1
|
Barrio-Calvo M, Kofoed SV, Holste SC, Sørensen AB, Viborg N, Kringelum JV, Kleine-Kohlbrecher D, Steenmans CS, Thygesen CB, Rønø B, Friis S. Targeting neoantigens to APC-surface molecules improves the immunogenicity and anti-tumor efficacy of a DNA cancer vaccine. Front Immunol 2023; 14:1234912. [PMID: 37720215 PMCID: PMC10499626 DOI: 10.3389/fimmu.2023.1234912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Tumor-specific mutations generate neoepitopes unique to the cancer that can be recognized by the immune system, making them appealing targets for therapeutic cancer vaccines. Since the vast majority of tumor mutations are patient-specific, it is crucial for cancer vaccine designs to be compatible with individualized treatment strategies. Plasmid DNA vaccines have substantiated the immunogenicity and tumor eradication capacity of cancer neoepitopes in preclinical models. Moreover, early clinical trials evaluating personalized neoepitope vaccines have indicated favorable safety profiles and demonstrated their ability to elicit specific immune responses toward the vaccine neoepitopes. Methods By fusing in silico predicted neoepitopes to molecules with affinity for receptors on the surface of APCs, such as chemokine (C-C motif) ligand 19 (CCL19), we designed an APC-targeting cancer vaccine and evaluated their ability to induce T-cell responses and anti-tumor efficacy in the BALB/c syngeneic preclinical tumor model. Results In this study, we demonstrate how the addition of an antigen-presenting cell (APC) binding molecule to DNA-encoded cancer neoepitopes improves neoepitope-specific T-cell responses and the anti-tumor efficacy of plasmid DNA vaccines. Dose-response evaluation and longitudinal analysis of neoepitope-specific T-cell responses indicate that combining APC-binding molecules with the delivery of personalized tumor antigens holds the potential to improve the clinical efficacy of therapeutic DNA cancer vaccines. Discussion Our findings indicate the potential of the APC-targeting strategy to enhance personalized DNA cancer vaccines while acknowledging the need for further research to investigate its molecular mechanism of action and to translate the preclinical results into effective treatments for cancer patients.
Collapse
|
2
|
Werninghaus IC, Hinke DM, Fossum E, Bogen B, Braathen R. Neuraminidase delivered as an APC-targeted DNA vaccine induces protective antibodies against influenza. Mol Ther 2023; 31:2188-2205. [PMID: 36926694 PMCID: PMC10362400 DOI: 10.1016/j.ymthe.2023.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/01/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Conventional influenza vaccines focus on hemagglutinin (HA). However, antibody responses to neuraminidase (NA) have been established as an independent correlate of protection. Here, we introduced the ectodomain of NA into DNA vaccines that, as translated dimeric vaccine proteins, target antigen-presenting cells (APCs). The targeting was mediated by an single-chain variable fragment specific for major histocompatibility complex (MHC) class II, which is genetically linked to NA via a dimerization motif. A single immunization of BALB/c mice elicited strong and long-lasting NA-specific antibodies that inhibited NA enzymatic activity and reduced viral replication. Vaccine-induced NA immunity completely protected against a homologous influenza virus and out-competed NA immunity induced by a conventional inactivated virus vaccine. The protection was mainly mediated by antibodies, although NA-specific T cells also contributed. APC-targeting and antigen bivalency were crucial for vaccine efficacy. The APC-targeted vaccine was potent at low doses of DNA, indicating a dose-sparing effect. Similar results were obtained with NA vaccines that targeted different surface molecules on dendritic cells. Interestingly, the protective efficacy of NA as antigen compared favorably with HA and therefore ought to receive more attention in influenza vaccine research.
Collapse
Affiliation(s)
- Ina Charlotta Werninghaus
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway; Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway.
| | - Daniëla Maria Hinke
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway
| | - Even Fossum
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway
| | - Bjarne Bogen
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway; Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway
| | - Ranveig Braathen
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway; Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, 0372 Oslo, Norway.
| |
Collapse
|
3
|
In Vivo and Ex Vivo Gene Electrotransfer in Ophthalmological Disorders. Biomedicines 2022; 10:biomedicines10081889. [PMID: 36009435 PMCID: PMC9405572 DOI: 10.3390/biomedicines10081889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this document is to present an overview of gene electrotransfer in ophthalmological disorders. In order to ensure an adequate variety of the assessed studies, several electronic databases were considered and studies published between January 1998 and December 2021 were analysed. Three investigators carried out data extraction and analysis, focusing on both technical (i.e., electrical protocol, type of electrode, plasmid) and medical (i.e., type of study, threated disease) aspects and highlighting the main differences in terms of results obtained. Moreover, the IGEA experience in the project “Transposon-based, targeted ex vivo gene therapy to treat age-related macular degeneration” (TargetAMD) was reported in the results section. No clinical trial was found on international literature and on ClinicalTrials.gov. Twelve preclinical studies were found including in vivo and ex-vivo applications. The studied showed that electrotransfer could be very efficient for plasmid DNA transfection. Many attempts such as modification of the electric field, buffers and electrodes have been made and the optimization of electric field setting seems to be very important. Using this technique, gene replacement can be designed in cases of retinal inheritance or corneal disease and a wide range of human eye diseases could, in the future, benefitfrom these gene therapy technologies.
Collapse
|
4
|
Hinke DM, Andersen TK, Gopalakrishnan RP, Skullerud LM, Werninghaus IC, Grødeland G, Fossum E, Braathen R, Bogen B. Antigen bivalency of antigen-presenting cell-targeted vaccines increases B cell responses. Cell Rep 2022; 39:110901. [PMID: 35649357 DOI: 10.1016/j.celrep.2022.110901] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 04/09/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Antibodies are important for vaccine efficacy. Targeting antigens to antigen-presenting cells (APCs) increases antibody levels. Here, we explore the role of antigen valency in MHC class II (MHCII)-targeted vaccines delivered as DNA. We design heterodimeric proteins that carry either two identical (bivalent vaccines), or two different antigens (monovalent vaccines). Bivalent vaccines with two identical influenza hemagglutinins (HA) elicit higher amounts of anti-HA antibodies in mice than monovalent versions with two different HAs. Bivalent vaccines increase the levels of germinal center (GC) B cells and long-lived plasma cells. Only HA-bivalent vaccines completely protect mice against challenge with homologous influenza virus. Similar results are obtained with other antigens by targeting CD11c and Xcr1 on dendritic cells (DCs) or when administering the vaccine as protein with adjuvant. Bivalency probably increases B cell responses by cross-linking BCRs in readily observable DC-B cell synapses. These results are important for generating potent APC-targeted vaccines.
Collapse
Affiliation(s)
- Daniëla Maria Hinke
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Tor Kristian Andersen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | | | - Lise Madelene Skullerud
- Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | | | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Even Fossum
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway.
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway.
| |
Collapse
|
5
|
Andersen TK, Bodin J, Oftung F, Bogen B, Mjaaland S, Grødeland G. Pandemic Preparedness Against Influenza: DNA Vaccine for Rapid Relief. Front Immunol 2021; 12:747032. [PMID: 34691056 PMCID: PMC8531196 DOI: 10.3389/fimmu.2021.747032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 01/14/2023] Open
Abstract
The 2009 “swine flu” pandemic outbreak demonstrated the limiting capacity for egg-based vaccines with respect to global vaccine supply within a timely fashion. New vaccine platforms that efficiently can quench pandemic influenza emergences are urgently needed. Since 2009, there has been a profound development of new vaccine platform technologies with respect to prophylactic use in the population, including DNA vaccines. These vaccines are particularly well suited for global pandemic responses as the DNA format is temperature stable and the production process is cheap and rapid. Here, we show that by targeting influenza antigens directly to antigen presenting cells (APC), DNA vaccine efficacy equals that of conventional technologies. A single dose of naked DNA encoding hemagglutinin (HA) from influenza/A/California/2009 (H1N1), linked to a targeting moiety directing the vaccine to major histocompatibility complex class II (MHCII) molecules, raised similar humoral immune responses as the adjuvanted split virion vaccine Pandemrix, widely administered in the 2009 pandemic. Both vaccine formats rapidly induced serum antibodies that could protect mice already 8 days after a single immunization, in contrast to the slower kinetics of a seasonal trivalent inactivated influenza vaccine (TIV). Importantly, the DNA vaccine also elicited cytotoxic T-cell responses that reduced morbidity after vaccination, in contrast to very limited T-cell responses seen after immunization with Pandemrix and TIV. These data demonstrate that DNA vaccines has the potential as a single dose platform vaccine, with rapid protective effects without the need for adjuvant, and confirms the relevance of naked DNA vaccines as candidates for pandemic preparedness.
Collapse
Affiliation(s)
- Tor Kristian Andersen
- Department of Immunology and Transfusion Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Johanna Bodin
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Fredrik Oftung
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjarne Bogen
- Department of Immunology and Transfusion Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Siri Mjaaland
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gunnveig Grødeland
- Department of Immunology and Transfusion Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Immunology and Transfusion Medicine, Clinic for Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Pan J, Cui Z. Self-Assembled Nanoparticles: Exciting Platforms for Vaccination. Biotechnol J 2020; 15:e2000087. [PMID: 33411412 DOI: 10.1002/biot.202000087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Vaccination is successfully advanced to control several fatal diseases and improve human life expectancy. However, additional innovations are required in this field because there are no effective vaccines to prevent some infectious diseases. The shift from the attenuated or inactivated pathogens to safer but less immunogenic protein or peptide antigens has led to a search for effective antigen delivery carriers that can function as both antigen vehicles and intrinsic adjuvants. Among these carriers, self-assembled nanoparticles (SANPs) have shown great potential to be the best representative. For the nanoscale and multiple presentation of antigens, with accurate control over size, geometry, and functionality, these nanoparticles are assembled spontaneously and mimic pathogens, resulting in enhanced antigen presentation and increased cellular and humoral immunity responses. In addition, they may be applied through needle-free routes due to their adhesive ability, which gives them a great future in vaccination applications. This review provides an overview of various SANPs and their applications in prophylactic vaccines.
Collapse
Affiliation(s)
- Jingdi Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Induction of a local muscular dystrophy using electroporation in vivo: an easy tool for screening therapeutics. Sci Rep 2020; 10:11301. [PMID: 32647247 PMCID: PMC7347864 DOI: 10.1038/s41598-020-68135-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/09/2020] [Indexed: 01/19/2023] Open
Abstract
Intramuscular injection and electroporation of naked plasmid DNA (IMEP) has emerged as a potential alternative to viral vector injection for transgene expression into skeletal muscles. In this study, IMEP was used to express the DUX4 gene into mouse tibialis anterior muscle. DUX4 is normally expressed in germ cells and early embryo, and silenced in adult muscle cells where its pathological reactivation leads to Facioscapulohumeral muscular dystrophy. DUX4 encodes a potent transcription factor causing a large deregulation cascade. Its high toxicity but sporadic expression constitutes major issues for testing emerging therapeutics. The IMEP method appeared as a convenient technique to locally express DUX4 in mouse muscles. Histological analyses revealed well delineated muscle lesions 1-week after DUX4 IMEP. We have therefore developed a convenient outcome measure by quantification of the damaged muscle area using color thresholding. This method was used to characterize lesion distribution and to assess plasmid recirculation and dose–response. DUX4 expression and activity were confirmed at the mRNA and protein levels and through a quantification of target gene expression. Finally, this study gives a proof of concept of IMEP model usefulness for the rapid screening of therapeutic strategies, as demonstrated using antisense oligonucleotides against DUX4 mRNA.
Collapse
|
8
|
Zhao K, Rong G, Teng Q, Li X, Lan H, Yu L, Yu S, Jin Z, Chen G, Li Z. Dendrigraft poly-L-lysines delivery of DNA vaccine effectively enhances the immunogenic responses against H9N2 avian influenza virus infection in chickens. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 27:102209. [PMID: 32305593 DOI: 10.1016/j.nano.2020.102209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 02/03/2020] [Accepted: 03/27/2020] [Indexed: 11/28/2022]
Abstract
Biodegradable nanomaterials can protect antigens from degradation, promote cellular absorption, and enhance immune responses. We constructed a eukaryotic plasmid [pCAGGS-opti441-hemagglutinin (HA)] by inserting the optimized HA gene fragment of H9N2 AIV into the pCAGGS vector. The pCAGGS-opti441-HA/DGL was developed through packaging the pCAGGS-opti441-HA with dendrigraft poly-l-lysines (DGLs). DGL not only protected the pCAGGS-opti441-HA from degradation, but also exhibited high transfection efficiency. Strong cellular immune responses were induced in chickens immunized with the pCAGGS-opti441-HA/DGL. The levels of IFN-γ and IL-2, and lymphocyte transformation rate of the vaccinated chickens increased at the third week post the immunization. For the vaccinated chickens, T lymphocytes were activated and proliferated, the numbers of CD3+CD4+ and CD4+/CD8+ increased, and the chickens were protected completely against H9N2 AIV challenge. This study provides a method for the development of novel AIV vaccines, and a theoretical basis for the development of safe and efficient gene delivery carriers.
Collapse
Affiliation(s)
- Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, China.
| | - Guangyu Rong
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, China; Department of Avian Infectious Disease, and Innovation Team for Pathogenic Ecology Research on Animal Influenza, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Qiaoyang Teng
- Department of Avian Infectious Disease, and Innovation Team for Pathogenic Ecology Research on Animal Influenza, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Xuesong Li
- Department of Avian Infectious Disease, and Innovation Team for Pathogenic Ecology Research on Animal Influenza, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Hailing Lan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, China; Department of Avian Infectious Disease, and Innovation Team for Pathogenic Ecology Research on Animal Influenza, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Lu Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, China
| | - Shuang Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin, China
| | - Guangping Chen
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA.
| | - Zejun Li
- Department of Avian Infectious Disease, and Innovation Team for Pathogenic Ecology Research on Animal Influenza, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China.
| |
Collapse
|
9
|
Zhang J, He J, Li J, Zhou Q, Chen H, Zheng Z, Chen Q, Chen D, Chen J. The immunogenicity and protective immunity of multi-epitopes DNA prime-protein boost vaccines encoding Amastin-Kmp-11, Kmp11-Gp63 and Amastin-Gp63 against visceral leishmaniasis. PLoS One 2020; 15:e0230381. [PMID: 32176727 PMCID: PMC7075555 DOI: 10.1371/journal.pone.0230381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/28/2020] [Indexed: 11/27/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most fatal form of leishmaniasis if left untreated and 50,000 to 90,000 new cases of VL occur worldwide each year. Although various vaccines had been studied in animal models, none of them was eligible to prevent human from infections. In this study, according to the silico analysis of Leishmania Amastin, Kmp-11 and Gp63 protein, dominant epitope sequences of these proteins were selected and linked to construct dominant multi-epitopes DNA and protein vaccines (Amastin-Kmp-11, Amastin-Gp63 and Kmp-11-Gp63) against VL. BALB/c mice were immunized with a DNA prime-protein boost immunization strategy and challenged with a new Leishmania parasite strain isolated from a VL patient. After immunization, the results including specific antibody titers, IL-4 and TNF-α levels, and CD4 and CD8 T cell proportion suggested the potent immunogenicity of the three vaccines. After infection, the results of spleen parasite burdens in the three vaccine groups were significantly lower than those of control groups, and the parasite reduction rates of Amastin-Kmp-11, Amastin-Gp63 and Kmp-11-Gp63 groups were 89.38%, 91.01% and 88.42%, respectively. Spleen smear observation and liver histopathological changes showed that all vaccine groups could produce significant immunoprotection against VL and Amastin-Gp63 vaccine was the best. In conclusion, our work demonstrated that the three dominant multi-epitopes Amastin-Kmp-11, Amastin-Gp63 and Kmp-11-Gp63 DNA prime-protein boost vaccines might be new vaccine candidates for VL, and the Amastin-Gp63 vaccine have best efficacy.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Han Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qiwei Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Abstract
Electrotransfection (ET) is a nonviral method for delivery of various types of molecules into cells both in vitro and in vivo. Close to 90 clinical trials that involve the use of ET have been performed, and approximately half of them are related to cancer treatment. Particularly, ET is an attractive technique for cancer immunogene therapy because treatment of cells with electric pulses alone can induce immune responses to solid tumors, and the responses can be further enhanced by ET of plasmid DNA (pDNA) encoding therapeutic genes. Compared to other gene delivery methods, ET has several unique advantages. It is relatively inexpensive, flexible, and safe in clinical applications, and introduces only naked pDNA into cells without the use of additional chemicals or viruses. However, the efficiency of ET is still low, partly because biological mechanisms of ET in cells remain elusive. In previous studies, it was believed that pDNA entered the cells through transient pores created by electric pulses. As a result, the technique is commonly referred to as electroporation. However, recent discoveries have suggested that endocytosis plays an important role in cellular uptake and intracellular transport of electrotransfected pDNA. This review will discuss current progresses in the study of biological mechanisms underlying ET and future directions of research in this area. Understanding the mechanisms of pDNA transport in cells is critical for the development of new strategies for improving the efficiency of gene delivery in tumors.
Collapse
Affiliation(s)
- Lisa D Cervia
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Fan Yuan
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
11
|
Anderson AM, Baranowska-Hustad M, Braathen R, Grodeland G, Bogen B. Simultaneous Targeting of Multiple Hemagglutinins to APCs for Induction of Broad Immunity against Influenza. THE JOURNAL OF IMMUNOLOGY 2018; 200:2057-2066. [PMID: 29427414 DOI: 10.4049/jimmunol.1701088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/05/2018] [Indexed: 12/27/2022]
Abstract
There is a need for vaccines that can confer broad immunity against highly diverse pathogens, such as influenza. The efficacy of conventional influenza vaccines is dependent on accurate matching of vaccines to circulating strains, but slow and limited production capacities increase the probability of vaccine mismatches. In contrast, DNA vaccination allows for rapid production of vaccines encoding novel influenza Ags. The efficacy of DNA vaccination is greatly improved if the DNA-encoded vaccine proteins target APCs. In this study, we have used hemagglutinin (HA) genes from each of six group 1 influenza viruses (H5, H6, H8, H9, H11, and H13), and inserted these into a DNA vaccine format that induces delivery of the HA protein Ags to MHC class II molecules on APCs. Each of the targeted DNA vaccines induced high titers of strain-specific anti-HA Abs. Importantly, when the six HA vaccines were mixed and injected simultaneously, the strain-specific Ab titers were maintained. In addition, the vaccine mixture induced Abs that cross-reacted with strains not included in the vaccine mixture (H1) and could protect mice against a heterosubtypic challenge with the H1 viruses A/Puerto Rico/8/1934 (H1N1) and A/California/07/2009 (H1N1). The data suggest that vaccination with a mixture of HAs could be useful for induction of strain-specific immunity against strains represented in the mixture and, in addition, confer some degree of cross-protection against unrelated influenza strains.
Collapse
Affiliation(s)
- Ane Marie Anderson
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway.,Oslo University Hospital, 0027 Oslo, Norway; and
| | - Marta Baranowska-Hustad
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway.,Oslo University Hospital, 0027 Oslo, Norway; and
| | - Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway.,Oslo University Hospital, 0027 Oslo, Norway; and
| | - Gunnveig Grodeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway; .,Oslo University Hospital, 0027 Oslo, Norway; and
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway.,Oslo University Hospital, 0027 Oslo, Norway; and.,Centre for Immune Regulation, University of Oslo, 0027 Oslo, Norway
| |
Collapse
|
12
|
Ibañez LI, Caldevilla CA, Paredes Rojas Y, Mattion N. Genetic and subunit vaccines based on the stem domain of the equine influenza hemagglutinin provide homosubtypic protection against heterologous strains. Vaccine 2018; 36:1592-1598. [PMID: 29454522 DOI: 10.1016/j.vaccine.2018.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
H3N8 influenza virus strains have been associated with infectious disease in equine populations throughout the world. Although current vaccines for equine influenza stimulate a protective humoral immune response against the surface glycoproteins, disease in vaccinated horses has been frequently reported, probably due to poor induction of cross-reactive antibodies against non-matching strains. This work describes the performance of a recombinant protein vaccine expressed in prokaryotic cells (ΔHAp) and of a genetic vaccine (ΔHAe), both based on the conserved stem region of influenza hemagglutinin (HA) derived from A/equine/Argentina/1/93 (H3N8) virus. Sera from mice inoculated with these immunogens in different combinations and regimes presented reactivity in vitro against highly divergent influenza virus strains belonging to phylogenetic groups 1 and 2 (H1 and H3 subtypes, respectively), and conferred robust protection against a lethal challenge with both the homologous equine strain (100%) and the homosubtypic human strain A/Victoria/3/75 (H3N2) (70-100%). Animals vaccinated with the same antigens but challenged with the human strain A/PR/8/34 (H1N1), belonging to the phylogenetic group 1, were not protected (0-33%). Combination of protein and DNA immunogens showed higher reactivity to non-homologous strains than protein alone, although all vaccines were permissive for lung infection.
Collapse
Affiliation(s)
- Lorena Itatí Ibañez
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| | - Cecilia Andrea Caldevilla
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| | - Yesica Paredes Rojas
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| | - Nora Mattion
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
13
|
Deloizy C, Fossum E, Barnier-Quer C, Urien C, Chrun T, Duval A, Codjovi M, Bouguyon E, Maisonnasse P, Hervé PL, Barc C, Boulesteix O, Pezant J, Chevalier C, Collin N, Dalod M, Bogen B, Bertho N, Schwartz-Cornil I. The anti-influenza M2e antibody response is promoted by XCR1 targeting in pig skin. Sci Rep 2017; 7:7639. [PMID: 28794452 PMCID: PMC5550447 DOI: 10.1038/s41598-017-07372-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/07/2017] [Indexed: 11/10/2022] Open
Abstract
XCR1 is selectively expressed on a conventional dendritic cell subset, the cDC1 subset, through phylogenetically distant species. The outcome of antigen-targeting to XCR1 may therefore be similar across species, permitting the translation of results from experimental models to human and veterinary applications. Here we evaluated in pigs the immunogenicity of bivalent protein structures made of XCL1 fused to the external portion of the influenza virus M2 proton pump, which is conserved through strains and a candidate for universal influenza vaccines. Pigs represent a relevant target of such universal vaccines as pigs can be infected by swine, human and avian strains. We found that cDC1 were the only cell type labeled by XCR1-targeted mCherry upon intradermal injection in pig skin. XCR1-targeted M2e induced higher IgG responses in seronegative and seropositive pigs as compared to non-targeted M2e. The IgG response was less significantly enhanced by CpG than by XCR1 targeting, and CpG did not further increase the response elicited by XCR1 targeting. Monophosphoryl lipid A with neutral liposomes did not have significant effect. Thus altogether M2e-targeting to XCR1 shows promises for a trans-species universal influenza vaccine strategy, possibly avoiding the use of classical adjuvants.
Collapse
Affiliation(s)
- Charlotte Deloizy
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France.,GenoSafe, 1 bis rue de l'International, 91000, Evry, France
| | - Even Fossum
- K.G. Jebsen Center for Influenza Vaccine Research, University of Oslo and Oslo University Hospital, 0027, Oslo, Norway
| | - Christophe Barnier-Quer
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Céline Urien
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Tiphany Chrun
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Audrey Duval
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France.,Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), Inserm, UVSQ, Institut Pasteur, Université Paris-Saclay, 78180, Montigny-le-Bretonneux, France
| | - Maelle Codjovi
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France.,Genfit, 885 Avenue Eugène Avinée, 59120, Loos, France
| | - Edwige Bouguyon
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Pauline Maisonnasse
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France.,CEA - Université Paris Sud 11 - INSERM U1184, Immunology of Viral infections and Autoimmune Diseases (IMVA), IDMIT infrastructure, 92265 Fontenay-aux-Roses, France
| | - Pierre-Louis Hervé
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France.,DBV Technologies, 177-181 avenue Pierre Brossolette, 92120, Montrouge, France
| | - Céline Barc
- UE1277-INRA, Plate-Forme d'Infectiologie Expérimentale - PFIE, 37380, Nouzilly, France
| | - Olivier Boulesteix
- UE1277-INRA, Plate-Forme d'Infectiologie Expérimentale - PFIE, 37380, Nouzilly, France
| | - Jérémy Pezant
- UE1277-INRA, Plate-Forme d'Infectiologie Expérimentale - PFIE, 37380, Nouzilly, France
| | - Christophe Chevalier
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Nicolas Collin
- Vaccine Formulation Laboratory, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Marc Dalod
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, 13288, Marseille, France
| | - Bjarne Bogen
- K.G. Jebsen Center for Influenza Vaccine Research, University of Oslo and Oslo University Hospital, 0027, Oslo, Norway.,Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, 0424, Oslo, Norway
| | - Nicolas Bertho
- VIM-INRA-Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
14
|
Grodeland G, Fredriksen AB, Løset GÅ, Vikse E, Fugger L, Bogen B. Antigen Targeting to Human HLA Class II Molecules Increases Efficacy of DNA Vaccination. THE JOURNAL OF IMMUNOLOGY 2016; 197:3575-3585. [PMID: 27671110 DOI: 10.4049/jimmunol.1600893] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
Abstract
It has been difficult to translate promising results from DNA vaccination in mice to larger animals and humans. Previously, DNA vaccines encoding proteins that target Ag to MHC class II (MHC-II) molecules on APCs have been shown to induce rapid, enhanced, and long-lasting Ag-specific Ab titers in mice. In this study, we describe two novel DNA vaccines that as proteins target HLA class II (HLA-II) molecules. These vaccine proteins cross-react with MHC-II molecules in several species of larger mammals. When tested in ferrets and pigs, a single DNA delivery with low doses of the HLA-II-targeted vaccines resulted in rapid and increased Ab responses. Importantly, painless intradermal jet delivery of DNA was as effective as delivery by needle injection followed by electroporation. As an indication that the vaccines could also be useful for human application, HLA-II-targeted vaccine proteins were found to increase human CD4+ T cell responses by a factor of ×103 in vitro. Thus, targeting of Ag to MHC-II molecules may represent an attractive strategy for increasing efficacy of DNA vaccines in larger animals and humans.
Collapse
Affiliation(s)
- Gunnveig Grodeland
- K.G. Jebsen Center for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway;
| | | | - Geir Åge Løset
- Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway.,Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Elisabeth Vikse
- K.G. Jebsen Center for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway
| | - Lars Fugger
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; and.,Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Bjarne Bogen
- K.G. Jebsen Center for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway; .,Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway
| |
Collapse
|
15
|
Lambert L, Kinnear E, McDonald JU, Grodeland G, Bogen B, Stubsrud E, Lindeberg MM, Fredriksen AB, Tregoning JS. DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8(+) T Cell Responses, Enabling Faster Resolution of Influenza Disease. Front Immunol 2016; 7:321. [PMID: 27602032 PMCID: PMC4993793 DOI: 10.3389/fimmu.2016.00321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/10/2016] [Indexed: 01/14/2023] Open
Abstract
Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine-induced protection. While it is clear that antibodies play a protective role, vaccine-induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells, we used a DNA vaccine that encodes antigen dimerized to an immune cell targeting module. Immunizing CB6F1 mice with the DNA vaccine in a heterologous prime-boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared with protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC-targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting, we compared the response between BALB/c, C57BL/6 mice, and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not, and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that, in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines.
Collapse
Affiliation(s)
- Laura Lambert
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St. Mary's Campus, Imperial College London , London , UK
| | - Ekaterina Kinnear
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St. Mary's Campus, Imperial College London , London , UK
| | - Jacqueline U McDonald
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St. Mary's Campus, Imperial College London , London , UK
| | - Gunnveig Grodeland
- K. G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Bjarne Bogen
- K. G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway; Centre for Immune Regulation, Institute for Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | | | | | - John S Tregoning
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St. Mary's Campus, Imperial College London , London , UK
| |
Collapse
|