1
|
Perdiguero B, Hauser A, Gómez CE, Peterhoff D, Sideris E, Sorzano CÓS, Wilmschen S, Schaber M, Stengel L, Asbach B, Ding S, Von Laer D, Levy Y, Pantaleo G, Kimpel J, Esteban M, Wagner R. Potency and durability of T and B cell immune responses after homologous and heterologous vector delivery of a trimer-stabilized, membrane-displayed HIV-1 clade ConC Env protein. Front Immunol 2023; 14:1270908. [PMID: 38045703 PMCID: PMC10690772 DOI: 10.3389/fimmu.2023.1270908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction The generation of an HIV-1 vaccine able to induce long-lasting protective immunity remains a main challenge. Here, we aimed to modify next-generation soluble, prefusion-stabilized, close-to-native, glycan-engineered clade C gp140 envelope (Env) trimers (sC23v4 KIKO and ConCv5 KIKO) for optimal display on the cell surface following homologous or heterologous vector delivery. Methods A combination of the following modifications scored best regarding the preservation of closed, native-like Env trimer conformation and antigenicity when using a panel of selected broadly neutralizing (bnAb) and non-neutralizing (nnAb) monoclonal antibodies for flow cytometry: i) replacing the natural cleavage site with a native flexible linker and introducing a single amino acid substitution to prevent CD4 binding (*), ii) fusing a heterologous VSV-G-derived transmembrane moiety to the gp140 C-terminus, and iii) deleting six residues proximal to the membrane. Results When delivering membrane-tethered sC23v4 KIKO* and ConCv5 KIKO* via DNA, VSV-GP, and NYVAC vectors, the two native-like Env trimers provide differential antigenicity profiles. Whereas such patterns were largely consistent among the different vectors for either Env trimer, the membrane-tethered ConCv5 KIKO* trimer adopted a more closed and native-like structure than sC23v4 KIKO*. In immunized mice, VSV-GP and NYVAC vectors expressing the membrane-tethered ConCv5 KIKO* administered in prime/boost combination were the most effective regimens for the priming of Env-specific CD4 T cells among all tested combinations. The subsequent booster administration of trimeric ConCv5 KIKO* Env protein preserved the T cell activation levels between groups. The evaluation of the HIV-1-specific humoral responses induced in the different immunization groups after protein boosts showed that the various prime/boost protocols elicited broad and potent antibody responses, preferentially of a Th1-associated IgG2a subclass, and that the obtained antibody levels remained high at the memory phase. Discussion In summary, we provide a feasible strategy to display multiple copies of native-like Env trimers on the cell surface, which translates into efficient priming of sustained CD4+ T cell responses after vector delivery as well as broad, potent, and sustained antibody responses following booster immunizations with the homologous, prefusion-stabilized, close-to-native ConCv5 KIKO* gp140 Env trimer.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alexandra Hauser
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Elefthéria Sideris
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit and Computational Genomics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sarah Wilmschen
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marion Schaber
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Laura Stengel
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Song Ding
- EuroVacc Foundation, Lausanne, Switzerland
| | - Dorothee Von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yves Levy
- Vaccine Research Institute (VRI), Université Paris-Est Créteil, Faculté de Médicine, Institut national de la santé et de la recherche médicale (INSERM) U955, Créteil, France
- Institut national de la santé et de la recherche médicale (INSERM) U955, Equipe 16, Créteil, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Henri-Mondor Albert-Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses, Créteil, France
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Janine Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Perdiguero B, Asbach B, Gómez CE, Köstler J, Barnett SW, Koutsoukos M, Weiss DE, Cristillo AD, Foulds KE, Roederer M, Montefiori DC, Yates NL, Ferrari G, Shen X, Sawant S, Tomaras GD, Sato A, Fulp WJ, Gottardo R, Ding S, Heeney JL, Pantaleo G, Esteban M, Wagner R. Early and Long-Term HIV-1 Immunogenicity Induced in Macaques by the Combined Administration of DNA, NYVAC and Env Protein-Based Vaccine Candidates: The AUP512 Study. Front Immunol 2022; 13:939627. [PMID: 35935978 PMCID: PMC9354927 DOI: 10.3389/fimmu.2022.939627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
To control HIV infection there is a need for vaccines to induce broad, potent and long-term B and T cell immune responses. With the objective to accelerate and maintain the induction of substantial levels of HIV-1 Env-specific antibodies and, at the same time, to enhance balanced CD4 and CD8 T cell responses, we evaluated the effect of concurrent administration of MF59-adjuvanted Env protein together with DNA or NYVAC vectors at priming to establish if early administration of Env leads to early induction of antibody responses. The primary goal was to assess the immunogenicity endpoint at week 26. Secondary endpoints were (i) to determine the quality of responses with regard to RV144 correlates of protection and (ii) to explore a potential impact of two late boosts. In this study, five different prime/boost vaccination regimens were tested in rhesus macaques. Animals received priming immunizations with either NYVAC or DNA alone or in combination with Env protein, followed by NYVAC + protein or DNA + protein boosts. All regimens induced broad, polyfunctional and well-balanced CD4 and CD8 T cell responses, with DNA-primed regimens eliciting higher response rates and magnitudes than NYVAC-primed regimens. Very high plasma binding IgG titers including V1/V2 specific antibodies, modest antibody-dependent cellular cytotoxicity (ADCC) and moderate neutralization activity were observed. Of note, early administration of the MF59-adjuvanted Env protein in parallel with DNA priming leads to more rapid elicitation of humoral responses, without negatively affecting the cellular responses, while responses were rapidly boosted after repeated immunizations, indicating the induction of a robust memory response. In conclusion, our findings support the use of the Env protein component during priming in the context of an heterologous immunization regimen with a DNA and/or NYVAC vector as an optimized immunization protocol against HIV infection.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII ), Madrid, Spain
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII ), Madrid, Spain
| | - Josef Köstler
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | | | - Marguerite Koutsoukos
- Department of Product Development, GlaxoSmithKline (GSK) Vaccines, Rixensart, Belgium
| | - Deborah E. Weiss
- Department of Immunobiology, Advanced BioScience Laboratories (ABL) Inc., Rockville, MD, United States
| | - Anthony D. Cristillo
- Department of Immunobiology, Advanced BioScience Laboratories (ABL) Inc., Rockville, MD, United States
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David C. Montefiori
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Nicole L. Yates
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Guido Ferrari
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Xiaoying Shen
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Sheetal Sawant
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Alicia Sato
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - William J. Fulp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Biomedical Data Sciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Translational Data Science, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Song Ding
- EuroVacc Foundation EuroVacc Programme Coordinator, Lausanne, Switzerland
| | - Jonathan L. Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII ), Madrid, Spain
- *Correspondence: Mariano Esteban, ; Ralf Wagner,
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Mariano Esteban, ; Ralf Wagner,
| |
Collapse
|
3
|
Richert L, Lelièvre JD, Lacabaratz C, Hardel L, Hocini H, Wiedemann A, Lucht F, Poizot-Martin I, Bauduin C, Diallo A, Rieux V, Rouch E, Surenaud M, Lefebvre C, Foucat E, Tisserand P, Guillaumat L, Durand M, Hejblum B, Launay O, Thiébaut R, Lévy Y. T Cell Immunogenicity, Gene Expression Profile, and Safety of Four Heterologous Prime-Boost Combinations of HIV Vaccine Candidates in Healthy Volunteers: Results of the Randomized Multi-Arm Phase I/II ANRS VRI01 Trial. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2663-2674. [PMID: 35613727 DOI: 10.4049/jimmunol.2101076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Heterologous prime-boost strategies are of interest for HIV vaccine development. The order of prime-boost components could be important for the induction of T cell responses. In this phase I/II multi-arm trial, three vaccine candidates were used as prime or boost: modified vaccinia Ankara (MVA) HIV-B (coding for Gag, Pol, Nef); HIV LIPO-5 (five lipopeptides from Gag, Pol, Nef); DNA GTU-MultiHIV B (coding for Rev, Nef, Tat, Gag, Env gp160 clade B). Healthy human volunteers (n = 92) were randomized to four groups: 1) MVA at weeks 0/8 + LIPO-5 at weeks 20/28 (M/L); 2) LIPO-5 at weeks 0/8 + MVA at weeks 20/28 (L/M); 3) DNA at weeks 0/4/12 + LIPO-5 at weeks 20/28 (G/L); 4) DNA at weeks 0/4/12 + MVA at weeks 20/28 (G/M). The frequency of IFN-γ-ELISPOT responders at week 30 was 33, 43, 0, and 74%, respectively. Only MVA-receiving groups were further analyzed (n = 62). Frequency of HIV-specific cytokine-positive (IFN-γ, IL-2, or TNF-α) CD4+ T cells increased significantly from week 0 to week 30 (median change of 0.06, 0.11, and 0.10% for M/L, L/M, and G/M, respectively), mainly after MVA vaccinations, and was sustained until week 52. HIV-specific CD8+ T cell responses increased significantly at week 30 in M/L and G/M (median change of 0.02 and 0.05%). Significant whole-blood gene expression changes were observed 2 wk after the first MVA injection, regardless of its use as prime or boost. An MVA gene signature was identified, including 86 genes mainly related to cell cycle pathways. Three prime-boost strategies led to CD4+ and CD8+ T cell responses and to a whole-blood gene expression signature primarily due to their MVA HIV-B component.
Collapse
Affiliation(s)
- Laura Richert
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Inria SISTM Team, Talence, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Jean-Daniel Lelièvre
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- Groupe Henri-Mondor Albert-Chenevier, AP-HP, Créteil, France
| | - Christine Lacabaratz
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Lucile Hardel
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Hakim Hocini
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Aurélie Wiedemann
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Frédéric Lucht
- CHU de Saint Etienne, Saint-Priest-en-Jarez, France
- Université Jean Monnet and Université de Lyon, Saint-Etienne, France
| | - Isabelle Poizot-Martin
- Aix-Marseille Université, APHM, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, APHM Sainte-Marguerite, Service d'Immuno-Hématologie Clinique, Marseille, France
| | - Claire Bauduin
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | | | - Véronique Rieux
- Vaccine Research Institute, Créteil, France
- INSERM-ANRS, Paris, France
| | - Elodie Rouch
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Mathieu Surenaud
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Cécile Lefebvre
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Emile Foucat
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Pascaline Tisserand
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Lydia Guillaumat
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Mélany Durand
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Inria SISTM Team, Talence, France
- Vaccine Research Institute, Créteil, France
| | - Boris Hejblum
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Inria SISTM Team, Talence, France
- Vaccine Research Institute, Créteil, France
| | - Odile Launay
- CIC 1417 F-CRIN I-REIVAC, INSERM, Hôpital Cochin, AP-HP, Paris, France; and
- Université Paris Descartes, Paris, France
| | - Rodolphe Thiébaut
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Inria SISTM Team, Talence, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | | |
Collapse
|
4
|
Rühl J, Leung CS, Münz C. Vaccination against the Epstein-Barr virus. Cell Mol Life Sci 2020; 77:4315-4324. [PMID: 32367191 PMCID: PMC7223886 DOI: 10.1007/s00018-020-03538-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) was the first human tumor virus being discovered and remains to date the only human pathogen that can transform cells in vitro. 55 years of EBV research have now brought us to the brink of an EBV vaccine. For this purpose, recombinant viral vectors and their heterologous prime-boost vaccinations, EBV-derived virus-like particles and viral envelope glycoprotein formulations are explored and are discussed in this review. Even so, cell-mediated immune control by cytotoxic lymphocytes protects healthy virus carriers from EBV-associated malignancies, antibodies might be able to prevent symptomatic primary infection, the most likely EBV-associated pathology against which EBV vaccines will be initially tested. Thus, the variety of EBV vaccines reflects the sophisticated life cycle of this human tumor virus and only vaccination in humans will finally be able to reveal the efficacy of these candidates. Nevertheless, the recently renewed efforts to develop an EBV vaccine and the long history of safe adoptive T cell transfer to treat EBV-associated malignancies suggest that this oncogenic γ-herpesvirus can be targeted by immunotherapies. Such vaccination should ideally implement the very same immune control that protects healthy EBV carriers.
Collapse
Affiliation(s)
- Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Carol S Leung
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
5
|
Valdés I, Lazo L, Hermida L, Guillén G, Gil L. Can Complementary Prime-Boost Immunization Strategies Be an Alternative and Promising Vaccine Approach Against Dengue Virus? Front Immunol 2019; 10:1956. [PMID: 31507591 PMCID: PMC6718459 DOI: 10.3389/fimmu.2019.01956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/02/2019] [Indexed: 12/27/2022] Open
Abstract
Dengue is one of the most important diseases transmitted by mosquitoes. Dengvaxia®, a vaccine registered in several countries, cannot be administered to non-immune individuals and children younger than 9 years old, due to safety reasons. There are two vaccine candidates in phase 3 efficacy trials, but their registration date is completely unknown at this moment. So, the development of new vaccines or vaccine strategies continues to be a priority for the WHO. This work reviews some complementary prime-boost immunization studies against important human pathogens. Additionally, it reviews the results obtained using this regimen of immunization against dengue virus as a potential alternative approach for finding a safe and efficient vaccine. Finally, the main elements associated with this strategy are also discussed. The generation of new strategies of vaccination against dengue virus, must be directed to reduce the risk of increasing viral load through sub-neutralizing antibodies and it must be also directed to induce a polyfunctional T cell response. Complementary prime-boost immunization strategies could emerge as an interesting approach to induce solid immunity or at least to reduce viral load after natural infection, avoiding severe dengue. Subunit vaccine could be safe and attractive antigens for this strategy, especially proteins including B, and T-cells epitopes for inducing humoral and cellular immune responses, which can play an important role controlling the disease.
Collapse
Affiliation(s)
- Iris Valdés
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Laura Lazo
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Lisset Hermida
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillén
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Lázaro Gil
- Vaccine Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
6
|
Priming with a Potent HIV-1 DNA Vaccine Frames the Quality of Immune Responses prior to a Poxvirus and Protein Boost. J Virol 2019; 93:JVI.01529-18. [PMID: 30429343 DOI: 10.1128/jvi.01529-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022] Open
Abstract
The use of heterologous immunization regimens and improved vector systems has led to increases in immunogenicity of HIV-1 vaccine candidates in nonhuman primates. In order to resolve interrelations between different delivery modalities, three different poxvirus boost regimens were compared. Three groups of rhesus macaques were each primed with the same DNA vaccine encoding Gag, Pol, Nef, and gp140. The groups were then boosted with either the vaccinia virus strain NYVAC or a variant with improved replication competence in human cells, termed NYVAC-KC. The latter was administered either by scarification or intramuscularly. Finally, macaques were boosted with adjuvanted gp120 protein to enhance humoral responses. The regimen elicited very potent CD4+ and CD8+ T cell responses in a well-balanced manner, peaking 2 weeks after the boost. T cells were broadly reactive and polyfunctional. All animals exhibited antigen-specific humoral responses already after the poxvirus boost, which further increased following protein administration. Polyclonal reactivity of IgG antibodies was highest against HIV-1 clade C Env proteins, with considerable cross-reactivity to other clades. Substantial effector functional activities (antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated virus inhibition) were observed in serum obtained after the last protein boost. Notably, major differences between the groups were absent, indicating that the potent priming induced by the DNA vaccine initially framed the immune responses in such a way that the subsequent boosts with NYVAC and protein led only to an increase in the response magnitudes without skewing the quality. This study highlights the importance of selecting the best combination of vector systems in heterologous prime-boost vaccination regimens.IMPORTANCE The evaluation of HIV vaccine efficacy trials indicates that protection would most likely correlate with a polyfunctional immune response involving several effector functions from all arms of the immune system. Heterologous prime-boost regimens have been shown to elicit vigorous T cell and antibody responses in nonhuman primates that, however, qualitatively and quantitatively differ depending on the respective vector systems used. The present study evaluated a DNA prime and poxvirus and protein boost regimen and compared how two poxvirus vectors with various degrees of replication capacity and two different delivery modalities-conventional intramuscular delivery and percutaneous delivery by scarification-impact several immune effectors. It was found that despite the different poxvirus boosts, the overall immune responses in the three groups were similar, suggesting the potent DNA priming as the major determining factor of immune responses. These findings emphasize the importance of selecting optimal priming agents in heterologous prime-boost vaccination settings.
Collapse
|
7
|
Modulation of Vaccine-Induced CD4 T Cell Functional Profiles by Changes in Components of HIV Vaccine Regimens in Humans. J Virol 2018; 92:JVI.01143-18. [PMID: 30209165 DOI: 10.1128/jvi.01143-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
To date, six vaccine strategies have been evaluated in clinical trials for their efficacy at inducing protective immune responses against HIV infection. However, only the ALVAC-HIV/AIDSVAX B/E vaccine (RV144 trial) has demonstrated protection, albeit modestly (31%; P = 0.03). One potential correlate of protection was a low-frequency HIV-specific CD4 T cell population with diverse functionality. Although CD4 T cells, particularly T follicular helper (Tfh) cells, are critical for effective antibody responses, most studies involving HIV vaccines have focused on humoral immunity or CD8 T cell effector responses, and little is known about the functionality and frequency of vaccine-induced CD4 T cells. We therefore assessed responses from several phase I/II clinical trials and compared them to responses to natural HIV-1 infection. We found that all vaccines induced a lower magnitude of HIV-specific CD4 T cell responses than that observed for chronic infection. Responses differed in functionality, with a CD40 ligand (CD40L)-dominated response and more Tfh cells after vaccination, whereas chronic HIV infection provoked tumor necrosis factor alpha (TNF-α)-dominated responses. The vaccine delivery route further impacted CD4 T cells, showing a stronger Th1 polarization after dendritic cell delivery than after intramuscular vaccination. In prime/boost regimens, the choice of prime and boost influenced the functional profile of CD4 T cells to induce more or less polyfunctionality. In summary, vaccine-induced CD4 T cell responses differ remarkably between vaccination strategies, modes of delivery, and boosts and do not resemble those induced by chronic HIV infection. Understanding the functional profiles of CD4 T cells that best facilitate protective antibody responses will be critical if CD4 T cell responses are to be considered a clinical trial go/no-go criterion.IMPORTANCE Only one HIV-1 candidate vaccine strategy has shown protection, albeit marginally (31%), against HIV-1 acquisition, and correlates of protection suggested that a multifunctional CD4 T cell immune response may be important for this protective effect. Therefore, the functional phenotypes of HIV-specific CD4 T cell responses induced by different phase I and phase II clinical trials were assessed to better show how different vaccine strategies influence the phenotype and function of HIV-specific CD4 T cell immune responses. The significance of this research lies in our comprehensive comparison of the compositions of the T cell immune responses to different HIV vaccine modalities. Specifically, our work allows for the evaluation of vaccination strategies in terms of their success at inducing Tfh cell populations.
Collapse
|
8
|
Sauermann U, Radaelli A, Stolte-Leeb N, Raue K, Bissa M, Zanotto C, Krawczak M, Tenbusch M, Überla K, Keele BF, De Giuli Morghen C, Sopper S, Stahl-Hennig C. Vector Order Determines Protection against Pathogenic Simian Immunodeficiency Virus Infection in a Triple-Component Vaccine by Balancing CD4 + and CD8 + T-Cell Responses. J Virol 2017; 91:e01120-17. [PMID: 28904195 PMCID: PMC5686736 DOI: 10.1128/jvi.01120-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
An effective AIDS vaccine should elicit strong humoral and cellular immune responses while maintaining low levels of CD4+ T-cell activation to avoid the generation of target cells for viral infection. The present study investigated two prime-boost regimens, both starting vaccination with single-cycle immunodeficiency virus, followed by two mucosal boosts with either recombinant adenovirus (rAd) or fowlpox virus (rFWPV) expressing SIVmac239 or SIVmac251 gag/pol and env genes, respectively. Finally, vectors were switched and systemically administered to the reciprocal group of animals. Only mucosal rFWPV immunizations followed by systemic rAd boost significantly protected animals against a repeated low-dose intrarectal challenge with pathogenic SIVmac251, resulting in a vaccine efficacy (i.e., risk reduction per exposure) of 68%. Delayed viral acquisition was associated with higher levels of activated CD8+ T cells and Gag-specific gamma interferon (IFN-γ)-secreting CD8+ cells, low virus-specific CD4+ T-cell responses, and low Env antibody titers. In contrast, the systemic rFWPV boost induced strong virus-specific CD4+ T-cell activity. rAd and rFWPV also induced differential patterns of the innate immune responses, thereby possibly shaping the specific immunity. Plasma CXCL10 levels after final immunization correlated directly with virus-specific CD4+ T-cell responses and inversely with the number of exposures to infection. Also, the percentage of activated CD69+ CD8+ T cells correlated with the number of exposures to infection. Differential stimulation of the immune response likely provided the basis for the diverging levels of protection afforded by the vaccine regimen.IMPORTANCE A failed phase II AIDS vaccine trial led to the hypothesis that CD4+ T-cell activation can abrogate any potentially protective effects delivered by vaccination or promote acquisition of the virus because CD4+ T helper cells, required for an effective immune response, also represent the target cells for viral infection. We compared two vaccination protocols that elicited similar levels of Gag-specific immune responses in rhesus macaques. Only the animal group that had a low level of virus-specific CD4+ T cells in combination with high levels of activated CD8+ T cells was significantly protected from infection. Notably, protection was achieved despite the lack of appreciable Env antibody titers. Moreover, we show that both the vector and the route of immunization affected the level of CD4+ T-cell responses. Thus, mucosal immunization with FWPV-based vaccines should be considered a potent prime in prime-boost vaccination protocols.
Collapse
Affiliation(s)
- Ulrike Sauermann
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Nicole Stolte-Leeb
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Katharina Raue
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Klaus Überla
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Sieghart Sopper
- Clinic for Hematology and Oncology, Medical University Innsbruck, Tyrolean Cancer Research Center, Innsbruck, Austria
| | | |
Collapse
|