1
|
Jia WF, Wang AP, Wu Z, Lei XN, Cheng YT, Zhu SY. Current status of recombinant duck enteritis virus vector vaccine research. Front Vet Sci 2025; 12:1453150. [PMID: 39974164 PMCID: PMC11836020 DOI: 10.3389/fvets.2025.1453150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
Duck enteritis virus (DEV), the pathogen of duck viral enteritis, belongs to the α-herpesvirus subfamily. Like other herpesviruses, it has a large genome with multiple non-coding and non-essential regions for viral replication. It is suitable as a live virus vector for inserting and expressing antigenic genes from other pathogens to develop multivalent vaccines. With the advancement of molecular biology research and experimental technology, genetic modification of the DEV genome has matured, leading to the successful construction of recombinant DEV live vector vaccines. These vaccines have demonstrated the ability to resist DEV and other pathogens, showing potential as recombinant viral vaccine vectors and playing a crucial role in the development of new avian vaccines. This article provides an overview of the progress of research on recombinant vaccines using DEV as the vector. It includes the biological characteristics of DEV and its advantages and limitations as a vaccine vector, methods for constructing recombinant DEV, the technical platform for efficiently building recombinant DEV, factors affecting the immune protection efficacy of recombinant DEV, and the application of recombinant DEV in vaccine development. Aiming to provide a reference for the development of duck enteritis virus vector-based vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | - Shan-Yuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| |
Collapse
|
2
|
Radaelli A, Zanotto C, Brambilla C, Adami T, De Giuli Morghen C. Enhanced Expression of the L1R Gene of Vaccinia Virus by the tPA Signal Sequence Inserted in a Fowlpox-Based Recombinant Vaccine. Vaccines (Basel) 2024; 12:1115. [PMID: 39460282 PMCID: PMC11511345 DOI: 10.3390/vaccines12101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The use of Vaccinia virus (VACV) as a preventive vaccine against variola, the etiological agent of smallpox, led to the eradication of smallpox as a human disease. The L1 protein, a myristylated transmembrane protein present on the surface of mature virions, plays a significant role in infection and morphogenesis, is well-conserved in all orthopoxviruses, and is the target of neutralizing antibodies. DNA recombinant vaccines expressing this protein were successfully used, but they showed lower efficacy in non-human and human primates when used alone, and viral-vectored fowlpox vaccines were already proved to increase immunogenicity when used as a boost. Here, we constructed a novel fowlpox-based recombinant (FPtPA-L1R), in which the tissue plasminogen activator signal sequence was linked to the 5' end of the L1R gene to drive the L1 protein into the cellular secretion pathway. FPtPA-L1R expresses a functional heterologous protein that can be immunoprecipitated by hyperimmune rabbit serum. The protein shows cytoplasmic and membrane subcellular localizations and long-lasting expression in CEF, non-human primate Vero and human MRC-5 cells. The tissue plasminogen activator signal sequence can thus contribute significantly to the expression of the L1 protein and may enhance the immunogenicity of a putative DNA/FP prime-boost vaccine.
Collapse
Affiliation(s)
- Antonia Radaelli
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy; (A.R.); (C.B.); (T.A.)
- Department of Pharmacy, Faculty of Pharmacy, Catholic University “Our Lady of Good Counsel”, Rr. Dritan Hoxha, 123, 1001 Tirana, Albania;
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy; (A.R.); (C.B.); (T.A.)
| | - Chiara Brambilla
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy; (A.R.); (C.B.); (T.A.)
| | - Tommaso Adami
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy; (A.R.); (C.B.); (T.A.)
| | - Carlo De Giuli Morghen
- Department of Pharmacy, Faculty of Pharmacy, Catholic University “Our Lady of Good Counsel”, Rr. Dritan Hoxha, 123, 1001 Tirana, Albania;
| |
Collapse
|
3
|
Deng L, Liu C, Li L, Hao P, Wang M, Jin N, Yin R, Du S, Li C. Genomic characteristics of an avipoxvirus 282E4 strain. Virus Res 2023; 336:199218. [PMID: 37678517 PMCID: PMC10507152 DOI: 10.1016/j.virusres.2023.199218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Avipoxvirus 282E4 strain was extensively applied into recombinant vaccine vector to prevent other infectious diseases. However, little information on the genomic background, functional and genetic evolutionary of the isolate 282E4 strain was clarified. The results showed that the linear genome of avipoxvirus 282E4 was 308,826 bp, containing 313 open reading frames (ORFs) and 12 new predicted ORFs. The 282E4 strain appears to encode two novel thymidine kinase proteins and two TGF-beta-like proteins that may be associated with the suppression of the host's antiviral response. Avipoxvirus 282E4 also encodes 57 ankyrin repeat proteins and 5 variola B22R-like proteins, which composed 7% of the avipoxvirus 282E4 genome. GO and KEGG analysis further revealed that 12 ORFs participate in viral transcription process, 7 ORFs may function during DNA repair, replication and biological synthesis, and ORF 208 is involved in the process of virus life cycle. Interestingly, phylogenetic analysis based on concatenated sequences p4b and DNA polymerase of avipoxviruses gene demonstrates that avipoxvirus 282E4 strain is divergent from known FWPV isolates and is similar to shearwater poxvirus (SWPV-1) that belongs to the CNPV-like virus. Sequencing avipoxvirus 282E4 is a significant step to judge the genetic position of avipoxviruses within the larger Poxviridae phylogenetic tree and provide a new insight into the genetic background of avipoxvirus 282E4 and interspecies transmission of poxviruses, meanwhile, explanation of gene function provides theoretical foundation for vaccine design with 282E4 strain as skeleton.
Collapse
Affiliation(s)
- Lingcong Deng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Cunxia Liu
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Immunity and Diagnosis of Poultry Diseases, Jinan, 250100, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Maopeng Wang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Ronglan Yin
- Academy of Animal Science and Veterinary Medicine in Jilin Province, Changchun, 130062, China.
| | - Shouwen Du
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Chang Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
4
|
Abstract
The different technology platforms used to make poultry vaccines are reviewed. Vaccines based on classical technologies are either live attenuated or inactivated vaccines. Genetic engineering is applied to design by deletion, mutation, insertion, or chimerization, genetically modified target microorganisms that are used either as live or inactivated vaccines. Other vaccine platforms are based on one or a few genes of the target pathogen agent coding for proteins that can induce a protective immune response ("protective genes"). These genes can be expressed in vitro to produce subunit vaccines. Alternatively, vectors carrying these genes in their genome or nucleic acid-based vaccines will induce protection by in vivo expression of these genes in the vaccinated host. Properties of these different types of vaccines, including advantages and limitations, are reviewed, focusing mainly on vaccines targeting viral diseases and on technologies that succeeded in market authorization.
Collapse
|
5
|
Fernandes AO, Barros GS, Batista MVA. Metatranscriptomics Analysis Reveals Diverse Viral RNA in Cutaneous Papillomatous Lesions of Cattle. Evol Bioinform Online 2022; 18:11769343221083960. [PMID: 35633934 PMCID: PMC9133864 DOI: 10.1177/11769343221083960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine papillomavirus (BPV) is associated with bovine papillomatosis, a disease that forms benign warts in epithelial tissues, as well as malignant lesions. Previous studies have detected a co-infection between BPV and other viruses, making it likely that these co-infections could influence disease progression. Therefore, this study aimed to identify and annotate viral genes in cutaneous papillomatous lesions of cattle. Sequences were obtained from the GEO database, and an RNA-seq computational pipeline was used to analyze 3 libraries from bovine papillomatous lesions. In total, 25 viral families were identified, including Poxviridae, Retroviridae, and Herpesviridae. All libraries shared similarities in the viruses and genes found. The viral genes shared similarities with BPV genes, especially for functions as virion entry pathway, malignant progression by apoptosis suppression and immune system control. Therefore, this study presents relevant data extending the current knowledge regarding the viral microbiome in BPV lesions and how other viruses could affect this disease.
Collapse
Affiliation(s)
- Adriana O Fernandes
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Gerlane S Barros
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marcus VA Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
6
|
Gao L, Zheng S, Wang Y. The Evasion of Antiviral Innate Immunity by Chicken DNA Viruses. Front Microbiol 2021; 12:771292. [PMID: 34777325 PMCID: PMC8581555 DOI: 10.3389/fmicb.2021.771292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
The innate immune system constitutes the first line of host defense. Viruses have evolved multiple mechanisms to escape host immune surveillance, which has been explored extensively for human DNA viruses. There is growing evidence showing the interaction between avian DNA viruses and the host innate immune system. In this review, we will survey the present knowledge of chicken DNA viruses, then describe the functions of DNA sensors in avian innate immunity, and finally discuss recent progresses in chicken DNA virus evasion from host innate immune responses.
Collapse
Affiliation(s)
- Li Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Zanotto C, Paolini F, Radaelli A, De Giuli Morghen C. Construction of a recombinant avipoxvirus expressing the env gene of Zika virus as a novel putative preventive vaccine. Virol J 2021; 18:50. [PMID: 33663531 PMCID: PMC7931497 DOI: 10.1186/s12985-021-01519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/19/2021] [Indexed: 12/03/2022] Open
Abstract
Background Zika virus (ZIKV) has been declared a public health emergency that requires development of an effective vaccine, as it might represent an international threat. Methods Here, two novel DNA-based (pVAXzenv) and fowlpox-based (FPzenv) recombinant putative vaccine candidates were constructed that contained the cPrME genes of ZIKV. The env gene inserted into the fowlpox vector was verified for correct transgene expression by Western blotting and by immunofluorescence in different cell lines. The production of virus-like particles as a result of env gene expression was also demonstrated by electron microscopy. BALB/c mice were immunosuppressed with dexamethasone and immunized following a prime–boost strategy in a heterologous protocol where pVAXzenv was followed by FPzenv, to evaluate the immunogenicity of the Env protein. The mice underwent a challenge with an epidemic ZIKV after the last boost. Results These data show that the ZIKV Env protein was correctly expressed in both normal human lung fibroblasts (MRC-5 cells) and green monkey kidney (Vero) cells infected with FPzenv, and that the transgene expression lasted for more than 2 weeks. After mucosal administration of FPzenv, the immunized mice showed specific and significantly higher humoral responses compared to the control mice. However, virus neutralizing antibodies were not detected using plaque reduction assays. Conclusions Although BALB/c mice appear to be an adequate model for ZIKV infection, as it mimics the natural mild infection in human beings, inadequate immune suppression seemed to occur by dexamethasone and different immune suppression strategies should be applied before challenge to reveal any protection of the mice.
Collapse
Affiliation(s)
- Carlo Zanotto
- Laboratory of Molecular Virology and Recombinant Vaccine Development, Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy
| | - Francesca Paolini
- HPV-UNIT, Laboratory of Virology, Regina Elena National Cancer Institute, Via delle Messi d'Oro, 156, 00158, Rome, Italy
| | - Antonia Radaelli
- Laboratory of Molecular Virology and Recombinant Vaccine Development, Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy.
| | | |
Collapse
|
8
|
RAJASEKARAN RANJANI, KIRUBAHARAN JJOHN, SHILPA P, VIDHYA M, RAJALAKSHMI S. Viral 2A-peptides mediate continuous transcription and self-cleavage of multiple heterologous genes in fowlpox virus vector. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i9.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Applicability of viral 2A-peptides in generation of multi-cistronic transcripts to deliver separate self-cleaved proteins is well established. However, the use of viral 2A-peptides in fowlpox virus vector construction to co-express multiple heterologous genes has not been explored. To evaluate the same, a recombinant transfer plasmid pJFWPVt was constructed through two intermediate plasmid constructs, pJF7F9 and pJFHNGFP. The construction of pJF7F9 involved cloning of F7 and F9 genes of FWPV into pCI-neo with modifications in the F7-F9 intergenic region. For the construction of pJFHNGFP, a synthetic DNA adapter consisting of one synthetic early late promoter (PE/L), two viral 2A-peptides (P2A and T2A) and three multiple cloning sites (MCS1, MCS2 and MCS3) was synthesized chemically and was cloned into pUC19 to obtain pJFHNGFPi. Heterologous genes fusion (F) and haemagglutininneuraminidase (HN) of Avian Avulavirus-1 (AAv1) and marker gene AcGFP were cloned sequentially into MCS1, MCS2 and MCS3 of pJFHNGFPi to obtain pJFHNGFP. The insert (PE/L-F-P2A-HN-T2A-AcGFP) in pJFHNGFP was cloned into pJF7F9 to obtain pJFWPVt, which upon transfection in FWPV infected chicken embryo fibroblast (CEF) cells resulted in fluorescence. This confirmed the expression of AcGFP and the continuous transcription ability of viral 2A-peptides. Further, western blotting of CEF pellet showed separate protein bands of F and HN protein at 66 kDa and 74 kDa respectively, which confirmed the self-cleaving ability of viral 2A-peptides. Herein, in FWPV vector construction, continuous transcription and self-cleaving ability of viral 2A-peptides in FWPV vector construction was confirmed. This warrants scope for future viral 2A-peptide based FWPV vector construction.
Collapse
|
9
|
Gibson MS, Steyn A, Kealy D, Kaspers B, Fife MS. Molecular cloning and characterisation of chicken IL-18 binding protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103850. [PMID: 32918930 PMCID: PMC7661785 DOI: 10.1016/j.dci.2020.103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The human IL-1 receptor family is comprised of 11 membrane bound or soluble receptors and the IL-18 binding protein (IL-18BP). These receptors are dispersed across seven genomic loci, with the majority at a single locus. Direct orthologues were identified in the chicken at conserved genomic loci; however, the IL-18BP remained absent from the first four builds of the chicken genome sequence. Subsequent assemblies identified the gene at a locus syntenic with mammals; however, these predicted sequences differed between genome builds and contained multiple errors. A partial IL-18BP-like sequence in the NCBI EST database was used to clone the full-length cDNA. A splice variant, which lacks the exon that encodes part of the signal peptide, was also cloned. Human IL-18BP is differentially spliced to produce a number of variants, which are all secreted. By contrast, the spliced chicken isoform was predicted to be intracellular, and we identified similar variants with the same exon missing in a limited number of divergent vertebrate species. Mammalian and viral IL-18BPs inhibit IL-18 activity by directly binding to this cytokine. Full-length and intracellular chicken IL-18BPs were equally effective at inhibiting IL-18-mediated IFN-γ release from an avian B-cell line. Analysis of the predicted chIL-18BP protein sequence revealed two crucial residues, which account for 50% of the binding affinity between human IL-18 and IL-18BP, are conserved in the chicken and a fowlpox-encoded homologue, fpv214. This suggests specific fowlpox viruses used in humans as a vaccine vector have the potential to dampen anti-viral host immune responses.
Collapse
Affiliation(s)
- Mark S Gibson
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | | | - David Kealy
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York, UK
| | - Bernd Kaspers
- Department of Veterinary Science, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mark S Fife
- The Pirbright Institute, Pirbright, Woking, UK; Aviagen Ltd, Newbridge, UK.
| |
Collapse
|
10
|
Viral Vector Vaccines against Bluetongue Virus. Microorganisms 2020; 9:microorganisms9010042. [PMID: 33375723 PMCID: PMC7823852 DOI: 10.3390/microorganisms9010042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Bluetongue virus (BTV), the prototype member of the genus Orbivirus (family Reoviridae), is the causative agent of an important livestock disease, bluetongue (BT), which is transmitted via biting midges of the genus Culicoides. To date, up to 29 serotypes of BTV have been described, which are classified as classical (BTV 1–24) or atypical (serotypes 25–27), and its distribution has been expanding since 1998, with important outbreaks in the Mediterranean Basin and devastating incursions in Northern and Western Europe. Classical vaccine approaches, such as live-attenuated and inactivated vaccines, have been used as prophylactic measures to control BT through the years. However, these vaccine approaches fail to address important matters like vaccine safety profile, effectiveness, induction of a cross-protective immune response among serotypes, and implementation of a DIVA (differentiation of infected from vaccinated animals) strategy. In this context, a wide range of recombinant vaccine prototypes against BTV, ranging from subunit vaccines to recombinant viral vector vaccines, have been investigated. This article offers a comprehensive outline of the live viral vectors used against BTV.
Collapse
|
11
|
Giotis ES, Laidlaw SM, Bidgood SR, Albrecht D, Burden JJ, Robey RC, Mercer J, Skinner MA. Modulation of Early Host Innate Immune Response by an Avipox Vaccine Virus' Lateral Body Protein. Biomedicines 2020; 8:E634. [PMID: 33352813 PMCID: PMC7766033 DOI: 10.3390/biomedicines8120634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
The avian pathogen fowlpox virus (FWPV) has been successfully used as a vaccine vector in poultry and humans, but relatively little is known about its ability to modulate host antiviral immune responses in these hosts, which are replication-permissive and nonpermissive, respectively. FWPV is highly resistant to avian type I interferon (IFN) and able to completely block the host IFN-response. Microarray screening of host IFN-regulated gene expression in cells infected with 59 different, nonessential FWPV gene knockout mutants revealed that FPV184 confers immunomodulatory capacity. We report that the FPV184-knockout virus (FWPVΔ184) induces the cellular IFN response as early as 2 h postinfection. The wild-type, uninduced phenotype can be rescued by transient expression of FPV184 in FWPVΔ184-infected cells. Ectopic expression of FPV184 inhibited polyI:C activation of the chicken IFN-β promoter and IFN-α activation of the chicken Mx1 promoter. Confocal and correlative super-resolution light and electron microscopy demonstrated that FPV184 has a functional nuclear localisation signal domain and is packaged in the lateral bodies of the virions. Taken together, these results provide a paradigm for a late poxvirus structural protein packaged in the lateral bodies, capable of suppressing IFN induction early during the next round of infection.
Collapse
Affiliation(s)
- Efstathios S. Giotis
- Section of Virology, School of Medicine, St Mary’s Campus, Imperial College, London W2 1PG, UK; (S.M.L.); (R.C.R.); (M.A.S.)
- School of Life Sciences, University of Essex, Colchester C04 3SQ, UK
| | - Stephen M. Laidlaw
- Section of Virology, School of Medicine, St Mary’s Campus, Imperial College, London W2 1PG, UK; (S.M.L.); (R.C.R.); (M.A.S.)
| | - Susanna R. Bidgood
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; (S.R.B.); (D.A.); (J.J.B.); (J.M.)
| | - David Albrecht
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; (S.R.B.); (D.A.); (J.J.B.); (J.M.)
| | - Jemima J. Burden
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; (S.R.B.); (D.A.); (J.J.B.); (J.M.)
| | - Rebecca C. Robey
- Section of Virology, School of Medicine, St Mary’s Campus, Imperial College, London W2 1PG, UK; (S.M.L.); (R.C.R.); (M.A.S.)
| | - Jason Mercer
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; (S.R.B.); (D.A.); (J.J.B.); (J.M.)
| | - Michael A. Skinner
- Section of Virology, School of Medicine, St Mary’s Campus, Imperial College, London W2 1PG, UK; (S.M.L.); (R.C.R.); (M.A.S.)
| |
Collapse
|
12
|
Chen S, Xu N, Ta L, Li S, Su X, Xue J, Du Y, Qin T, Peng D. Recombinant Fowlpox Virus Expressing gB Gene from Predominantly Epidemic Infectious Larygnotracheitis Virus Strain Demonstrates Better Immune Protection in SPF Chickens. Vaccines (Basel) 2020; 8:vaccines8040623. [PMID: 33105740 PMCID: PMC7711474 DOI: 10.3390/vaccines8040623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens. Antigenic mutation of infectious laryngotracheitis virus (ILTV) may result in a vaccination failure in the poultry industry and thus a protective vaccine against predominant ILTV strains is highly desirable. Methods: The full-length glycoprotein B (gB) gene of ILTV with the two mutated synonymous sites of fowlpox virus (FPV) transcription termination signal sequence was cloned into the insertion vector p12LS, which was co-transfected with wild-type (wt) FPV into chicken embryo fibroblast (CEF) to develop a recombinant fowlpox virus-gB (rFPV-gB) candidate vaccine strain. Furthermore, its biological and immunological characteristics were evaluated. Results: The results indicated that gB gene was expressed correctly in the rFPV by indirect immunofluorescent assay and Western blot, and the rFPV-gB provided a 100% protection in immunized chickens against the challenge of predominant ILTV strains that were screened by pathogenicity assay when compared with the commercialized rFPV vaccine, which only provided 83.3%. Conclusion: rFPV-gB can be used as a potential vaccine against predominant ILTV strains.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (N.X.); (L.T.); (S.L.); (X.S.); (J.X.); (Y.D.); (T.Q.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou University, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou University, Yangzhou 225009, China
| | - Nuo Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (N.X.); (L.T.); (S.L.); (X.S.); (J.X.); (Y.D.); (T.Q.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou University, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou University, Yangzhou 225009, China
| | - Lei Ta
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (N.X.); (L.T.); (S.L.); (X.S.); (J.X.); (Y.D.); (T.Q.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou University, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou University, Yangzhou 225009, China
| | - Shi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (N.X.); (L.T.); (S.L.); (X.S.); (J.X.); (Y.D.); (T.Q.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou University, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou University, Yangzhou 225009, China
| | - Xiang Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (N.X.); (L.T.); (S.L.); (X.S.); (J.X.); (Y.D.); (T.Q.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou University, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou University, Yangzhou 225009, China
| | - Jing Xue
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (N.X.); (L.T.); (S.L.); (X.S.); (J.X.); (Y.D.); (T.Q.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou University, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou University, Yangzhou 225009, China
| | - Yinping Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (N.X.); (L.T.); (S.L.); (X.S.); (J.X.); (Y.D.); (T.Q.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou University, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou University, Yangzhou 225009, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (N.X.); (L.T.); (S.L.); (X.S.); (J.X.); (Y.D.); (T.Q.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou University, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou University, Yangzhou 225009, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.C.); (N.X.); (L.T.); (S.L.); (X.S.); (J.X.); (Y.D.); (T.Q.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou University, Yangzhou 225009, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel./Fax: +86-051487979386
| |
Collapse
|
13
|
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a global pandemic, prompting unprecedented efforts to contain the virus. Many developed countries have implemented widespread testing and have rapidly mobilized research programmes to develop vaccines and therapeutics. However, these approaches may be impractical in Africa, where the infrastructure for testing is poorly developed and owing to the limited manufacturing capacity to produce pharmaceuticals. Furthermore, a large burden of HIV-1 and tuberculosis in Africa could exacerbate the severity of infection and may affect vaccine immunogenicity. This Review discusses global efforts to develop diagnostics, therapeutics and vaccines, with these considerations in mind. We also highlight vaccine and diagnostic production platforms that are being developed in Africa and that could be translated into clinical development through appropriate partnerships for manufacture. The COVID-19 pandemic has prompted unparalleled progress in the development of vaccines and therapeutics in many countries, but it has also highlighted the vulnerability of resource-limited countries in Africa. Margolin and colleagues review global efforts to develop SARS-CoV-2 diagnostics, therapeutics and vaccines, with a focus on the opportunities and challenges in Africa.
Collapse
|
14
|
Majid NN, Omar AR, Mariatulqabtiah AR. Negligible effect of chicken cytokine IL-12 integration into recombinant fowlpox viruses expressing avian influenza virus neuraminidase N1 on host cellular immune responses. J Gen Virol 2020; 101:772-777. [PMID: 32427095 PMCID: PMC7660237 DOI: 10.1099/jgv.0.001428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
Abstract
In comparison to the extensive characterization of haemagglutinin antibodies of avian influenza virus (AIV), the role of neuraminidase (NA) as an immunogen is less well understood. This study describes the construction and cellular responses of recombinant fowlpox viruses (rFWPV) strain FP9, co-expressing NA N1 gene of AIV A/Chicken/Malaysia/5858/2004, and chicken IL-12 gene. Our data shows that the N1 and IL-12 proteins were successfully expressed from the recombinants with 48 kD and 70 kD molecular weights, respectively. Upon inoculation into specific-pathogen-free (SPF) chickens at 105 p.f.u. ml-1, levels of CD3+/CD4+ and CD3+/CD8+ populations were higher in the wild-type fowlpox virus FP9 strain, compared to those of rFWPV-N1 and rFWPV-N1-IL-12 at weeks 2 and 5 time points. Furthermore, rFWPV-N1-IL-12 showed a suppressive effect on chicken body weight within 4 weeks after inoculation. We suggest that co-expression of N1 with or without IL-12 offers undesirable quality as a potential AIV vaccine candidate.
Collapse
Affiliation(s)
- Nadzreeq Nor Majid
- Office of Deputy Vice Chancellor (Research and Innovation), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abdul Razak Mariatulqabtiah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Conrad SJ, Liu J. Poxviruses as Gene Therapy Vectors: Generating Poxviral Vectors Expressing Therapeutic Transgenes. Methods Mol Biol 2019; 1937:189-209. [PMID: 30706397 DOI: 10.1007/978-1-4939-9065-8_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treatments with poxvirus vectors can have long-lasting immunological impact in the host, and thus they have been extensively studied to treat diseases and for vaccine development. More importantly, the oncolytic properties of poxviruses have led to their development as cancer therapeutics. Two poxviruses, vaccinia virus (VACV) and myxoma virus (MYXV), have been extensively studied as virotherapeutics with promising results. Vaccinia virus vectors have advanced to the clinic and have been tested as oncolytic therapeutics for several cancer types with successes in phase I/II clinical trials. In addition to oncolytic applications, MYXV has been explored for additional applications including immunotherapeutics, purging of cancer progenitor cells, and treatments for graft-versus-host diseases. These novel therapeutic applications have encouraged its advancement into clinical trials. To meet the demands of different treatment needs, VACV and MYXV can be genetically engineered to express therapeutic transgenes. The engineering process used in poxvirus vectors can be very different from that of other DNA virus vectors (e.g., the herpesviruses). This chapter is intended to serve as a guide to those wishing to engineer poxvirus vectors for therapeutic transgene expression and to produce viral preparations for preclinical studies.
Collapse
Affiliation(s)
- Steven J Conrad
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA. .,The Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
16
|
Abstract
Fowlpox virus is the type species of an extensive and poorly-defined group of viruses isolated from more than 200 species of birds, together comprising the avipoxvirus genus of the poxvirus family. Long known as a significant poultry pathogen, vaccines developed in the early and middle years of the twentieth century led to its effective eradication as a problem to commercial production in temperate climes in developed western countries (such that vaccination there is now far less common). Transmitted mechanically by biting insects, it remains problematic, causing significant losses to all forms of production (from backyard, through extensive to intensive commercial flocks), in tropical climes where control of biting insects is difficult. In these regions, vaccination (via intradermal or subcutaneous, and increasingly in ovo, routes) remains necessary. Although there is no evidence that more than a single serotype exists, there are poorly-described reports of outbreaks in vaccinated flocks. Whether this is due to inadequate vaccination or penetrance of novel variants remains unclear. Some such outbreaks have been associated with strains carrying endogenous, infectious proviral copies of the retrovirus reticuloendotheliosis virus (REV), which might represent a pathotypic (if not newly emerging) variant in the field. Until more is known about the phylogenetic structure of the avipoxvirus genus (by more widespread genome sequencing of isolates from different species of birds) it remains difficult to ascertain the risk of novel avipoxviruses emerging from wild birds (and/or by recombination/mutation) to infect farmed poultry.
Collapse
Affiliation(s)
- Efstathios S Giotis
- a Section of Virology, Faculty of Medicine , Imperial College London , London , UK
| | - Michael A Skinner
- a Section of Virology, Faculty of Medicine , Imperial College London , London , UK
| |
Collapse
|
17
|
Ricordel M, Foloppe J, Pichon C, Findeli A, Tosch C, Cordier P, Cochin S, Quémeneur E, Camus-Bouclainville C, Bertagnoli S, Erbs P. Oncolytic properties of non-vaccinia poxviruses. Oncotarget 2018; 9:35891-35906. [PMID: 30542506 PMCID: PMC6267605 DOI: 10.18632/oncotarget.26288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 01/13/2023] Open
Abstract
Vaccinia virus, a member of the Poxviridae family, has been extensively used as an oncolytic agent and has entered late stage clinical development. In this study, we evaluated the potential oncolytic properties of other members of the Poxviridae family. Numerous tumor cell lines were infected with ten non-vaccinia poxviruses to identify which virus displayed the most potential as an oncolytic agent. Cell viability indicated that tumor cell lines were differentially susceptible to each virus. Raccoonpox virus was the most potent of the tested poxviruses and was highly effective in controlling cell growth in all tumor cell lines. To investigate further the oncolytic capacity of the Raccoonpox virus, we have generated a thymidine kinase (TK)-deleted recombinant Raccoonpox virus expressing the suicide gene FCU1. This TK-deleted Raccoonpox virus was notably attenuated in normal primary cells but replicated efficiently in numerous tumor cell lines. In human colon cancer xenograft model, a single intratumoral inoculation of the recombinant Raccoonpox virus, in combination with 5-fluorocytosine administration, produced relevant tumor growth control. The results demonstrated significant antitumoral activity of this new modified Raccoonpox virus armed with FCU1 and this virus could be considered to be included into the growing armamentarium of oncolytic virotherapy for cancer.
Collapse
Affiliation(s)
- Marine Ricordel
- Transgene SA, Illkirch-Graffenstaden 67405, France.,Current address: Polyplus-transfection SA, Illkirch-Graffenstaden 67400, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bissa M, Forlani G, Zanotto C, Tosi G, De Giuli Morghen C, Accolla RS, Radaelli A. Fowlpoxvirus recombinants coding for the CIITA gene increase the expression of endogenous MHC-II and Fowlpox Gag/Pro and Env SIV transgenes. PLoS One 2018; 13:e0190869. [PMID: 29385169 PMCID: PMC5791965 DOI: 10.1371/journal.pone.0190869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/21/2017] [Indexed: 01/12/2023] Open
Abstract
A complete eradication of an HIV infection has never been achieved by vaccination and the search for new immunogens that can induce long-lasting protective responses is ongoing. Avipoxvirus recombinants are host-restricted for replication to avian species and they do not have the undesired side effects induced by vaccinia recombinants. In particular, Fowlpox (FP) recombinants can express transgenes over long periods and can induce protective immunity in mammals, mainly due to CD4-dependent CD8+ T cells. In this context, the class II transactivator (CIITA) has a pivotal role in triggering the adaptive immune response through induction of the expression of class-II major histocompatibility complex molecule (MHC-II), that can present antigens to CD4+ T helper cells. Here, we report on construction of novel FPgp and FPenv recombinants that express the highly immunogenic SIV Gag-pro and Env structural antigens. Several FP-based recombinants, with single or dual genes, were also developed that express CIITA, driven from H6 or SP promoters. These recombinants were used to infect CEF and Vero cells in vitro and determine transgene expression, which was evaluated by real-time PCR and Western blotting. Subcellular localisation of the different proteins was evaluated by confocal microscopy, whereas HLA-DR or MHC-II expression was measured by flow cytometry. Fowlpox recombinants were also used to infect syngeneic T/SA tumour cells, then injected into Balb/c mice to elicit MHC-II immune response and define the presentation of the SIV transgene products in the presence or absence of FPCIITA. Antibodies to Env were measured by ELISA. Our data show that the H6 promoter was more efficient than SP to drive CIITA expression and that CIITA can enhance the levels of the gag/pro and env gene products only when infection is performed by FP single recombinants. Also, CIITA expression is higher when carried by FP single recombinants than when combined with FPgp or FPenv constructs and can induce HLA-DR cell surface expression. However, in-vivo experiments did not show any significant increase in the humoral response. As CIITA already proved to elicit immunogenicity by improving antigen presentation, further in-vivo experiments should be performed to increase the immune responses. The use of prime/boost immunisation protocols and the oral administration route of the recombinants may enhance the immunogenicity of Env peptides presented by MHC-II and provide CD4+ T-cell stimulation.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan, Italy
| | - Greta Forlani
- Department of Experimental Medicine, University of Insubria, Via O. Rossi 9, Varese, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy
| | - Giovanna Tosi
- Department of Experimental Medicine, University of Insubria, Via O. Rossi 9, Varese, Italy
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy
- Catholic University “Our Lady of Good Counsel”, Rr. Dritan Hoxha, Tirana, Albania
| | - Roberto S. Accolla
- Department of Experimental Medicine, University of Insubria, Via O. Rossi 9, Varese, Italy
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan, Italy
- CNR Institute of Neurosciences, Cellular and Molecular Pharmacology Section, University of Milan, via Vanvitelli 32, Milan, Italy
- * E-mail:
| |
Collapse
|
19
|
Townsend DG, Trivedi S, Jackson RJ, Ranasinghe C. Recombinant fowlpox virus vector-based vaccines: expression kinetics, dissemination and safety profile following intranasal delivery. J Gen Virol 2017; 98:496-505. [PMID: 28056224 PMCID: PMC5797952 DOI: 10.1099/jgv.0.000702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
We have previously established that mucosal uptake of recombinant fowlpox virus (rFPV) vaccines is far superior to other vector-based vaccines. Specifically, intranasal priming with rFPV vaccines can recruit unique antigen-presenting cells, which induce excellent mucosal and systemic HIV-specific CD8+ T-cell immunity. In this study, we have for the first time investigated the in vivo dissemination, safety and expression kinetics of rFPV post intranasal delivery using recombinant viruses expressing green fluorescent protein or mCherry. Both confocal microscopy of tissue sections using green fluorescent protein and in vivo Imaging System (IVIS) spectrum live animal and whole organ imaging studies using mCherry revealed that (i) the peak antigen expression occurs 12 to 24 h post vaccination and no active viral gene expression is detected 96 h post vaccination. (ii) The virus only infects the initial vaccination site (lung and nasal cavity) and does not disseminate to distal sites such as the spleen or gut. (iii) More importantly, rFPV does not cross the olfactory receptor neuron pathway. Collectively, our findings indicate that rFPV vector-based vaccines have all the hallmarks of a safe and effective mucosal delivery vector, suitable for clinical evaluation.
Collapse
Affiliation(s)
- David G Townsend
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Shubhanshi Trivedi
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
- Present address: Division of Infectious Diseases, Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
20
|
Turkey herpesvirus with an insertion in the UL3-4 region displays an appropriate balance between growth activity and antibody-eliciting capacity and is suitable for the establishment of a recombinant vaccine. Arch Virol 2016; 162:931-941. [PMID: 27942974 DOI: 10.1007/s00705-016-3181-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
We constructed turkey herpesvirus (HVT) vector vaccines in which the VP2 gene of infectious bursal disease virus (IBDV) was inserted into the HVT genome in the following regions: UL3-4, UL22-23, UL45-46, and US10-SORF3. We then evaluated the relationship between the gene insertion site and the capacity of the virus to elicit antibodies. rHVT/IBD (US10) showed good growth activity in vitro, with growth comparable to that of the parent HVT. On the other hand, rHVT/IBD (UL3-4), rHVT/IBD (UL22-23), and rHVT/IBD (UL45-46) exhibited decreased growth activity in chicken embryo fibroblast (CEF) cells compared to the parent HVT. However, the rHVT/IBD (US10) elicited lower levels of virus-neutralizing (VN) antibodies compared to the other constructs. rHVT/IBD (UL3-4) and rHVT/IBD (UL45-46) appeared to be similar in their ability to elicit VN antibodies. Based on the results of in vitro and in vivo assays, rHVT/IBD (UL3-4) was selected for further testing. In a challenge assay, rHVT/IBD (UL3-4) protected chickens from challenge with virulent Marek's disease virus serotype 1 and IBDV. In conclusion, the site of gene insertion may have a strong effect on the growth of the vector virus in vitro and its antibody-eliciting capacity. Insertions in the UL3-4 region permitted a balance between growth activity and VN-antibody-eliciting capacity, and this region might therefore be an appropriate insertion site for IBDV VP2.
Collapse
|
21
|
Bissa M, Quaglino E, Zanotto C, Illiano E, Rolih V, Pacchioni S, Cavallo F, De Giuli Morghen C, Radaelli A. Protection of mice against the highly pathogenic VV IHD-J by DNA and fowlpox recombinant vaccines, administered by electroporation and intranasal routes, correlates with serum neutralizing activity. Antiviral Res 2016; 134:182-191. [PMID: 27637905 PMCID: PMC9533953 DOI: 10.1016/j.antiviral.2016.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 11/06/2022]
Abstract
The control of smallpox was achieved using live vaccinia virus (VV) vaccine, which successfully eradicated the disease worldwide. As the variola virus no longer exists as a natural infection agent, mass vaccination was discontinued after 1980. However, emergence of smallpox outbreaks caused by accidental or deliberate release of variola virus has stimulated new research for second-generation vaccine development based on attenuated VV strains. Considering the closely related animal poxviruses that also arise as zoonoses, and the increasing number of unvaccinated or immunocompromised people, a safer and more effective vaccine is still required. With this aim, new vectors based on avian poxviruses that cannot replicate in mammals should improve the safety of conventional vaccines, and protect from zoonotic orthopoxvirus diseases, such as cowpox and monkeypox. In this study, DNA and fowlpox (FP) recombinants that expressed the VV L1R, A27L, A33R, and B5R genes were generated (4DNAmix, 4FPmix, respectively) and tested in mice using novel administration routes. Mice were primed with 4DNAmix by electroporation, and boosted with 4FPmix applied intranasally. The lethal VVIHD-J strain was then administered by intranasal challenge. All of the mice receiving 4DNAmix followed by 4FPmix, and 20% of the mice immunized only with 4FPmix, were protected. The induction of specific humoral and cellular immune responses directly correlated with this protection. In particular, higher anti-A27 antibodies and IFNγ-producing T lymphocytes were measured in the blood and spleen of the protected mice, as compared to controls. VVIHD-J neutralizing antibodies in sera from the protected mice suggest that the prime/boost vaccination regimen with 4DNAmix plus 4FPmix may be an effective and safe mode to induce protection against smallpox and poxvirus zoonotic infections. The electroporation/intranasal administration routes contributed to effective immune responses and mouse survival.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, 20133 Milano, Italy.
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Torino, Italy.
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli, 32, 20129 Milano, Italy.
| | - Elena Illiano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, 20133 Milano, Italy.
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Torino, Italy.
| | - Sole Pacchioni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, 20133 Milano, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Torino, Italy.
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli, 32, 20129 Milano, Italy; Catholic University "Our Lady of Good Counsel", Rr. Dritan Hoxha, Tirana, Albania.
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, 20133 Milano, Italy; Cellular and Molecular Pharmacology Section, National Research Council (CNR), Institute of Neurosciences, University of Milan, Via Vanvitelli, 32, 20129 Milano, Italy.
| |
Collapse
|
22
|
Bitrus Y, Andrew JN, Owolodun OA, Luka PD, Umaru DA. The reoccurrence of H5N1 outbreaks necessitates the development of safe and effective influenza vaccine technologies for the prevention and control of avian influenza in Sub-Saharan Africa. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/bmbr2015.0246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
24
|
Bissa M, Zanotto C, Pacchioni S, Volonté L, Venuti A, Lembo D, De Giuli Morghen C, Radaelli A. The L1 protein of human papilloma virus 16 expressed by a fowlpox virus recombinant can assemble into virus-like particles in mammalian cell lines but elicits a non-neutralising humoral response. Antiviral Res 2015; 116:67-75. [DOI: 10.1016/j.antiviral.2015.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/21/2015] [Accepted: 01/29/2015] [Indexed: 01/12/2023]
|
25
|
Bissa M, Illiano E, Pacchioni S, Paolini F, Zanotto C, De Giuli Morghen C, Massa S, Franconi R, Radaelli A, Venuti A. A prime/boost strategy using DNA/fowlpox recombinants expressing the genetically attenuated E6 protein as a putative vaccine against HPV-16-associated cancers. J Transl Med 2015; 13:80. [PMID: 25763880 PMCID: PMC4351974 DOI: 10.1186/s12967-015-0437-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Considering the high number of new cases of cervical cancer each year that are caused by human papilloma viruses (HPVs), the development of an effective vaccine for prevention and therapy of HPV-associated cancers, and in particular against the high-risk HPV-16 genotype, remains a priority. Vaccines expressing the E6 and E7 proteins that are detectable in all HPV-positive pre-cancerous and cancer cells might support the treatment of HPV-related lesions and clear already established tumors. METHODS In this study, DNA and fowlpox virus recombinants expressing the E6F47R mutant of the HPV-16 E6 oncoprotein were generated, and their correct expression verified by RT-PCR, Western blotting and immunofluorescence. Immunization protocols were tested in a preventive or therapeutic pre-clinical mouse model of HPV-16 tumorigenicity using heterologous (DNA/FP) or homologous (DNA/DNA and FP/FP) prime/boost regimens. The immune responses and therapeutic efficacy were evaluated by ELISA, ELISPOT assays, and challenge with TC-1* cells. RESULTS In the preventive protocol, while an anti-E6-specific humoral response was just detectable, a specific CD8(+) cytotoxic T-cell response was elicited in immunized mice. After the challenge, there was a delay in cancer appearance and a significant reduction of tumor volume in the two groups of E6-immunized mice, thus confirming the pivotal role of the CD8(+) T-cell response in the control of tumor growth in the absence of E6-specific antibodies. In the therapeutic protocol, in-vivo experiments resulted in a higher number of tumor-free mice after the homologous DNA/DNA or heterologous DNA/FP immunization. CONCLUSIONS These data establish a preliminary indication for the prevention and treatment of HPV-related tumors by the use of DNA and avipox constructs as safe and effective immunogens following a prime/boost strategy. The combined use of recombinants expressing both E6 and E7 proteins might improve the antitumor efficacy, and should represent an important approach to control HPV-associated cancers.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, Università di Milano, Milan, Italy.
| | - Elena Illiano
- Department of Pharmacological and Biomolecular Sciences, Università di Milano, Milan, Italy.
| | - Sole Pacchioni
- Department of Medical Biotechnologies and Translational Medicine, Università di Milano, Milan, Italy.
| | - Francesca Paolini
- Laboratory of Virology HPV-UNIT, Regina Elena National Cancer Institute, Rome, Italy.
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, Università di Milano, Milan, Italy.
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, Università di Milano, Milan, Italy. .,Cellular and Molecular Pharmacology Section, CNR Institute of Neurosciences, Università di Milano, Milan, Italy.
| | - Silvia Massa
- Technical Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy.
| | - Rosella Franconi
- Technical Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy.
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, Università di Milano, Milan, Italy. .,Cellular and Molecular Pharmacology Section, CNR Institute of Neurosciences, Università di Milano, Milan, Italy.
| | - Aldo Venuti
- Laboratory of Virology HPV-UNIT, Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
26
|
Construction and characterization of novel fowlpox virus shuttle vectors. Virus Res 2014; 197:59-66. [PMID: 25529440 DOI: 10.1016/j.virusres.2014.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 11/22/2022]
Abstract
Viral vectors are important vehicles in vaccine research. Avipoxviruses including fowlpox virus (FPV) play major roles in viral vaccine vector development for the prevention and therapy of human and other veterinary diseases due to their immunomodulatory effects and safety profile. Recently, we analyzed the genomic and proteomic backgrounds of the Chinese FPV282E4 strain. Based on analysis of the whole genome of FPV282E4, the FPV150 and FPV193 loci were chosen as insertion sites for foreign genes, and two shuttle vectors with a triple-gene expression cassette were designed and constructed. Homologous recombination between the FPV virus genome and sequences within the shuttle plasmids in infected cells was confirmed. The recombinants were obtained through several rounds of plaque purification using enhanced green fluorescent protein as a reporter and evaluated for the correct expression of foreign genes in vitro using RT-PCR, real-time PCR and Western blotting. Morphogenesis and growth kinetics were assayed via transmission electron microscopy and viral titering, respectively. Results showed that recombinant viruses were generated and correctly expressed foreign genes in CEF, BHK-21 and 293T cells. At least three different exogenous genes could be expressed simultaneously and stably over multiple passages. Additionally, the FPV150 mutation, FPV193 deletion and insertion of foreign genes did not affect the morphogenesis, replication and proliferation of recombinant viruses in cells. Our study contributes to the improvement of FPV vectors for multivalent vaccines.
Collapse
|
27
|
Trivedi S, Jackson RJ, Ranasinghe C. Different HIV pox viral vector-based vaccines and adjuvants can induce unique antigen presenting cells that modulate CD8 T cell avidity. Virology 2014; 468-470:479-489. [PMID: 25261870 DOI: 10.1016/j.virol.2014.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/04/2014] [Accepted: 09/06/2014] [Indexed: 11/25/2022]
Abstract
The lung-derived dendritic cell (LDC) recruitment following intranasal (i.n.) vaccination of different poxviral vector-based vaccines/adjuvants were evaluated to decipher how these factors influenced CD8(+) T cell avidity. Compared to the standard i.n. recombinant fowlpox virus (FPV)-HIV vaccination, the FPV-HIV IL-13Rα2 or IL-4Rα antagonist adjuvanted vaccines that induced higher avidity CD8(+) T cells, also recruited significantly elevated MHCII(+) CD11c(+) CD11b(+) CD103(-) CD64(-) MAR-1(-) conventional DC (cDCs) to the lung mucosae (hierarchy: IL-4R antagonist>IL-13Rα2>unadjuvanted). In contrast, elevated CD11b(-) CD103(+) LDCs were detected in animals that received recombinant HIV vaccinia virus (rVV) or Modified Vaccinia Ankara virus (MVA) vector-based vaccines. Adoptive transfer studies indicated that CD11b(-) CD103(+) LDCs significantly dampened HIV-specific CD8(+) T cell avidity compared to CD11b(+) CD103(-) LDCs. Collectively; our observations revealed that rFPV vector prime and transient inhibition of IL-4/IL-13 at the vaccination site favoured the recruitment of unique LDCs, associated with the induction of high quality immunity.
Collapse
Affiliation(s)
- Shubhanshi Trivedi
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia.
| | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
28
|
Bareiss B, Barry M. Fowlpox virus encodes two p28-like ubiquitin ligases that are expressed early and late during infection. Virology 2014; 462-463:60-70. [PMID: 25092462 DOI: 10.1016/j.virol.2014.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/07/2014] [Accepted: 05/16/2014] [Indexed: 01/14/2023]
Abstract
Many cellular processes are regulated by the ubiquitin-proteasome system. Therefore, it is not surprising that viruses have adapted ways to manipulate the ubiquitin-proteasome system to their own advantage. p28 is a poxvirus encoded ubiquitin ligase that contains an N-terminal KilA-N DNA binding domain and a C-terminal RING domain required for ubiquitin ligase activity. p28 is encoded by a wide range of poxviruses, including members of the Avipoxviruses. Here we show that fowlpox virus (FWPV) and canarypox virus (CNPV) each contain two distinct p28-like ubiquitin ligases; an observation not seen in other members of the poxvirus family. FWPV150 and FWPV157 are both ubiquitinated during infection and co-localize with conjugated ubiquitin at the viral factory. Interestingly, we demonstrate that FWPV150 was actively transcribed early, while FWPV157 was expressed late. Overall, these observations suggest different temporal roles for FWPV150 and FWPV157, an observation unique to the Avipoxviruses.
Collapse
Affiliation(s)
- Bettina Bareiss
- Li Ka Shing Institute of Virology, 621 HMRC, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton Alberta, Canada, T6G 2S2
| | - Michele Barry
- Li Ka Shing Institute of Virology, 621 HMRC, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton Alberta, Canada, T6G 2S2.
| |
Collapse
|
29
|
Herbert R, Baron J, Batten C, Baron M, Taylor G. Recombinant adenovirus expressing the haemagglutinin of Peste des petits ruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccine for PPR. Vet Res 2014; 45:24. [PMID: 24568545 PMCID: PMC3941483 DOI: 10.1186/1297-9716-45-24] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/17/2014] [Indexed: 12/27/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is a morbillivirus that can cause severe disease in sheep and goats, characterised by pyrexia, pneumo-enteritis, and gastritis. The socio-economic burden of the disease is increasing in underdeveloped countries, with poor livestock keepers being affected the most. Current vaccines consist of cell-culture attenuated strains of PPRV, which induce a similar antibody profile to that induced by natural infection. Generation of a vaccine that enables differentiation of infected from vaccinated animals (DIVA) would benefit PPR control and eradication programmes, particularly in the later stages of an eradication campaign and for countries where the disease is not endemic. In order to create a vaccine that would enable infected animals to be distinguished from vaccinated ones (DIVA vaccine), we have evaluated the immunogenicity of recombinant fowlpox (FP) and replication-defective recombinant human adenovirus 5 (Ad), expressing PPRV F and H proteins, in goats. The Ad constructs induced higher levels of virus-specific and neutralising antibodies, and primed greater numbers of CD8+ T cells than the FP-vectored vaccines. Importantly, a single dose of Ad-H, with or without the addition of Ad expressing ovine granulocyte macrophage colony-stimulating factor and/or ovine interleukin-2, not only induced strong antibody and cell-mediated immunity but also completely protected goats against challenge with virulent PPRV, 4 months after vaccination. Replication-defective Ad-H therefore offers the possibility of an effective DIVA vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom.
| |
Collapse
|
30
|
Bentley K, Armesto M, Britton P. Infectious Bronchitis Virus as a Vector for the Expression of Heterologous Genes. PLoS One 2013; 8:e67875. [PMID: 23840781 PMCID: PMC3694013 DOI: 10.1371/journal.pone.0067875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/23/2013] [Indexed: 01/31/2023] Open
Abstract
The avian coronavirus infectious bronchitis virus (IBV) is the causative agent of the respiratory disease infectious bronchitis of domestic fowl, and is controlled by routine vaccination. To explore the potential use of IBV as a vaccine vector a reverse genetics system was utilised to generate infectious recombinant IBVs (rIBVs) expressing the reporter genes enhanced green fluorescent protein (eGFP) or humanised Renilla luciferase (hRluc). Infectious rIBVs were obtained following the replacement of Gene 5 or the intergenic region (IR) with eGFP or hRluc, or the replacement of ORFs 3a and 3b with hRluc. The replacement of Gene 5 with an IBV codon-optimised version of the hRluc gene also resulted in successful rescue of infectious rIBV. Reporter gene expression was confirmed by fluorescence microscopy, or luciferase activity assays, for all successfully rescued rIBVs following infection of primary chick kidney (CK) cells. The genetic stability of rIBVs was analysed by serial passage on CK cells. Recombinant IBV stability varied depending on the genome region being replaced, with the reporter genes maintained up to at least passage 8 (P8) following replacement of Gene 5, P7 for replacement of the IR and P5 for replacement of ORFs 3a and 3b. Codon-optimisation of the hRluc gene, when replacing Gene 5, resulted in an increase in genome stability, with hRluc expression stable up to P10 compared to P8 for standard hRluc. Repeated passaging of rIBVs expressing hRluc at an MOI of 0.01 demonstrated an increase in stability, with hRluc expression stable up to at least P12 following the replacement of Gene 5. This study has demonstrated that heterologous genes can be incorporated into, and expressed from a range of IBV genome locations and that replacement of accessory Gene 5 offers a promising target for realising the potential of IBV as a vaccine vector for other avian pathogens.
Collapse
Affiliation(s)
- Kirsten Bentley
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
| | - Maria Armesto
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
| | - Paul Britton
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines. J Transl Med 2013; 11:95. [PMID: 23578094 PMCID: PMC3637622 DOI: 10.1186/1479-5876-11-95] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/04/2013] [Indexed: 12/21/2022] Open
Abstract
Background The traditional smallpox vaccine, administered by scarification, was discontinued in the general population from 1980, because of the absence of new smallpox cases. However, the development of an effective prophylactic vaccine against smallpox is still necessary, to protect from the threat of deliberate release of the variola virus for bioterrorism and from new zoonotic infections, and to improve the safety of the traditional vaccine. Preventive vaccination still remains the most effective control and new vectors have been developed to generate recombinant vaccines against smallpox that induce the same immunogenicity as the traditional one. As protective antibodies are mainly directed against the surface proteins of the two infectious forms of vaccinia, the intracellular mature virions and the extracellular virions, combined proteins from these viral forms can be used to better elicit a complete and protective immunity. Methods Four novel viral recombinants were constructed based on the fowlpox genetic background, which independently express the vaccinia virus L1 and A27 proteins present on the mature virions, and the A33 and B5 proteins present on the extracellular virions. The correct expression of the transgenes was determined by RT-PCR, Western blotting, and immunofluorescence. Results and conclusions Using immunoprecipitation and Western blotting, the ability of the proteins expressed by the four novel FPL1R, FPA27L, FPA33R and FPB5R recombinants to be recognized by VV-specific hyperimmune mouse sera was demonstrated. By neutralisation assays, recombinant virus particles released by infected chick embryo fibroblasts were shown not be recognised by hyperimmune sera. This thus demonstrates that the L1R, A27L, A33R and B5R gene products are not inserted into the new viral progeny. Fowlpox virus replicates only in avian species, but it is permissive for entry and transgene expression in mammalian cells, while being immunologically non–cross-reactive with vaccinia virus. These recombinants might therefore represent safer and more promising immunogens that can circumvent neutralisation by vector-generated immunity in smallpox-vaccine-experienced humans.
Collapse
|
32
|
Cottingham MG, Carroll MW. Recombinant MVA vaccines: dispelling the myths. Vaccine 2013; 31:4247-51. [PMID: 23523407 DOI: 10.1016/j.vaccine.2013.03.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
Diseases such as HIV/AIDS, tuberculosis, malaria and cancer are prime targets for prophylactic or therapeutic vaccination, but have proven partially or wholly resistant to traditional approaches to vaccine design. New vaccines based on recombinant viral vectors expressing a foreign antigen are under intense development for these and other indications. One of the most advanced and most promising vectors is the attenuated, non-replicating poxvirus MVA (modified vaccinia virus Ankara), a safer derivative of the uniquely successful smallpox vaccine. Despite the ability of recombinant MVA to induce potent humoral and cellular immune responses against transgenic antigen in humans, especially when used as the latter element of a heterologous prime-boost regimen, doubts are occasionally expressed about the ultimate feasibility of this approach. In this review, five common misconceptions over recombinant MVA are discussed, and evidence is cited to show that recombinant MVA is at least sufficiently genetically stable, manufacturable, safe, and immunogenic (even in the face of prior anti-vector immunity) to warrant reasonable hope over the feasibility of large-scale deployment, should useful levels of protection against target pathogens, or therapeutic benefit for cancer, be demonstrated in efficacy trials.
Collapse
Affiliation(s)
- Matthew G Cottingham
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, UK.
| | | |
Collapse
|
33
|
Bertino P, Panigada M, Soprana E, Bianchi V, Bertilaccio S, Sanvito F, Rose AH, Yang H, Gaudino G, Hoffmann PR, Siccardi A, Carbone M. Fowlpox-based survivin vaccination for malignant mesothelioma therapy. Int J Cancer 2013; 133:612-23. [PMID: 23335100 DOI: 10.1002/ijc.28048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
Survivin protein is an attractive candidate for cancer immunotherapy since it is abundantly expressed in most common human cancers and mostly absent in normal adult tissues. Malignant mesothelioma (MM) is a deadly cancer associated with asbestos or erionite exposure for which no successful therapies are currently available. In this study, we evaluated the therapeutic efficacy of a novel survivin-based vaccine by subcutaneous or intraperitoneum injection of BALB/c mice with murine fiber-induced MM tumor cells followed by vaccination with recombinant Fowlpox virus replicons encoding survivin. Vaccination generated significant immune responses in both models, leading to delayed tumor growth and improved animal survival. Flow cytometry and immunofluorescence analyses of tumors from vaccinated mice showed CD8(+) T-cell infiltration, and real-time PCR demonstrated increased mRNA and protein levels of immunostimulatory cytokines. Analyses of survivin peptide-pulsed spleen and lymph node cells from vaccinated mice using ELISPOT and intracellular cytokine staining confirmed antigen-specific, interferon-γ-producing CD8(+) T-cell responses. In addition pentamer-based flow cytometry showed that vaccination generated survivin-specific CD8(+) T cells. Importantly, vaccination did not affect fertility or induce autoimmune abnormalities in mice. Our results demonstrate that vaccination with recombinant Fowlpox expressing survivin improves T-cell responses against aggressive MM tumors and may form the basis for promising clinical applications.
Collapse
Affiliation(s)
- Pietro Bertino
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.
Collapse
|
35
|
Radaelli A, De Giuli Morghen C, Zanotto C, Pacchioni S, Bissa M, Franconi R, Massa S, Paolini F, Muller A, Venuti A. A prime/boost strategy by DNA/fowlpox recombinants expressing a mutant E7 protein for the immunotherapy of HPV-associated cancers. Virus Res 2012; 170:44-52. [DOI: 10.1016/j.virusres.2012.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 01/13/2023]
|
36
|
Bissa M, Pacchioni SM, Zanotto C, De Giuli Morghen C, Radaelli A. GFP co-expression reduces the A33R gene expression driven by a fowlpox vector in replication permissive and non-permissive cell lines. J Virol Methods 2012; 187:172-6. [PMID: 23000750 DOI: 10.1016/j.jviromet.2012.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
The development of an effective prophylactic vaccine is still necessary to improve the safety of the conventional although-discontinued smallpox vaccine, and to protect from the threat of deliberate release of variola virus. This need also arises from the number of new cases of animal orthopoxvirus infections each year, and to reduce the risk to animal handlers. Fowlpox (FP) recombinants only replicate in avian species and have been developed against human infectious diseases, as they can elicit an effective immune response, are not cross-reactive immunologically with vaccinia, and represent safer and more promising immunogens for immunocompromised individuals. The aim of this study was the characterisation of two new fowlpox recombinants expressing the A33R vaccinia virus gene either alone (FP(A33R)) or with the green fluorescent protein (FP(A33R-GFP)) to verify whether GFP can affect the expression of the transgene. The results show that both FP(A33R) and FP(A33R-GFP) can express A33R correctly, but A33R mRNA and protein synthesis are higher by FP(A33R) than by FP(A33R-GFP). Therefore, GFP co-expression does not prevent, but can reduce the level of a vaccine protein, and may affect the protective efficacy of the immune response.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy.
| | | | | | | | | |
Collapse
|
37
|
Orubu T, Alharbi NK, Lambe T, Gilbert SC, Cottingham MG. Expression and cellular immunogenicity of a transgenic antigen driven by endogenous poxviral early promoters at their authentic loci in MVA. PLoS One 2012; 7:e40167. [PMID: 22761956 PMCID: PMC3384612 DOI: 10.1371/journal.pone.0040167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/02/2012] [Indexed: 01/12/2023] Open
Abstract
CD8(+) T cell responses to vaccinia virus are directed almost exclusively against early gene products. The attenuated strain modified vaccinia virus Ankara (MVA) is under evaluation in clinical trials of new vaccines designed to elicit cellular immune responses against pathogens including Plasmodium spp., M. tuberculosis and HIV-1. All of these recombinant MVAs (rMVA) utilize the well-established method of linking the gene of interest to a cloned poxviral promoter prior to insertion into the viral genome at a suitable locus by homologous recombination in infected cells. Using BAC recombineering, we show that potent early promoters that drive expression of non-functional or non-essential MVA open reading frames (ORFs) can be harnessed for immunogenic expression of recombinant antigen. Precise replacement of the MVA orthologs of C11R, F11L, A44L and B8R with a model antigen positioned to use the same translation initiation codon allowed early transgene expression similar to or slightly greater than that achieved by the commonly-used p7.5 or short synthetic promoters. The frequency of antigen-specific CD8(+) T cells induced in mice by single shot or adenovirus-prime, rMVA-boost vaccination were similarly equal or marginally enhanced using endogenous promoters at their authentic genomic loci compared to the traditional constructs. The enhancement in immunogenicity observed using the C11R or F11L promoters compared with p7.5 was similar to that obtained with the mH5 promoter compared with p7.5. Furthermore, the growth rates of the viruses were unimpaired and the insertions were genetically stable. Insertion of a transgenic ORF in place of a viral ORF by BAC recombineering can thus provide not only a potent promoter, but also, concomitantly, a suitable insertion site, potentially facilitating development of MVA vaccines expressing multiple recombinant antigens.
Collapse
Affiliation(s)
- Toritse Orubu
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah C. Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
38
|
Mahgoub HA, Bailey M, Kaiser P. An overview of infectious bursal disease. Arch Virol 2012; 157:2047-57. [PMID: 22707044 DOI: 10.1007/s00705-012-1377-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/08/2012] [Indexed: 11/27/2022]
Abstract
Infectious bursal disease (IBD) is a viral immunosuppressive disease of chickens attacking mainly an important lymphoid organ in birds [the bursa of Fabricius (BF)]. The emergence of new variant strains of the causative agent [infectious bursal disease virus (IBDV)] has made it more urgent to develop new vaccination strategies against IBD. One of these strategies is the use of recombinant vaccines (DNA and viral-vectored vaccines). Several studies have investigated the host immune response towards IBDV. This review will present a detailed background on the disease and its causative agent, accompanied by a summary of the most recent findings regarding the host immune response to IBDV infection and the use of recombinant vaccines against IBD.
Collapse
|
39
|
Zanotto C, Pozzi E, Pacchioni S, Bissa M, De Giuli Morghen C, Radaelli A. Construction and characterisation of a recombinant fowlpox virus that expresses the human papilloma virus L1 protein. J Transl Med 2011; 9:190. [PMID: 22053827 PMCID: PMC3231814 DOI: 10.1186/1479-5876-9-190] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/04/2011] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Human papilloma virus (HPV)-16 is the most prevalent high-risk mucosal genotype. Virus-like-particle (VLP)-based immunogens developed recently have proven to be successful as prophylactic HPV vaccines, but are still too expensive for developing countries. Although vaccinia viruses expressing the HPV-16 L1 protein (HPV-L1) have been studied, fowlpox-based recombinants represent efficient and safer vectors for immunocompromised hosts due to their ability to elicit a complete immune response and their natural host-range restriction to avian species. METHODS A new fowlpox virus recombinant encoding HPV-L1 (FPL1) was engineered and evaluated for the correct expression of HPV-L1 in vitro, using RT-PCR, immunoprecipitation, Western blotting, electron microscopy, immunofluorescence, and real-time PCR assays. RESULTS The FPL1 recombinant correctly expresses HPV-L1 in mammalian cells, which are non-permissive for the replication of this vector. CONCLUSION This FPL1 recombinant represents an appropriate immunogen for expression of HPV-L1 in human cells. The final aim is to develop a safe, immunogenic, and less expensive prophylactic vaccine against HPV.
Collapse
Affiliation(s)
- Carlo Zanotto
- Department of Pharmacological Sciences, University of Milan, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Hwa SH, Iams KP, Hall JS, Kingstad BA, Osorio JE. Characterization of recombinant raccoonpox vaccine vectors in chickens. Avian Dis 2011; 54:1157-65. [PMID: 21313834 DOI: 10.1637/9315-032410-reg.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Raccoonpox virus (RCN) has been used as a recombinant vector against several mammalian pathogens but has not been tested in birds. The replication of RCN in chick embryo fibroblasts (CEFs) and chickens was studied with the use of highly pathogenic avian influenza virus H5N1 hemagglutinin (HA) as a model antigen and luciferase (luc) as a reporter gene. Although RCN replicated to low levels in CEFs, it efficiently expressed recombinant proteins and, in vivo, elicited anti-HA immunoglobulin yolk (IgY) antibody responses comparable to inactivated influenza virus. Biophotonic in vivo imaging of 1-wk-old chicks with RCN-luc showed strong expression of the luc reporter gene lasting up to 3 days postinfection. These studies demonstrate the potential of RCN as a vaccine vector for avian influenza and other poultry pathogens.
Collapse
Affiliation(s)
- Shi-Hsia Hwa
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
In order to develop novel solutions to avian disease problems, including novel vaccines and/or vaccine adjuvants, and the identification of disease resistance genes which can feed into conventional breeding programmes, it is necessary to gain a more thorough understanding of the avian immune response and how pathogens can subvert that response. Birds occupy the same habitats as mammals, have similar ranges of longevity and body mass, and face similar pathogen challenges, yet birds have a different repertoire of organs, cells, molecules and genes of the immune system compared to mammals. This review summarises the current state of knowledge of the chicken's immune response, highlighting differences in the bird compared to mammals, and discusses how the availability of the chicken genome sequence and the associated postgenomics technologies are contributing to theses studies and also to the development of novel intervention strategies againts avian and zoonotic disease.
Collapse
Affiliation(s)
- Pete Kaiser
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, UK.
| |
Collapse
|
42
|
Jeshtadi A, Burgos P, Stubbs CD, Parker AW, King LA, Skinner MA, Botchway SW. Interaction of poxvirus intracellular mature virion proteins with the TPR domain of kinesin light chain in live infected cells revealed by two-photon-induced fluorescence resonance energy transfer fluorescence lifetime imaging microscopy. J Virol 2010; 84:12886-94. [PMID: 20943972 PMCID: PMC3004322 DOI: 10.1128/jvi.01395-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/24/2010] [Indexed: 11/20/2022] Open
Abstract
Using two-photon-induced fluorescence lifetime imaging microscopy, we corroborate an interaction (previously demonstrated by yeast two-hybrid domain analysis) of full-length vaccinia virus (VACV; an orthopoxvirus) A36 protein with the cellular microtubule motor protein kinesin. Quenching of enhanced green fluorescent protein (EGFP), fused to the C terminus of VACV A36, by monomeric red fluorescent protein (mDsRed), fused to the tetratricopeptide repeat (TPR) domain of kinesin, was observed in live chicken embryo fibroblasts infected with either modified vaccinia virus Ankara (MVA) or wild-type fowlpox virus (FWPV; an avipoxvirus), and the excited-state fluorescence lifetime of EGFP was reduced from 2.5 ± 0.1 ns to 2.1 ± 0.1 ns due to resonance energy transfer to mDsRed. FWPV does not encode an equivalent of intracellular enveloped virion surface protein A36, yet it is likely that this virus too must interact with kinesin to facilitate intracellular virion transport. To investigate possible interactions between innate FWPV proteins and kinesin, recombinant FWPVs expressing EGFP fused to the N termini of FWPV structural proteins Fpv140, Fpv168, Fpv191, and Fpv198 (equivalent to VACV H3, A4, p4c, and A34, respectively) were generated. EGFP fusions of intracellular mature virion (IMV) surface protein Fpv140 and type II membrane protein Fpv198 were quenched by mDsRed-TPR in recombinant FWPV-infected cells, indicating that these virion proteins are found within 10 nm of mDsRed-TPR. In contrast, and as expected, EGFP fusions of the IMV core protein Fpv168 did not show any quenching. Interestingly, the p4c-like protein Fpv191, which demonstrates late association with preassembled IMV, also did not show any quenching.
Collapse
Affiliation(s)
- Ananya Jeshtadi
- School of Life Sciences, Headington Campus, Oxford Brookes University, Oxford OX3 0BP, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
43
|
Zanotto C, Pozzi E, Pacchioni S, Volonté L, De Giuli Morghen C, Radaelli A. Canarypox and fowlpox viruses as recombinant vaccine vectors: A biological and immunological comparison. Antiviral Res 2010; 88:53-63. [DOI: 10.1016/j.antiviral.2010.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 06/28/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
|
44
|
Zhang GZ, Zhang R, Zhao HL, Wang XT, Zhang SP, Li XJ, Qin CZ, Lv CM, Zhao JX, Zhou JF. A safety assessment of a fowlpox-vectored Mycoplasma gallisepticum vaccine in chickens. Poult Sci 2010; 89:1301-6. [PMID: 20460677 DOI: 10.3382/ps.2009-00447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recombinant fowlpox virus vaccine expressing key protective Mycoplasma gallisepticum antigens could facilitate in the prevention both of fowlpox virus and M. gallisepticum infections. Vectormune FP-MG vaccine, a recombinant fowlpox virus expressing both M. gallisepticum 40k and mgc genes, was assessed for its safety in 8-wk-old specific-pathogen-free White Leghorn chickens. The vaccine virus was serially passaged 5 times by wing-web inoculation. Based on the postinoculation clinical observation, gross pathological examination of air sacs and peritoneum, genetic stability evaluation, virus shedding and tissue distribution detection, horizontal transmission ability determination, and protection against fowlpox virus challenge, the Vectormune FP-MG vaccine possesses a high level of safety.
Collapse
Affiliation(s)
- G Z Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Radaelli A, Pozzi E, Pacchioni S, Zanotto C, Morghen CDG. Fowlpox virus recombinants expressing HPV-16 E6 and E7 oncogenes for the therapy of cervical carcinoma elicit humoral and cell-mediated responses in rabbits. J Transl Med 2010; 8:40. [PMID: 20409340 PMCID: PMC2873375 DOI: 10.1186/1479-5876-8-40] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 04/21/2010] [Indexed: 12/29/2022] Open
Abstract
Background Around half million new cases of cervical cancer arise each year, making the development of an effective therapeutic vaccine against HPV a high priority. As the E6 and E7 oncoproteins are expressed in all HPV-16 tumour cells, vaccines expressing these proteins might clear an already established tumour and support the treatment of HPV-related precancerous lesions. Methods Three different immunisation regimens were tested in a pre-clinical trial in rabbits to evaluate the humoral and cell-mediated responses of a putative HPV-16 vaccine. Fowlpoxvirus (FP) recombinants separately expressing the HPV-16 E6 (FPE6) and E7 (FPE7) transgenes were used for priming, followed by E7 protein boosting. Results All of the protocols were effective in eliciting a high antibody response. This was also confirmed by interleukin-4 production, which increased after simultaneous priming with both FPE6 and FPE7 and after E7 protein boost. A cell-mediated immune response was also detected in most of the animals. Conclusion These results establish a preliminary profile for the therapy with the combined use of avipox recombinants, which may represent safer immunogens than vaccinia-based vectors in immuno-compromised individuals, as they express the transgenes in most mammalian cells in the absence of a productive replication.
Collapse
Affiliation(s)
- Antonia Radaelli
- Department of Medical Pharmacology, Università di Milano, Milan, Italy.
| | | | | | | | | |
Collapse
|
46
|
Pacchioni S, Volonté L, Zanotto C, Pozzi E, De Giuli Morghen C, Radaelli A. Canarypox and fowlpox viruses as recombinant vaccine vectors: an ultrastructural comparative analysis. Arch Virol 2010; 155:915-24. [PMID: 20379750 DOI: 10.1007/s00705-010-0663-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
Due to their natural host-range restriction to avian species, canarypox virus (CP) and fowlpox virus (FP) represent efficient and safe vaccine vectors, as they correctly express transgenes in human cells, elicit complete immune responses, and show protective efficacy in preclinical animal models. At present, no information is available on the differences in the abortive replication of these two avipox viruses in mammalian cells. In the present study, the replicative cycles of CP and FP, wild-type and recombinants, are compared in permissive and non-permissive cells, using transmission electron microscopy. We demonstrate that in non-permissive cells, the replicative cycle is more advanced in FP than in CP, that human cells, whether immune or not, are less permissive to avipox replication than monkey cells, and that the presence of virus-like particles only occurs after FP infection. Overall, these data suggest that the use of FP recombinants is more appropriate than the use of CP for eliciting an immune response.
Collapse
Affiliation(s)
- Sole Pacchioni
- Department of Medical Pharmacology, Laboratory of Molecular Virology, University of Milan, Via Vanvitelli 32, Milan, Italy
| | | | | | | | | | | |
Collapse
|
47
|
The fowlpox virus BCL-2 homologue, FPV039, interacts with activated Bax and a discrete subset of BH3-only proteins to inhibit apoptosis. J Virol 2009; 83:7085-98. [PMID: 19439472 DOI: 10.1128/jvi.00437-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis is a potent immune barrier against viral infection, and many viruses, including poxviruses, encode proteins to overcome this defense. Interestingly, the avipoxviruses, which include fowlpox and canarypox virus, are the only poxviruses known to encode proteins with obvious Bcl-2 sequence homology. We previously characterized the fowlpox virus protein FPV039 as a Bcl-2-like antiapoptotic protein that inhibits apoptosis by interacting with and inactivating the proapoptotic cellular protein Bak. However, both Bak and Bax can independently trigger cell death. Thus, to effectively inhibit apoptosis, a number of viruses also inhibit Bax. Here we show that FPV039 inhibited apoptosis induced by Bax overexpression and prevented both the conformational activation of Bax and the subsequent formation of Bax oligomers at the mitochondria, two critical steps in the induction of apoptosis. Additionally, FPV039 interacted with activated Bax in the context of Bax overexpression and virus infection. Importantly, the ability of FPV039 to interact with active Bax and inhibit Bax activity was dependent on the structurally conserved BH3 domain of FPV039, even though this domain possesses little sequence homology to other BH3 domains. FPV039 also inhibited apoptosis induced by the BH3-only proteins, upstream activators of Bak and Bax, despite interacting detectably with only two: BimL and Bik. Collectively, our data suggest that FPV039 inhibits apoptosis by sequestering and inactivating multiple proapoptotic Bcl-2 proteins, including certain BH3-only proteins and both of the critical "gatekeepers" of apoptosis, Bak and Bax.
Collapse
|
48
|
Antigen delivery systems for veterinary vaccine development. Viral-vector based delivery systems. Vaccine 2009; 26:6508-28. [PMID: 18838097 PMCID: PMC7131726 DOI: 10.1016/j.vaccine.2008.09.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 08/21/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022]
Abstract
The recent advances in molecular genetics, pathogenesis and immunology have provided an optimal framework for developing novel approaches in the rational design of vaccines effective against viral epizootic diseases. This paper reviews most of the viral-vector based antigen delivery systems (ADSs) recently developed for vaccine testing in veterinary species, including attenuated virus and DNA and RNA viral vectors. Besides their usefulness in vaccinology, these ADSs constitute invaluable tools to researchers for understanding the nature of protective responses in different species, opening the possibility of modulating or potentiating relevant immune mechanisms involved in protection.
Collapse
|
49
|
Pozzi E, Basavecchia V, Zanotto C, Pacchioni S, Morghen CDG, Radaelli A. Construction and characterization of recombinant fowlpox viruses expressing human papilloma virus E6 and E7 oncoproteins. J Virol Methods 2009; 158:184-9. [PMID: 19428588 DOI: 10.1016/j.jviromet.2009.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 01/16/2009] [Accepted: 01/22/2009] [Indexed: 02/03/2023]
Abstract
Human papilloma virus (HPV)-16 is the most prevalent high-risk mucosal genotype and the expression of the E6 and E7 proteins, which can bind to the p53 and p105Rb host cell-cycle regulatory proteins, is related to its tumorigenicity. Virus-like-particle (VLP)-based immunogens developed recently are successful as prophylactic HPV vaccines. However, given the high number of individuals infected already with HPV and the absence of expression of the L1 structural protein in HPV-infected or HPV-transformed cells, an efficient therapeutic vaccine targeting the non-structural E6 and E7 oncoproteins is required. In this study, two new fowlpox virus (FPV) recombinants encoding the HPV-16 E6 and E7 proteins were engineered and evaluated for their correct expression in vitro, with the final aim of developing a therapeutic vaccine against HPV-related cervical tumors. Although vaccinia viruses expressing the HPV-16 and HPV-18 E6 and E7 oncoproteins have already been studied, due to their natural host-range restriction to avian species and their ability to elicit a complete immune response, FPV recombinants may represent efficient and safer vectors also for immunocompromised hosts. The results indicate that FPV recombinants can express correctly the E6 and E7 oncoproteins, and they should represent appropriate vectors for the expression of these oncoproteins in human cells.
Collapse
Affiliation(s)
- Eleana Pozzi
- Department of Medical Pharmacology, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Nino-Fong R, Johnston JB. Poxvirus-based vaccine platforms: getting at those hard-to-reach places. Future Virol 2008. [DOI: 10.2217/17460794.3.2.99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Rodolfo Nino-Fong
- Institute for Nutrisciences & Health, National Research Council Canada, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - James B Johnston
- Institute for Nutrisciences & Health, National Research Council Canada, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| |
Collapse
|