xing S, Li X. Potential large scale production of meningococcal vaccines by stable overexpression of fHbp in the rice seeds. Protein Expr Purif 2018; 152:1-6. [PMID: 29953946 DOI: 10.1016/j.pep.2018.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 06/16/2018] [Accepted: 06/24/2018] [Indexed: 10/28/2022]
Abstract
Factor H binding protein (fHbp) is the most promising vaccine candidate against serogroup B of Neisseria meningitidis which is a major cause of morbidity and mortality in children. In order to facilitate large scale production of a commercial vaccine, we previously used transgenic Arabidopsis thaliana, but plant-derived fHbp is still far away from a commercial vaccine due to less biomass production. Herein, we presented an alternative route for the production of recombinant fHbp from the seeds of transgenic rice. The OsrfHbp gene encoding recombinant fHbp fused protein was introduced into the genome of rice via Agrobacterium-mediated transformation. The both stable integration and transcription of the foreign OsrfHbp were confirmed by Southern blotting and RT-PCR analysis respectively. Further, the expression of fHbp protein was measured by immunoblotting analysis and quantified by ELISA. The results indicated that fHbp was successfully expressed and the highest yield of fHbp was 0.52 ± 0.03% of TSP in the transgenic rice seeds. The purified fHbp protein showed good antigenicity and immunogenicity in the animal model. The results of this experiment offer a novel approach for large-scale production of plant-derived commercial vaccine fHbp.
Collapse
Affiliation(s)
- Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China.
| | - Nuo Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Libo Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Jia Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, Jilin, China; Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Xiaokun Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, China; College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
31
|
Mubaiwa TD, Hartley-Tassell LE, Semchenko EA, Day CJ, Jennings MP, Seib KL. The Bexsero Neisseria meningitidis serogroup B vaccine antigen NHBA is a high-affinity chondroitin sulfate binding protein. Sci Rep 2018; 8:6512. [PMID: 29695781 PMCID: PMC5916922 DOI: 10.1038/s41598-018-24639-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterial pathogen that causes life threatening meningitis and septicemia. Neisseria Heparin Binding Antigen (NHBA) is an outer membrane protein that binds heparin and heparan sulfate and DNA. This protein is one of the four antigens in the meningococcal serogroup B vaccine Bexsero. In the current study, we sought to define the full glycan-binding repertoire of NHBA to better understand its role in meningococcal pathogenesis and vaccine efficacy. Glycan array analysis revealed binding to 28 structures by recombinant NHBA. Surface plasmon resonance was used to confirm the binding phenotype and to determine the affinity of the interactions. These studies revealed that the highest affinity binding of NHBA was with chondroitin sulfate (KD = 5.2 nM). This affinity is 10-fold higher than observed for heparin. Analysis of binding with well-defined disaccharides of the different chondroitin sulfate types demonstrated that the most preferred ligand has a sulfate at the 2 position of the GlcA/IdoA and 6 position of the GalNAc, which is an equivalent structure to chondroitin sulfate D. Chondroitin sulfate is widely expressed in human tissues, while chondroitin sulfate D is predominantly expressed in the brain and may constitute a new receptor structure for meningococci.
Collapse
Affiliation(s)
- Tsitsi D Mubaiwa
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | | | - Evgeny A Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
32
|
Immunogenicity and safety of one or two doses of the quadrivalent meningococcal vaccine MenACWY-TT given alone or with the 13-valent pneumococcal conjugate vaccine in toddlers: A phase III, open-label, randomised study. Vaccine 2018; 36:1908-1916. [PMID: 29503112 DOI: 10.1016/j.vaccine.2018.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND We evaluated the immunogenicity and safety of 1 and 2 doses of quadrivalent meningococcal serogroup A, C, W and Y tetanus toxoid-conjugate vaccine (MenACWY-TT) given alone or co-administered with 13-valent pneumococcal conjugate vaccine (PCV13) in toddlers. METHODS In this phase III, open-label, controlled, multicentre study (NCT01939158), healthy toddlers aged 12-14 months were randomised into 4 groups to receive 1 dose of MenACWY-TT at month (M) 0 (ACWY_1), 2 doses of MenACWY-TT at M0 and M2 (ACWY_2), MenACWY-TT and PCV13 at M0 (Co-ad), or PCV13 at M0 and MenACWY-TT at M2 (PCV13/ACWY). Immune responses were assessed 1 month post-each vaccination. Solicited and unsolicited symptoms were recorded for 4 and 31 days post-each vaccination, respectively; serious adverse events (SAEs) and new onset of chronic illnesses (NOCIs) up to M9 from first vaccination. RESULTS 802 toddlers were vaccinated. Post-dose 1 of MenACWY-TT, ≥92.8% of toddlers had rSBA titres ≥1:8, and ≥62.5% had hSBA titres ≥1:4 for each meningococcal serogroup. Post-dose 2 of MenACWY-TT, rSBA titres ≥1:8 were observed in ≥98.0% and hSBA titres ≥1:4 in ≥95.3% of toddlers. Percentages of toddlers with hSBA titres ≥1:4 were higher after 2 doses versus 1 dose of MenACWY-TT for MenW (97.1% versus 62.5-68.9%) and MenY (95.3% versus 64.3-67.6%). Non-inferiority of immune responses to co-administered MenACWY-TT and PCV13 over their separate administration was demonstrated. AEs incidence was comparable among groups. SAEs were reported for 4.9%, 5.1%, 5.5% and 7.5%, and NOCIs for 2.0%, 3.0%, 0.5% and 3.5% of toddlers in the ACWY_1, ACWY_2, Co-ad and PCV13/ACWY groups, respectively; 4 SAEs reported in 3 toddlers were vaccine-related. Two fatal vaccine-unrelated SAEs were reported. CONCLUSION MenACWY-TT was immunogenic when administered as a single dose at 12-14 months of age. A second dose in toddlers increased hSBA responses against MenW and MenY. MenACWY-TT and PCV13 can be co-administered without impairing the immunogenicity or safety profile of either vaccine.
Collapse
|
33
|
Weller RO, Sharp MM, Christodoulides M, Carare RO, Møllgård K. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathol 2018; 135:363-385. [PMID: 29368214 DOI: 10.1007/s00401-018-1809-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Abstract
Meninges that surround the CNS consist of an outer fibrous sheet of dura mater (pachymeninx) that is also the inner periosteum of the skull. Underlying the dura are the arachnoid and pia mater (leptomeninges) that form the boundaries of the subarachnoid space. In this review we (1) examine the development of leptomeninges and their role as barriers and facilitators in the foetal CNS. There are two separate CSF systems during early foetal life, inner CSF in the ventricles and outer CSF in the subarachnoid space. As the foramina of Magendi and Luschka develop, one continuous CSF system evolves. Due to the lack of arachnoid granulations during foetal life, it is most likely that CSF is eliminated by lymphatic drainage pathways passing through the cribriform plate and nasal submucosa. (2) We then review the fine structure of the adult human and rodent leptomeninges to establish their roles as barriers and facilitators for the movement of fluid, cells and pathogens. Leptomeningeal cells line CSF spaces, including arachnoid granulations and lymphatic drainage pathways, and separate elements of extracellular matrix from the CSF. The leptomeningeal lining facilitates the traffic of inflammatory cells within CSF but also allows attachment of bacteria such as Neisseria meningitidis and of tumour cells as CSF metastases. Single layers of leptomeningeal cells extend into the brain closely associated with the walls of arteries so that there are no perivascular spaces around arteries in the cerebral cortex. Perivascular spaces surrounding arteries in the white matter and basal ganglia relate to their two encompassing layers of leptomeninges. (3) Finally we examine the roles of ligands expressed by leptomeningeal cells for the attachment of inflammatory cells, bacteria and tumour cells as understanding these roles may aid the design of therapeutic strategies to manage developmental, autoimmune, infectious and neoplastic diseases relating to the CSF, the leptomeninges and the associated CNS.
Collapse
|
34
|
Price GA, Bash MC. Development of an FHbp-CTB holotoxin-like chimera and the elicitation of bactericidal antibodies against serogroup B Neisseria meningitidis. Vaccine 2018; 36:644-652. [PMID: 29287682 DOI: 10.1016/j.vaccine.2017.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/01/2017] [Accepted: 12/17/2017] [Indexed: 11/18/2022]
Abstract
The Neisseria meningitidis factor H binding protein (FHbp) is an important virulence factor and vaccine antigen contained in both USA licensed serogroup B meningococcal vaccines. Recent studies in human factor H (hFH) transgenic mice suggest that hFH-FHbp interactions lower FHbp-elicited immunogenicity. To provide tools with which to characterize and potentially improve FHbp immunogenicity, we developed an FHbp-cholera holotoxin-like chimera vaccine expression system in Escherichia coli that utilizes cholera toxin B (CTB) as both a scaffold and adjuvant for FHbp. We developed FHbp-CTB chimeras using a wild-type (WT) FHbp and a low hFH-binding FHbp mutant R41S. Both chimeras bound to GM1 ganglioside and were recognized by the FHbp-specific monoclonal antibody JAR4. The R41S mutant had greatly reduced hFH binding compared to the WT FHbp-CTB chimera. WT and R41S FHbp-CTB chimeric antigens were compared to equimolar amounts of FHbp admixed with CTB or FHbp alone in mouse immunogenicity studies. The chimeras were significantly more immunogenic than FHbp alone or mixed with CTB, and elicited bactericidal antibodies against a panel of MenB isolates. This study demonstrates a unique and simple method for studying FHbp immunogenicity. The chimeric approach may facilitate studies of other protein-based antigens targeting pathogenic Neisseria and lay groundwork for the development of new protein based vaccines against meningococcal and gonococcal disease.
Collapse
Affiliation(s)
- Gregory A Price
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Margaret C Bash
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
35
|
Fernández FJ, Gómez S, Vega MC. Pathogens' toolbox to manipulate human complement. Semin Cell Dev Biol 2017; 85:98-109. [PMID: 29221973 DOI: 10.1016/j.semcdb.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/15/2022]
Abstract
The surveillance and pathogen fighting functions of the complement system have evolved to protect mammals from life-threatening infections. In turn, pathogens have developed complex molecular mechanisms to subvert, divert and evade the effector functions of the complement. The study of complement immunoevasion by pathogens sheds light on their infection drivers, knowledge that is essential to implement therapies. At the same time, complement evasion also acts as a discovery ground that reveals important aspects of how complement works under physiological conditions. In recent years, complex interrelationships between infection insults and the onset of autoimmune and complement dysregulation diseases have led to propose that encounters with pathogens can act as triggering factors for disease. The correct management of these diseases involves the recognition of their triggering factors and the development and administration of complement-associated molecular therapies. Even more recently, unsuspected proteins from pathogens have been shown to possess moonlighting functions as virulence factors, raising the possibility that behind the first line of virulence factors there be many more pathogen proteins playing secondary, helping and supporting roles for the pathogen to successfully establish infections. In an era where antibiotics have a progressively reduced effect on the management and control of infectious diseases worldwide, knowledge on the mechanisms of pathogenic invasion and evasion look more necessary and pressing than ever.
Collapse
Affiliation(s)
| | - Sara Gómez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - M Cristina Vega
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
36
|
Toneatto D, Pizza M, Masignani V, Rappuoli R. Emerging experience with meningococcal serogroup B protein vaccines. Expert Rev Vaccines 2017; 16:433-451. [PMID: 28375029 DOI: 10.1080/14760584.2017.1308828] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The successful development of two broadly protective vaccines targeting Neisseria meningitidis serogroup B (MenB); 4CMenB and rLP2086, is the most significant recent advance in meningococcal disease prevention. Areas covered: Here we review the principles underlying the development of each vaccine and the novel methods used to estimate vaccine coverage. We update clinical and post-licensure experience with 4CMenB and rLP2086. Expert commentary: The immunogenicity and acceptable safety profile of 4CMenB and rLP2086 has been demonstrated in clinical trials. Continuing uncertainties exist around the appropriate age groups to be immunized, the degree and duration of efficacy, and the impact on nasopharyngeal carriage which has implications for strategies to interrupt transmission and maximize herd protection effects. Universal vaccination programs such as those undertaken in Quebec and the United Kingdom are providing important information on these issues. The potential for MenB vaccines to prevent infection by other serogroups appears promising, and the impact of MenB vaccines on other pathogenic neisserial species with similar surface proteins warrants further investigation.
Collapse
|
37
|
Emergence of a new Neisseria meningitidis clonal complex 11 lineage 11.2 clade as an effective urogenital pathogen. Proc Natl Acad Sci U S A 2017; 114:4237-4242. [PMID: 28373547 DOI: 10.1073/pnas.1620971114] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neisseria meningitidis (Nm) clonal complex 11 (cc11) lineage is a hypervirulent pathogen responsible for outbreaks of invasive meningococcal disease, including among men who have sex with men, and is increasingly associated with urogenital infections. Recently, clusters of Nm urethritis have emerged primarily among heterosexual males in the United States. We determined that nonencapsulated meningococcal isolates from an ongoing Nm urethritis outbreak among epidemiologically unrelated men in Columbus, Ohio, are linked to increased Nm urethritis cases in multiple US cities, including Atlanta and Indianapolis, and that they form a unique clade (the US Nm urethritis clade, US_NmUC). The isolates belonged to the cc11 lineage 11.2/ET-15 with fine type of PorA P1.5-1, 10-8; FetA F3-6; PorB 2-2 and express a unique FHbp allele. A common molecular fingerprint of US_NmUC isolates was an IS1301 element in the intergenic region separating the capsule ctr-css operons and adjacent deletion of cssA/B/C and a part of csc, encoding the serogroup C capsule polymerase. This resulted in the loss of encapsulation and intrinsic lipooligosaccharide sialylation that may promote adherence to mucosal surfaces. Furthermore, we detected an IS1301-mediated inversion of an ∼20-kb sequence near the cps locus. Surprisingly, these isolates had acquired by gene conversion the complete gonococcal denitrification norB-aniA gene cassette, and strains grow well anaerobically. The cc11 US_NmUC isolates causing urethritis clusters in the United States may have adapted to a urogenital environment by loss of capsule and gene conversion of the Neisseria gonorrheae norB-aniA cassette promoting anaerobic growth.
Collapse
|
38
|
Shi F, Zhang A, Zhu B, Gao Y, Xu L, Li Y, Yin Z, Li J, Xie N, Shao Z. Prevalence of factor H Binding Protein sub-variants among Neisseria meningitidis in China. Vaccine 2017; 35:2343-2350. [PMID: 28351732 DOI: 10.1016/j.vaccine.2017.03.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To study the prevalence of the fHbp genes in Neisseria meningitidis (N. meningitidis) isolates for further evaluation and development of serogroup B meningococcal vaccines in China. METHODS A panel of 1012 N. meningitidis strains was selected from the national culture collection from 1956 to 2016, according to the years of isolation, locations, and strain sources. These were tested by FHbp variant typing. Multi-locus sequence typing (MLST) was performed on 822 of these samples, including 242 strains from clinical strains and 580 carrier-derived strains. Analysis based on sequence types, serogroups, and FHbp variations were used to summarize the prevalence and characteristics of N. meningitidis. RESULTS There were 8 serogroups of N. meningitidis as well as a collection of nongroupable strains in this study. 1008 of 1012 N. meningitidis strains tested were positive for the fHbp gene. Serogroup A N. meningitidis (MenA) strains belonging to ST-1 and ST-5 clonal complexes harbored genes only encoding variant 1 (v1) FHbp. All MenW strains encoded v2 FHbp. 61.9% of clinical MenB strains were positive for v2 FHbp vs. 32.1% that were positive for v1. Among fHbp-positive carrier-derived MenB strains, v2 FHbp accounted for 90.8%. 79.7% of clinical MenC strains were positive for v1 FHbp and 20.3% were positive for v2 FHbp. Among carrier-derived MenC strains, v2 FHbp predominated. The number of major serogroups of N. meningitidis analyzed by MLST was 822, and the encoded FHbp showed CC- or ST-specific characteristics. CONCLUSION fHbp genes were detected in almost all N. meningitidis strains in this study. Therefore, it is possible that a vaccine against MenB or meningococci irrespective of serogroups, which includes FHbp, could be developed. Meningococcal vaccine development for China is a complex issue and these findings warrant further attention with respect to vaccine development.
Collapse
Affiliation(s)
- Fenglin Shi
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Aiyu Zhang
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Bingqing Zhu
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Yuan Gao
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li Xu
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yixing Li
- Department of National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zundong Yin
- Department of National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Junhong Li
- Department of National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Na Xie
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China; School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China; Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People's Republic of China
| | - Zhujun Shao
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
39
|
Fish AI, Riley SP, Singh B, Riesbeck K, Martinez JJ. The Rickettsia conorii Adr1 Interacts with the C-Terminus of Human Vitronectin in a Salt-Sensitive Manner. Front Cell Infect Microbiol 2017; 7:61. [PMID: 28299286 PMCID: PMC5331051 DOI: 10.3389/fcimb.2017.00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023] Open
Abstract
Spotted fever group (SFG) Rickettsia species are inoculated into the mammalian bloodstream by hematophagous arthropods. Once in the bloodstream and during dissemination, the survival of these pathogens is dependent upon the ability of these bacteria to evade serum-borne host defenses until a proper cellular host is reached. Rickettsia conorii expresses an outer membrane protein, Adr1, which binds the complement inhibitory protein vitronectin to promote resistance to the anti-bacterial effects of the terminal complement complex. Adr1 is predicted to consist of 8 transmembrane beta sheets that form a membrane-spanning barrel with 4 peptide loops exposed to the extracellular environment. We previously demonstrated that Adr1 derivatives containing either loop 3 or 4 are sufficient to bind Vn and mediate resistance to serum killing when expressed at the outer-membrane of E. coli. By expressing R. conorii Adr1 on the surface of non-pathogenic E. coli, we demonstrate that the interaction between Adr1 and vitronectin is salt-sensitive and cannot be interrupted by addition of heparin. Additionally, we utilized vitroenctin-derived peptides to map the minimal Adr1/vitronectin interaction to the C-terminal region of vitronectin. Furthermore, we demonstrate that specific charged amino acid residues located within loops 3 and 4 of Adr1 are critical for mediating resistance to complement-mediated killing. Interestingly, Adr1 mutants that were no longer sufficient to mediate resistance to serum killing still retained the ability to bind to Vn, suggesting that Adr1-Vn interactions responsible for resistance to serum killing are more complex than originally hypothesized. In summary, elucidation of the mechanisms governing Adr1-Vn binding will be useful to specifically target this protein-protein interaction for therapeutic intervention.
Collapse
Affiliation(s)
- Abigail I Fish
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine Baton Rouge, LA, USA
| | - Sean P Riley
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine Baton Rouge, LA, USA
| | - Birendra Singh
- Clinical Microbiology, Department of Translational Medicine, Lund University Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University Malmö, Sweden
| | - Juan J Martinez
- Vector-Borne Diseases Laboratories, Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine Baton Rouge, LA, USA
| |
Collapse
|
40
|
Lithgow KV, Hof R, Wetherell C, Phillips D, Houston S, Cameron CE. A defined syphilis vaccine candidate inhibits dissemination of Treponema pallidum subspecies pallidum. Nat Commun 2017; 8:14273. [PMID: 28145405 PMCID: PMC5296639 DOI: 10.1038/ncomms14273] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022] Open
Abstract
Syphilis is a prominent disease in low- and middle-income countries, and a re-emerging public health threat in high-income countries. Syphilis elimination will require development of an effective vaccine that has thus far remained elusive. Here we assess the vaccine potential of Tp0751, a vascular adhesin from the causative agent of syphilis, Treponema pallidum subsp. pallidum. Tp0751-immunized animals exhibit a significantly reduced bacterial organ burden upon T. pallidum challenge compared with unimmunized animals. Introduction of lymph nodes from Tp0751-immunized, T. pallidum-challenged animals to naive animals fails to induce infection, confirming sterile protection. These findings provide evidence that Tp0751 is a promising syphilis vaccine candidate. There are no vaccines for the prevention of syphilis, a disease caused by the bacterium Treponema pallidum subsp. pallidum. Here, the authors use an animal model of infection to show that immunization with the Tp0751 bacterial protein inhibits the pathogen's spread within the body.
Collapse
Affiliation(s)
- Karen V Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Rebecca Hof
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Charmaine Wetherell
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Drew Phillips
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
41
|
|
42
|
Hovingh ES, van den Broek B, Jongerius I. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion. Front Microbiol 2016; 7:2004. [PMID: 28066340 PMCID: PMC5167704 DOI: 10.3389/fmicb.2016.02004] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.
Collapse
Affiliation(s)
- Elise S. Hovingh
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| | - Bryan van den Broek
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
| | - Ilse Jongerius
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| |
Collapse
|
43
|
Parente R, Clark SJ, Inforzato A, Day AJ. Complement factor H in host defense and immune evasion. Cell Mol Life Sci 2016; 74:1605-1624. [PMID: 27942748 PMCID: PMC5378756 DOI: 10.1007/s00018-016-2418-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022]
Abstract
Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.
Collapse
Affiliation(s)
- Raffaella Parente
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Simon J Clark
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Antonio Inforzato
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy. .,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
44
|
Can we control all-cause meningococcal disease in Europe? Clin Microbiol Infect 2016; 22 Suppl 5:S103-S112. [DOI: 10.1016/j.cmi.2016.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/04/2016] [Accepted: 03/13/2016] [Indexed: 11/18/2022]
|
45
|
Edwards JL, Jennings MP, Apicella MA, Seib KL. Is gonococcal disease preventable? The importance of understanding immunity and pathogenesis in vaccine development. Crit Rev Microbiol 2016; 42:928-41. [PMID: 26805040 PMCID: PMC4958600 DOI: 10.3109/1040841x.2015.1105782] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022]
Abstract
Gonorrhea is a major, global public health problem for which there is no vaccine. The continuing emergence of antibiotic-resistant strains raises concerns that untreatable Neisseria gonorrhoeae may become widespread in the near future. Consequently, there is an urgent need for increased efforts towards the development of new anti-gonococcal therapeutics and vaccines, as well as suitable models for potential pre-clinical vaccine trials. Several current issues regarding gonorrhea are discussed herein, including the global burden of disease, the emergence of antibiotic-resistance, the status of vaccine development and, in particular, a focus on the model systems available to evaluate drug and vaccine candidates. Finally, alternative approaches to evaluate vaccine candidates are presented. Such approaches may provide valuable insights into the protective mechanisms, and correlates of protection, required to prevent gonococcal transmission, local infection and disease sequelae.
Collapse
Affiliation(s)
- Jennifer L. Edwards
- Department of Pediatrics, The Research Institute at Nationwide Children's Hospital and The Ohio State UniversityColumbus,
OH,
USA
| | | | | | - Kate L. Seib
- Institute for Glycomics, Griffith University,
Gold Coast,
Australia
| |
Collapse
|
46
|
Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. Complement component C3 - The "Swiss Army Knife" of innate immunity and host defense. Immunol Rev 2016; 274:33-58. [PMID: 27782325 PMCID: PMC5427221 DOI: 10.1111/imr.12500] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a preformed defense system, complement faces a delicate challenge in providing an immediate, forceful response to pathogens even at first encounter, while sparing host cells in the process. For this purpose, it engages a tightly regulated network of plasma proteins, cell surface receptors, and regulators. Complement component C3 plays a particularly versatile role in this process by keeping the cascade alert, acting as a point of convergence of activation pathways, fueling the amplification of the complement response, exerting direct effector functions, and helping to coordinate downstream immune responses. In recent years, it has become evident that nature engages the power of C3 not only to clear pathogens but also for a variety of homeostatic processes ranging from tissue regeneration and synapse pruning to clearing debris and controlling tumor cell progression. At the same time, its central position in immune surveillance makes C3 a target for microbial immune evasion and, if improperly engaged, a trigger point for various clinical conditions. In our review, we look at the versatile roles and evolutionary journey of C3, discuss new insights into the molecular basis for C3 function, provide examples of disease involvement, and summarize the emerging potential of C3 as a therapeutic target.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitrios C Mastellos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Piet Gros
- Utrecht University, Utrecht, The Netherlands
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Neisseria meningitidis factor H-binding protein bound to monoclonal antibody JAR5: implications for antibody synergy. Biochem J 2016; 473:4699-4713. [PMID: 27784765 PMCID: PMC6398935 DOI: 10.1042/bcj20160806] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022]
Abstract
Factor H-binding protein (fHbp) is an important antigen of Neisseria meningitidis that is capable of eliciting a robust protective immune response in humans. Previous studies on the interactions of fHbp with antibodies revealed that some anti-fHbp monoclonal antibodies that are unable to trigger complement-mediated bacterial killing in vitro are highly co-operative and become bactericidal if used in combination. Several factors have been shown to influence such co-operativity, including IgG subclass and antigen density. To investigate the structural basis of the anti-fHbp antibody synergy, we determined the crystal structure of the complex between fHbp and the Fab (fragment antigen-binding) fragment of JAR5, a specific anti-fHbp murine monoclonal antibody known to be highly co-operative with other monoclonal antibodies. We show that JAR5 is highly synergic with monoclonal antibody (mAb) 12C1, whose structure in complex with fHbp has been previously solved. Structural analyses of the epitopes recognized by JAR5 and 12C1, and computational modeling of full-length IgG mAbs of JAR5 and 12C1 bound to the same fHbp molecule, provide insights into the spatial orientation of Fc (fragment crystallizable) regions and into the possible implications for the susceptibility of meningococci to complement-mediated killing.
Collapse
|
48
|
Meningococcal carriage in children and young adults in the Philippines: a single group, cross-sectional study. Epidemiol Infect 2016; 145:126-132. [PMID: 27655066 PMCID: PMC9507336 DOI: 10.1017/s0950268816002119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This cross-sectional prevalence study investigates meningococcal carriage for the first time in a Southeast Asian population. Posterior pharyngeal swabs were collected between August 2013 and March 2014 from 937 healthy Filipinos aged 5-24 years attending school or university in Manila. Of these, 35 were found to be carriers giving an overall carriage prevalence of 3·7% [95% confidence interval (CI) 2·6-5·2]. Carriage was associated with age (P < 0·001) and was highest (9·0%, 95% CI 5·5-13·8) in subjects aged 10-14 years, but was comparatively low (<3%) in all other age groups considered. This suggests that an immunization programme in the Philippines designed to reduce carriage acquisition and induce herd immunity may require a vaccine dose before the age of 10 years. Serogroup B was most commonly carried (65·7%, 95% CI 47·8-80·9), with a small number of carriers for serogroups C, Y and W also present. Two individuals (5·7%, 95% CI 0·7-19·2) who were simultaneously carrying multiple serogroups were identified. This exploratory study provides valuable insight into the asymptomatic carriage of Neisseria meningitidis in a healthy subset of the Filipino population and illustrates the importance of generating local carriage data.
Collapse
|
49
|
Luo Y, Friese OV, Runnels HA, Khandke L, Zlotnick G, Aulabaugh A, Gore T, Vidunas E, Raso SW, Novikova E, Byrne E, Schlittler M, Stano D, Dufield RL, Kumar S, Anderson AS, Jansen KU, Rouse JC. The Dual Role of Lipids of the Lipoproteins in Trumenba, a Self-Adjuvanting Vaccine Against Meningococcal Meningitis B Disease. AAPS JOURNAL 2016; 18:1562-1575. [PMID: 27604766 DOI: 10.1208/s12248-016-9979-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/17/2016] [Indexed: 01/02/2023]
Abstract
Trumenba (bivalent rLP2086) is a vaccine licensed for the prevention of meningococcal meningitis disease caused by Neisseria meningitidis serogroup B (NmB) in individuals 10-25 years of age in the USA. The vaccine is composed of two factor H binding protein (fHbp) variants that were recombinantly expressed in Escherichia coli as native lipoproteins: rLP2086-A05 and rLP2086-B01. The vaccine was shown to induce potent bactericidal antibodies against a broad range of NmB isolates expressing fHbp that were different in sequence from the fHbp vaccine antigens. Here, we describe the characterization of the vaccine antigens including the elucidation of their structure which is characterized by two distinct motifs, the polypeptide domain and the N-terminal lipid moiety. In the vaccine formulation, the lipoproteins self-associate to form micelles driven by the hydrophobicity of the lipids and limited by the size of the folded polypeptides. The micelles help to increase the structural stability of the lipoproteins in the absence of bacterial cell walls. Analysis of the lipoproteins in Toll-like receptor (TLR) activation assays revealed their TLR2 agonist activity. This activity was lost with removal of the O-linked fatty acids, similar to removal of all lipids, demonstrating that this moiety plays an adjuvant role in immune activation. The thorough understanding of the structure and function of each moiety of the lipoproteins, as well as their relationship, lays the foundation for identifying critical parameters to guide vaccine development and manufacture.
Collapse
Affiliation(s)
- Yin Luo
- Pfizer Biotherapeutics Pharmaceutical Sciences, 1 Burtt Rd., Andover, Massachusetts, USA.
| | - Olga V Friese
- Pfizer Biotherapeutics Pharmaceutical Sciences, 700 Chesterfield Pkwy W, St. Louis, Missouri, USA
| | - Herbert A Runnels
- Pfizer Biotherapeutics Pharmaceutical Sciences, 700 Chesterfield Pkwy W, St. Louis, Missouri, USA
| | - Lakshmi Khandke
- Pfizer Vaccine Research and Development, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Gary Zlotnick
- Pfizer Vaccine Research and Development, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Ann Aulabaugh
- Pfizer Worldwide Research, 558 Eastern Point Rd., Groton, Connecticut, USA
| | - Thomas Gore
- Pfizer Biotherapeutics Pharmaceutical Sciences, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Eugene Vidunas
- Pfizer Vaccine Research and Development, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Stephen W Raso
- Pfizer Biotherapeutics Pharmaceutical Sciences, 1 Burtt Rd., Andover, Massachusetts, USA
| | - Elena Novikova
- Pfizer Vaccine Research and Development, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Emilia Byrne
- Pfizer Biotherapeutics Pharmaceutical Sciences, 700 Chesterfield Pkwy W, St. Louis, Missouri, USA
| | - Michael Schlittler
- Pfizer Biotherapeutics Pharmaceutical Sciences, 700 Chesterfield Pkwy W, St. Louis, Missouri, USA
| | - Donald Stano
- Pfizer Biotherapeutics Pharmaceutical Sciences, 700 Chesterfield Pkwy W, St. Louis, Missouri, USA
| | - Robert L Dufield
- Pfizer Biotherapeutics Pharmaceutical Sciences, 1 Burtt Rd., Andover, Massachusetts, USA
| | - Sandeep Kumar
- Pfizer Biotherapeutics Pharmaceutical Sciences, 700 Chesterfield Pkwy W, St. Louis, Missouri, USA
| | - Annaliesa S Anderson
- Pfizer Vaccine Research and Development, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Kathrin U Jansen
- Pfizer Vaccine Research and Development, 401 N. Middletown Rd., Pearl River, New York, USA
| | - Jason C Rouse
- Pfizer Biotherapeutics Pharmaceutical Sciences, 1 Burtt Rd., Andover, Massachusetts, USA.
| |
Collapse
|
50
|
Szewczyk J, Collet JF. The Journey of Lipoproteins Through the Cell: One Birthplace, Multiple Destinations. Adv Microb Physiol 2016; 69:1-50. [PMID: 27720009 DOI: 10.1016/bs.ampbs.2016.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial lipoproteins are a very diverse group of proteins characterized by the presence of an N-terminal lipid moiety that serves as a membrane anchor. Lipoproteins have a wide variety of crucial functions, ranging from envelope biogenesis to stress response. In Gram-negative bacteria, lipoproteins can be targeted to various destinations in the cell, including the periplasmic side of the cytoplasmic or outer membrane, the cell surface or the external milieu. The sorting mechanisms have been studied in detail in Escherichia coli, but exceptions to the rules established in this model bacterium exist in other bacteria. In this chapter, we will present the current knowledge on lipoprotein sorting in the cell. Our particular focus will be on the surface-exposed lipoproteins that appear to be much more common than previously assumed. We will discuss the different targeting strategies, provide numerous examples of surface-exposed lipoproteins and discuss the techniques used to assess their surface exposure.
Collapse
Affiliation(s)
- J Szewczyk
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - J-F Collet
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|