1
|
Ain NU, Hannan A, Imran N, Ali A, Rasheed F, Sultan S, McHugh TD, Riaz S. New Delhi metallo-β-lactamases among extensively drug-resistant clinical isolates from Lahore, Pakistan. Future Microbiol 2024; 19:971-981. [PMID: 38884302 PMCID: PMC11318740 DOI: 10.1080/17460913.2024.2343600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Aim: The study determines rates of carbapenem resistance (CR) and frequency of blaNDM in multidrug-resistance (MDR) or extensive drug resistance (XDR), and evaluates the potential of phenotypic tests for detecting NDM production. Materials & methods: Singleplex PCR was used to detect blaNDM. Phenotypic tests, including combination disc test (CDST) and modified Hodge test (MHT), were evaluated for NDM production. Results: Among 338 CR isolates, 47.63% were MDR, whereas 52.36% were XDR with 53.25% carrying blaNDM. MHT was found to be discriminative for detecting NDM production, whereas no significant association was observed for CDST. Conclusion: The high incidence of CR and MDR and XDR isolates possessing blaNDM presents an impending threat in therapeutics. Limitations of phenotypic tests suggest better testing, including molecular detection of the enzyme.
Collapse
Affiliation(s)
- Noor Ul Ain
- Institute of Microbiology & Molecular Genetics, University of the Punjab, Lahore54590, Pakistan
- Center for Clinical Microbiology, Division of Infection and Immunity, University College, Royal Free Hospital Campus,London, NW3 2PF, UK
| | - Abdul Hannan
- Institute of Microbiology & Molecular Genetics, University of the Punjab, Lahore54590, Pakistan
| | - Namrah Imran
- Institute of Microbiology & Molecular Genetics, University of the Punjab, Lahore54590, Pakistan
| | - Asad Ali
- Institute of Microbiology & Molecular Genetics, University of the Punjab, Lahore54590, Pakistan
| | - Farhan Rasheed
- Allama Iqbal Medical College, Jinnah Hospital, Lahore, 54550, Pakistan
| | - Sikander Sultan
- Institute of Microbiology & Molecular Genetics, University of the Punjab, Lahore54590, Pakistan
| | - Timothy D McHugh
- Center for Clinical Microbiology, Division of Infection and Immunity, University College, Royal Free Hospital Campus,London, NW3 2PF, UK
| | - Saba Riaz
- Institute of Microbiology & Molecular Genetics, University of the Punjab, Lahore54590, Pakistan
- Citilab & Research Center, Lahore, 5303, Pakistan
| |
Collapse
|
2
|
Haque S, Ahmad F, Mathkor DM, Makhdoom H, Johargy AK, Faidah H, Babalghith AO, Jalal NA, Alhindi Z, Bantun F. Binding selectivity analysis of new delhi metallo-beta-lactamase-1 inhibitors using molecular dynamics simulations: Exploring possibilities for decoding antimicrobial drug resistance. J Infect Public Health 2024; 17:1108-1116. [PMID: 38714123 DOI: 10.1016/j.jiph.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 04/21/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND New Delhi metallo-beta-lactamase-1 (NDM1) confers resistance to several bacterial species against a broad range of beta-lactam antibiotics and turning them into superbugs that pose a significant threat to healthcare systems worldwide. As such, it is a potentially relevant biological target for counteracting bacterial infections. Given the lack of effective treatment options against NDM1 producing bacteria, finding a reliable inhibitor for the NDM1 enzyme is crucial. METHODS Using molecular dynamics simulations, the binding selectivities and affinities of three ligands, viz. PNK, 3S0, and N1G were investigated against NDM1. RESULTS The results indicate that N1G binds with more affinity to NDM1 than PNK and 3S0. The binding energy decomposition analysis revealed that residues I35, W93, H189, K211, and N220 showed significant binding energies with PNK, 3S0, and N1G, and hence are crucially involved in the binding of the ligands to NDM1. Molecular dynamics trajectory analysis further elicited that the ligands influence dynamic flexibility of NDM1 morphology, which contributes to the partial selectivities of PNK, 3S0, and N1G. CONCLUSIONS This in silico study offers a vital information for developing potential NDM1 inhibitors with high selectivity. Nevertheless, in vitro and in vivo experimental validation is mandated to extend the possible applications of these ligands as NDM1 inhibitors that succor in combating antimicrobial resistance.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon.
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia.
| | - Hatim Makhdoom
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia.
| | - Ayman K Johargy
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Hani Faidah
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ahmad O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Naif A Jalal
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Zain Alhindi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
3
|
Zakhour J, El Ayoubi LW, Kanj SS. Metallo-beta-lactamases: mechanisms, treatment challenges, and future prospects. Expert Rev Anti Infect Ther 2024; 22:189-201. [PMID: 38275276 DOI: 10.1080/14787210.2024.2311213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Metallo-beta-lactamases (MBLs) are responsible for resistance to almost all beta-lactam antibiotics. Found predominantly in Gram-negative bacteria, they severely limit treatment options. Understanding the epidemiology, risk factors, treatment, and prevention of infections caused by MBL-producing organisms is essential to reduce their burden. AREAS COVERED The origins and structure of MBLs are discussed. We describe the mechanisms of action that differentiate MBLs from other beta-lactamases. We discuss the global epidemiology of MBL-producing organisms and their impact on patients' outcomes. By exposing the mechanisms of transmission of MBLs among bacterial populations, we emphasize the importance of infection prevention and control. EXPERT OPINION MBLs are spreading globally and challenging the majority of available antibacterial agents. Genotypic tests play an important role in the identification of MBL production. Phenotypic tests are less specific but may be used in low-resource settings, where MBLs are more predominant. Infection prevention and control are critical to reduce the spread of organisms producing MBL in healthcare systems. New combinations such as avibactam-aztreonam and new agents such as cefiderocol have shown promising results for the treatment of infections caused by MBL-producing organisms. New antibiotic and non-antibiotic agents are being developed and may improve the management of infections caused by MBL-producing organisms.
Collapse
Affiliation(s)
- Johnny Zakhour
- Internal Medicine Department, Henry Ford Hospital, Detroit, MI, USA
| | - L'Emir Wassim El Ayoubi
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Souha S Kanj
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
4
|
Ben Abderrazek R, Hamdi E, Piccirilli A, Dhaouadi S, Muyldermans S, Perilli M, Bouhaouala-Zahar B. Camel-Derived Nanobodies as Potent Inhibitors of New Delhi Metallo-β-Lactamase-1 Enzyme. Molecules 2024; 29:1431. [PMID: 38611711 PMCID: PMC11013165 DOI: 10.3390/molecules29071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/14/2024] Open
Abstract
The injudicious usage of antibiotics during infections caused by Gram-negative bacteria leads to the emergence of β-lactamases. Among them, the NDM-1 enzyme poses a serious threat to human health. Developing new antibiotics or inhibiting β-lactamases might become essential to reduce and prevent bacterial infections. Nanobodies (Nbs), the smallest antigen-binding single-domain fragments derived from Camelidae heavy-chain-only antibodies, targeting enzymes, are innovative alternatives to develop effective inhibitors. The biopanning of an immune VHH library after phage display has helped to retrieve recombinant antibody fragments with high inhibitory activity against recombinant-NDM-1 enzyme. Nb02NDM-1, Nb12NDM-1, and Nb17NDM-1 behaved as uncompetitive inhibitors against NDM-1 with Ki values in the nM range. Remarkably, IC50 values of 25.0 nM and 8.5 nM were noted for Nb02NDM-1 and Nb17NDM-1, respectively. The promising inhibition of NDM-1 by Nbs highlights their potential application in combating particular Gram-negative infections.
Collapse
Affiliation(s)
- Rahma Ben Abderrazek
- Laboratoire des Biomolécules Venins et Applications Théranostiques, Institut Pasteur Tunis, 13 Place Pasteur, Tunisie Université Tunis El Manar, B.P N 93, Tunis 1068, Tunisia; (E.H.); (S.D.); (B.B.-Z.)
| | - Emna Hamdi
- Laboratoire des Biomolécules Venins et Applications Théranostiques, Institut Pasteur Tunis, 13 Place Pasteur, Tunisie Université Tunis El Manar, B.P N 93, Tunis 1068, Tunisia; (E.H.); (S.D.); (B.B.-Z.)
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, Via Veteoio Coppito, 67100 L’Aquila, Italy; (A.P.); (M.P.)
| | - Alessandra Piccirilli
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, Via Veteoio Coppito, 67100 L’Aquila, Italy; (A.P.); (M.P.)
| | - Sayda Dhaouadi
- Laboratoire des Biomolécules Venins et Applications Théranostiques, Institut Pasteur Tunis, 13 Place Pasteur, Tunisie Université Tunis El Manar, B.P N 93, Tunis 1068, Tunisia; (E.H.); (S.D.); (B.B.-Z.)
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleenlaan, 9, 1050 Brussels, Belgium;
| | - Mariagrazia Perilli
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, Via Veteoio Coppito, 67100 L’Aquila, Italy; (A.P.); (M.P.)
| | - Balkiss Bouhaouala-Zahar
- Laboratoire des Biomolécules Venins et Applications Théranostiques, Institut Pasteur Tunis, 13 Place Pasteur, Tunisie Université Tunis El Manar, B.P N 93, Tunis 1068, Tunisia; (E.H.); (S.D.); (B.B.-Z.)
- Faculté de Médecine de Tunis, Université Tunis El Manar, B.P N 93, Tunis 1068, Tunisia
| |
Collapse
|
5
|
Zhao M, He J, Zhang R, Feng J, Deng Y, Zhang J. Epidemiological characteristics of New Delhi Metallo-β-Lactamase-producing Enterobacteriaceae in the Fourth hospital of Hebei Medical University. BMC Infect Dis 2023; 23:298. [PMID: 37147576 PMCID: PMC10163796 DOI: 10.1186/s12879-023-08242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
The epidemiological characteristics of New Delhi Metallo-β-Lactamase-Producing (NDM) Enterobacteriaceae were analyzed to provide theoretical support for clarifying the distribution characteristics of carbapenem-resistant Enterobacteriaceae (CRE) in the hospital environment and early identification of susceptible patients. From January 2017 to December 2021,42 strains of NDM-producing Enterobacteriaceae were gathered from the Fourth Hospital of Hebei Medical University, primarily Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae. The micro broth dilution method combined with the Kirby-Bauer method was used to determine the minimal inhibitory concentrations (MICs) of antibiotics. The carbapenem phenotype was detected by the modified carbapenem inactivation method (mCIM) and EDTA carbapenem inactivation method (eCIM). Carbapenem genotypes were detected by colloidal gold immunochromatography and real-time fluorescence PCR. The results of antimicrobial susceptibility testing showed that all NDM-producing Enterobacteriaceae were multiple antibiotic resistant, but the sensitivity rate to amikacin was high. Invasive surgery prior to culture, the use of excessive amounts of different antibiotics, the use of glucocorticoids, and ICU hospitalization were clinical characteristics of NDM-producing Enterobacteriaceae infection. Molecular typing of NDM-producing Escherichia coli and Klebsiella pneumoniae was carried out by Multilocus Sequence Typing (MLST), and the phylogenetic trees were constructed. Eight sequence types (STs) and two NDM variants were detected in 11 strains of Klebsiella pneumoniae, primarily ST17, and NDM-1. A total of 8 STs and 4 NDM variants were detected in 16 strains of Escherichia coli, mainly ST410, ST167, and NDM-5. For high-risk patients who have CRE infection, CRE screening should be done as soon as feasible to adopt prompt and efficient intervention measures to prevent outbreaks in the hospital.
Collapse
Affiliation(s)
- Mengsi Zhao
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jing He
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ran Zhang
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Junhua Feng
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yanli Deng
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jinyan Zhang
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
6
|
Diversity of Bacterial Clones and Plasmids of NDM-1 Producing Escherichia coli Clinical Isolates in Central Greece. Microorganisms 2023; 11:microorganisms11020516. [PMID: 36838481 PMCID: PMC9959086 DOI: 10.3390/microorganisms11020516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The objective of the present study was to genetically characterize ten NDM-1 producing Escherichia coli isolates, recovered from patients in a hospital in Central Greece during the period 2017 to 2021.The isolates were studied by whole genome sequencing to obtain multi-locus sequencing typing (MLST), identification of blaNDM1-environment, resistome and plasmid content. MLST analysis showed the presence of eight sequence types: ST46* (two isolates), ST46, ST744, ST998, ST410, ST224, ST4380, ST683 and ST12 (one isolate each). Apart of the presence of blaNDM-1, the isolates carried a combination of various to β-lactams encoding resistance genes: blaTEM-1B, blaCTX-15, blaOXA-1, blaVIM-1, blaSHV-5, blaOXA-16, blaOXA-10 and blaVEB-1. Additionally, plurality of resistance genes to aminoglycosides, macrolides, rifamycin, phenicols, sulfonamides and tetracycline was detected. The presence of multiple replicons was observed, with predominance of IncFII and IncFIB. Analysis of blaNDM-1 genetic environment of the isolates showed that seven had 100% identity with the pS-3002cz plasmid (Accession Number KJ 958927), two with the pB-3002cz plasmid (Accession Number KJ958926) and one with the pEc19397-131 plasmid (Accession Number MG878866). Τhis latter plasmid was derived by the fusion of two, previously identified, plasmids, pAMPD2 and pLK75 (Accession Numbers CP078058 and KJ440076, respectively). The diversity of clones and plasmids of NDM-1 producing E. coli isolated from patients in Greece indicates a continuous horizontal gene transfer.
Collapse
|
7
|
Descriptive Analysis of Circulating Antimicrobial Resistance Genes in Vancomycin-Resistant Enterococcus (VRE) during the COVID-19 Pandemic. Biomedicines 2022; 10:biomedicines10051122. [PMID: 35625861 PMCID: PMC9138224 DOI: 10.3390/biomedicines10051122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023] Open
Abstract
COVID-19 offers ideal premises for bacteria to develop antimicrobial resistance. In this study, we evaluated the presence of several antimicrobial resistance genes (ARG) in vancomycin-resistant Enterococcus (VRE) isolated from rectal swabs from patients at a hospital in Cluj-Napoca, Romania. Rectal swabs were cultivated on CHROMID® VRE (bioMérieux, Marcy—l’ Étoile, France) and positive isolates were identified using MALDI-TOF Mass Spectrometry (Bruker Daltonics, Bremen, Germany) and further analyzed using the PCR technique for the presence of the following ARGs: van A, van B, tet(M), tet(L), ermB, msrA, mefA, aac(6′)-Im, aph(2)-Ib, ant(4′)-Ia, sul1, sul2, sul3, and NDM1. We isolated and identified 68 isolates of Enterococcus faecium and 11 isolates of Enterococcus faecalis. The molecular analysis showed 66 isolates positive for the vanA gene and eight positive for vanB. The most frequent association of ARG in VRE was vanA-tet(M)-ermB. There was no statistically significant difference between Enterococcus faecium and Enterococcus faecalis regarding ARGs. Our work proves that during the COVID-19 pandemic, highly resistant isolates of Enterococcus were present in patients in the intensive care unit; thus, better healthcare policies should be implemented for the management and control of these highly resistant isolates in the future.
Collapse
|
8
|
Kaewnirat K, Chuaychob S, Chukamnerd A, Pomwised R, Surachat K, Phoo MTP, Phaothong C, Sakunrang C, Jeenkeawpiam K, Hortiwakul T, Charernmak B, Chusri S. In vitro Synergistic Activities of Fosfomycin in Combination with Other Antimicrobial Agents Against Carbapenem-Resistant Escherichia coli Harboring blaNDM-1 on the IncN2 Plasmid and a Study of the Genomic Characteristics of These Pathogens. Infect Drug Resist 2022; 15:1777-1791. [PMID: 35437346 PMCID: PMC9013254 DOI: 10.2147/idr.s357965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose The spread of New Delhi metallo-β-lactamase (NDM) encoded by the blaNDM gene has been a global health crisis for many years. Most of blaNDM-harboring bacteria commonly carry various antimicrobial resistance (AMR) genes on their chromosomes or plasmids, leading to limited treatment options. Thus, we aimed to evaluate the synergistic effects of fosfomycin in combination with other antimicrobial agents against blaNDM-harboring carbapenem-resistant Escherichia coli (CREC) and to characterize the whole-genome and plasmid sequences of these pathogens. Methods Thirty-eight CREC isolates were collected from patients in the Medicine Ward, Songklanagarind Hospital, Thailand. The activity of fosfomycin in combination with other antimicrobial agents against CREC isolates harboring blaNDM on the plasmid was evaluated using the checkerboard method. In this method, the serial dilutions of two antibiotics were mixed with the cultured CREC, the mixtures were incubated, and FICI was calculated to interpret the synergistic activity of the combination. The whole-genome and particular plasmids of these pathogens were sequenced using next-generation sequencing. Sequence analysis, especially on antimicrobial resistance (AMR) genes, mobile-genetic elements (MGEs), and virulence genes was performed using many bioinformatics tools. Results Of the E. coli 38 isolates, only 3 isolates contained the blaNDM-1 gene, which is located on the IncN2 plasmid. The combinations of fosfomycin with aminoglycosides, colistin, tigecycline, sitafloxacin, and ciprofloxacin were synergies against blaNDM-1-harboring CREC isolates. Genomic analysis revealed that these isolates harbored many β-lactam resistance genes and other AMR genes that may confer resistance to aminoglycoside, fluoroquinolone, rifampicin, trimethoprim, sulfonamide, tetracycline, and macrolide. Also, various MGEs, especially the blaNDM-1-bearing IncN2 plasmid, were present in these isolates. Conclusion Our study demonstrated some synergistic effects of antimicrobial combination against CREC isolates harboring blaNDM-1 on the IncN2 plasmid. Also, our data on the whole-genome and plasmid sequences might be beneficial in the control of the spread of blaNDM-1-harboring CREC isolates. The linkages between blaNDM-1-carrying plasmid, patient information, and time of collection will be elucidated to track the horizontal gene transfer in the future.
Collapse
Affiliation(s)
- Kalyarat Kaewnirat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Surachat Chuaychob
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - May Thet Paing Phoo
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chanitnart Phaothong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chanida Sakunrang
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thanaporn Hortiwakul
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Boonsri Charernmak
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Correspondence: Sarunyou Chusri, Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand, Tel +66 8 973 40446, Email
| |
Collapse
|
9
|
NDM-1 Introduction in Portugal through a ST11 KL105 Klebsiella pneumoniae Widespread in Europe. Antibiotics (Basel) 2022; 11:antibiotics11010092. [PMID: 35052969 PMCID: PMC8773016 DOI: 10.3390/antibiotics11010092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022] Open
Abstract
The changing epidemiology of carbapenem-resistant Klebsiella pneumoniae in Southern European countries is challenging for infection control, and it is critical to identify and track new genetic entities (genes, carbapenemases, clones) quickly and with high precision. We aimed to characterize the strain responsible for the first recognized outbreak by an NDM-1-producing K. pneumoniae in Portugal, and to elucidate its diffusion in an international context. NDM-1-producing multidrug-resistant K. pneumoniae isolates from hospitalized patients (2018–2019) were characterized using FTIR spectroscopy, molecular typing, whole-genome sequencing, and comparative genomics with available K. pneumoniae ST11 KL105 genomes. FT-IR spectroscopy allowed the rapid (ca. 4 h after incubation) identification of the outbreak strains as ST11 KL105, supporting outbreak control. Epidemiological information supports a community source but without linkage to endemic regions of NDM-1 producers. Whole-genome comparison with previous DHA-1-producing ST11 KL105 strains revealed the presence of different plasmid types and antibiotic resistance traits, suggesting the entry of a new strain. In fact, this ST11 KL105 clade has successfully disseminated in Europe with variable beta-lactamases, but essentially as ESBL or DHA-1 producers. We expand the distribution map of NDM-1-producing K. pneumoniae in Europe, at the expense of a successfully established ST11 KL105 K. pneumoniae clade circulating with variable plasmid backgrounds and beta-lactamases. Our work further supports the use of FT-IR as an asset to support quick infection control.
Collapse
|
10
|
Zafer MM, Hussein AFA, Al-Agamy MH, Radwan HH, Hamed SM. Genomic Characterization of Extensively Drug-Resistant NDM-Producing Acinetobacter baumannii Clinical Isolates With the Emergence of Novel bla ADC-257. Front Microbiol 2021; 12:736982. [PMID: 34880837 PMCID: PMC8645854 DOI: 10.3389/fmicb.2021.736982] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023] Open
Abstract
Acinetobacter baumannii has become a major challenge to clinicians worldwide due to its high epidemic potential and acquisition of antimicrobial resistance. This work aimed at investigating antimicrobial resistance determinants and their context in four extensively drug-resistant (XDR) NDM-producing A. baumannii clinical isolates collected between July and October 2020 from Kasr Al-Ainy Hospital, Cairo, Egypt. A total of 20 A. baumannii were collected and screened for acquired carbapenemases (blaNDM, blaVIM and blaIMP) using PCR. Four NDM producer A. baumannii isolates were identified and selected for whole-genome sequencing, in silico multilocus sequence typing, and resistome analysis. Antimicrobial susceptibility profiles were determined using disk diffusion and broth microdilution tests. All blaNDM-positive A. baumannii isolates were XDR. Three isolates belonged to high-risk international clones (IC), namely, IC2 corresponding to ST570Pas/1701Oxf (M20) and IC9 corresponding to ST85Pas/ST1089Oxf (M02 and M11). For the first time, we report blaNDM-1 gene on the chromosome of an A. baumannii strain that belongs to sequence type ST164Pas/ST1418Oxf. Together with AphA6, blaNDM-1 was bracketed by two copies of ISAba14 in ST85Pas isolates possibly facilitating co-transfer of amikacin and carbapenem resistance. A novel blaADC allele (blaADC-257) with an upstream ISAba1 element was identified in M19 (ST/CC164Pas and ST1418Oxf/CC234Oxf). blaADC genes harbored by M02 and M11 were uniquely interrupted by IS1008. Tn2006-associated blaOXA-23 was carried by M20. blaOXA-94 genes were preceded by ISAba1 element in M02 and M11. AbGRI3 was carried by M20 hosting the resistance genes aph(3`)-Ia, aac(6`)-Ib`, catB8, ant(3``)-Ia, sul1, armA, msr(E), and mph(E). Nonsynonymous mutations were identified in the quinolone resistance determining regions (gyrA and parC) of all isolates. Resistance to colistin in M19 was accompanied by missense mutations in lpxACD and pmrABC genes. The current study provided an insight into the genomic background of XDR phenotype in A. baumannii recovered from patients in Egypt. WGS revealed strong association between resistance genes and diverse mobile genetic elements with novel insertion sites and genetic organizations.
Collapse
Affiliation(s)
- Mai M Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Amira F A Hussein
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed H Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham H Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
11
|
Comparative Evaluation of Assays for Broad Detection of Molecular Resistance Mechanisms in Enterobacterales Isolates. J Clin Microbiol 2021; 59:e0103321. [PMID: 34406800 DOI: 10.1128/jcm.01033-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rapid detection of antimicrobial resistance in both surveillance and diagnostic settings is still a major challenge for the clinical lab, compounded by the rapid evolution of antibiotic resistance mechanisms. This study compares four methods for the broad detection of antibiotic resistance genes in Enterobacterales isolates: two multiplex PCR assays (the Streck ARM-D beta-lactamase kit and the OpGen Acuitas AMR Gene Panel u5.47 (research use only [RUO]) and one microarray assay (the Check-MDR CT103XL assay), with whole-genome sequencing as a reference standard. A total of 65 Gram-negative bacterial isolates, from 56 patients, classified by phenotypic antimicrobial susceptibility testing (AST) as showing resistance to beta-lactam antimicrobials (extended-spectrum beta-lactamase [ESBL] positive or resistance to third-generation cephalosporins or carbapenems) were included in the study. Overall concordance between the molecular assays and sequencing was high. While all three assays had similar performance, the OpGen Acuitas AMR assay had the highest overall percent concordance with sequencing results. The primary differences between the assays tested were the number and diversity of targets, ranging from 9 for Streck to 34 for OpGen. This study shows that commercially available PCR-based assays can provide accurate identification of antimicrobial resistance loci in clinically significant Gram-negative bacteria. Further studies are needed to determine the clinical diagnostic role and potential benefit of such methods.
Collapse
|
12
|
Li F, Ye K, Li X, Ye L, Guo L, Wang L, Yang J. Genetic characterization of Carbapenem-Resistant Escherichia coli from China, 2015-2017. BMC Microbiol 2021; 21:248. [PMID: 34535075 PMCID: PMC8449468 DOI: 10.1186/s12866-021-02307-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The molecular characteristics of carbapenem-resistant Escherichia coli (CREco) remain unclear. METHODS We conducted a multi-center bacterial resistance monitoring project from 2015 to 2017.The minimum inhibitory concentrations ofCREco were determined bybroth microdilution method. The genome sequencing of CREcoisolates was performed, and single-nucleotide polymorphism (SNP) was analyzed. RESULTS A total of 144CREcoisolatescollected from 10 cities in China were involved in this study. ST167 (n = 43) is the most popular type, followed by ST410(n = 14), ST131(n = 9). There were 102 (70.83%) CREco isolates that produced various NDMs, including NDM-1 (n = 16), NDM-4(n = 1), NDM-5(n = 79), NDM-6(n = 2) and NDM-9(n = 4). In addition, 15 isolates produced KPC-2, three isolates wereIMP-4 positive, and three isolates produced OXA-48. Genetic relatedness and phylogenetic analysis showed that isolates with the same ST had a high degree of homology. Some STs (including ST167, ST410, ST131, ST46, ST405 and ST617) exhibited a trend of outbreak. CONCLUSIONS The majority of CREco belonged to ST167, followed by ST410 and ST131, and most of them carried various NDM-coding genes. The spread of high-risk clones of CREco has occurred in different regions of China.
Collapse
Affiliation(s)
- Fengtian Li
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Kun Ye
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xin Li
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Liyan Ye
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Ling Guo
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Lifeng Wang
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiyong Yang
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
13
|
Marí-Almirall M, Cosgaya C, Pitart C, Viñes J, Muñoz L, Campo I, Cuscó A, Rodríguez-Serna L, Santana G, Del Río A, Francino O, Ciruela P, Pujol I, Ballester F, Marco F, Martínez JA, Soriano Á, Vila J, Roca I. Dissemination of NDM-producing Klebsiella pneumoniae and Escherichia coli high-risk clones in Catalan healthcare institutions. J Antimicrob Chemother 2021; 76:345-354. [PMID: 33200193 DOI: 10.1093/jac/dkaa459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To characterize the clonal spread of carbapenem-resistant Klebsiella pneumoniae and Escherichia coli isolates between different healthcare institutions in Catalonia, Spain. METHODS Antimicrobial susceptibility was tested by disc diffusion. MICs were determined by gradient diffusion or broth microdilution. Carbapenemase production was confirmed by lateral flow. PCR and Sanger sequencing were used to identify the allelic variants of resistance genes. Clonality studies were performed by PFGE and MLST. Plasmid typing, conjugation assays, S1-PFGE plus Southern blotting and MinION Oxford Nanopore sequencing were used to characterize resistance plasmids. RESULTS Twenty-nine carbapenem-resistant isolates recovered from three healthcare institutions between January and November 2016 were included: 14 K. pneumoniae isolates from a tertiary hospital in the south of Catalonia (hospital A); 2 K. pneumoniae isolates from a nearby healthcare centre; and 12 K. pneumoniae isolates and 1 E. coli isolate from a tertiary hospital in Barcelona (hospital B). The majority of isolates were resistant to all antimicrobial agents, except colistin, and all were NDM producers. PFGE identified a major K. pneumoniae clone (n = 27) belonging to ST147 and co-producing NDM-1 and CTX-M-15, with a few isolates also harbouring blaOXA-48. Two sporadic isolates of K. pneumoniae ST307 and E. coli ST167 producing NDM-7 were also identified. blaNDM-1 was carried in two related IncR plasmid populations and blaNDM-7 in a conjugative 50 kb IncX3 plasmid. CONCLUSIONS We report the inter-hospital dissemination of XDR high-risk clones of K. pneumoniae and E. coli associated with the carriage of small, transferable plasmids harbouring blaNDM genes.
Collapse
Affiliation(s)
- Marta Marí-Almirall
- Laboratory of Antimicrobial Resistance, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Clara Cosgaya
- Laboratory of Antimicrobial Resistance, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Cristina Pitart
- Department of Clinical Microbiology, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Viñes
- SVGM, Molecular Genetics Veterinary Service, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Vetgenomics, PRUAB, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Laura Muñoz
- Laboratory of Antimicrobial Resistance, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Irene Campo
- Department of Clinical Microbiology, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Anna Cuscó
- Vetgenomics, PRUAB, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Laura Rodríguez-Serna
- Department of Epidemiology and Preventive Medicine, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Gemina Santana
- Department of Epidemiology and Preventive Medicine, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Ana Del Río
- Department of Infectious Diseases, Hospital Clínic - Institut d'investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Olga Francino
- SVGM, Molecular Genetics Veterinary Service, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Pilar Ciruela
- Public Health Agency of Catalonia (ASPCAT), Generalitat de Catalunya, Barcelona, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Pujol
- Laboratori de Microbiologia, Hospital Universitari Sant Joan de Reus, Reus, Spain.,Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Frederic Ballester
- Hospital Universitari Sant Joan de Reus-Laboratori de Referència del Camp de Tarragona i de les Terres de l'Ebre, Reus, Spain
| | - Francesc Marco
- Laboratory of Antimicrobial Resistance, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Clinical Microbiology, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - José Antonio Martínez
- Department of Infectious Diseases, Hospital Clínic - Institut d'investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Álex Soriano
- Department of Infectious Diseases, Hospital Clínic - Institut d'investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- Laboratory of Antimicrobial Resistance, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Clinical Microbiology, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Ignasi Roca
- Laboratory of Antimicrobial Resistance, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
14
|
Taylor E, Bal AM, Balakrishnan I, Brown NM, Burns P, Clark M, Diggle M, Donaldson H, Eltringham I, Folb J, Gadsby N, Macleod M, Ratnaraja NVDV, Williams C, Wootton M, Sriskandan S, Woodford N, Hopkins KL. A prospective surveillance study to determine the prevalence of 16S rRNA methyltransferase-producing Gram-negative bacteria in the UK. J Antimicrob Chemother 2021; 76:2428-2436. [PMID: 34142130 DOI: 10.1093/jac/dkab186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES To determine the prevalence of 16S rRNA methyltransferase- (16S RMTase-) producing Gram-negative bacteria in patients in the UK and to identify potential risk factors for their acquisition. METHODS A 6 month prospective surveillance study was conducted from 1 May to 31 October 2016, wherein 14 hospital laboratories submitted Acinetobacter baumannii, Enterobacterales and Pseudomonas aeruginosa isolates that displayed high-level amikacin resistance according to their testing methods, e.g. no zone of inhibition with amikacin discs. Isolates were linked to patient travel history, medical care abroad, and previous antibiotic exposure using a surveillance questionnaire. In the reference laboratory, isolates confirmed to grow on Mueller-Hinton agar supplemented with 256 mg/L amikacin were screened by PCR for 16S RMTase genes armA, rmtA-rmtH and npmA, and carbapenemase genes (blaKPC, blaNDM, blaOXA-48-like and blaVIM). STs and total antibiotic resistance gene complement were determined via WGS. Prevalence was determined using denominators for each bacterial species provided by participating hospital laboratories. RESULTS Eighty-four isolates (44.7%), among 188 submitted isolates, exhibited high-level amikacin resistance (MIC >256 mg/L), and 79 (94.0%) of these harboured 16S RMTase genes. armA (54.4%, 43/79) was the most common, followed by rmtB (17.7%, 14/79), rmtF (13.9%, 11/79), rmtC (12.7%, 10/79) and armA + rmtF (1.3%, 1/79). The overall period prevalence of 16S RMTase-producing Gram-negative bacteria was 0.1% (79/71 063). Potential risk factors identified through multivariate statistical analysis included being male and polymyxin use. CONCLUSIONS The UK prevalence of 16S RMTase-producing Gram-negative bacteria is low, but continued surveillance is needed to monitor their spread and inform intervention strategies.
Collapse
Affiliation(s)
- Emma Taylor
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, NW9 5EQ, UK
| | - Abhijit M Bal
- Microbiology, University Hospital Crosshouse, NHS Ayrshire and Arran, Kilmarnock, KA2 0BE, UK
| | | | - Nicholas M Brown
- Clinical Microbiology and Public Health Laboratory Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QW, UK
| | - Phillipa Burns
- Manchester Medical Microbiology Partnership, Manchester University NHS Foundation Trust, Manchester Royal Infirmary, Oxford Rd, Manchester, M13 9WL, UK
| | - Marilyn Clark
- Department of Medical Microbiology, Ninewells Hospital, Dundee, DD2 1SY, UK
| | - Mathew Diggle
- Nottingham University Hospitals National Health Service Trust, Hucknall Rd, Nottingham, NG5 1PB, UK
| | - Hugo Donaldson
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, Fulham Palace Road, London, W6 8RF, UK
| | - Ian Eltringham
- Microbiology Department, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
| | - Jonathan Folb
- Liverpool University Hospitals NHS Foundation Trust, Prescot St, Liverpool, L7 8XP, UK
| | - Naomi Gadsby
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Cres, Edinburgh, EH16 4SA, UK
| | - Mairi Macleod
- Clinical Microbiology, Glasgow Royal Infirmary Hospital, Level 4 New Lister Building, 10-16 Alexandra Parade, Glasgow, G31 2ER, UK
| | - Natasha V D V Ratnaraja
- Department of Microbiology, Sandwell and West Birmingham NHS Trust, Dudley Road, Birmingham, B18 7QH, UK
| | - Cheryl Williams
- Microbiology Laboratory, First Floor, Pathology Laboratory, Royal Oldham Hospital, Rochdale Road, Oldham, OL1 2JH, UK
| | - Mandy Wootton
- Public Health Wales Microbiology Cardiff, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Shiranee Sriskandan
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,MRC Centre for Molecular Bacteriology & Infection, Imperial College London, London, SW7 2DD, UK
| | - Neil Woodford
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, NW9 5EQ, UK
| | - Katie L Hopkins
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, NW9 5EQ, UK
| |
Collapse
|
15
|
Aslani S, Kiaei S, Afgar A, Morones-Ramírez JR, Aratboni HA, Faridi A, Rivera-Mackintosh LR, Kalantar-Neyestanaki D. Determination of incompatibility group plasmids and copy number of the bla NDM-1 gene in carbapenem-resistant Klebsiella pneumoniae strains recovered from different hospitals in Kerman, Iran. J Med Microbiol 2021; 70. [PMID: 33999798 DOI: 10.1099/jmm.0.001361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. New Delhi metallo-β-lactamase (NDM)-producing Klebsiella pneumoniae has become a serious global health concern.Hypothesis/Gap Statement. Due to the high genetic diversity among NDM-positive K. pneumoniae, we need further surveillance and studies to better understand the relationships between them. In addition, the coexistence of several plasmid replicon types in NDM-positive K. pneumoniae may affect the copy number of bla NDM, the MIC level to antibiotics, as well as increasing the chance of horizontal gene transfer.Aim. The aim of this study was to determine incompatible plasmid groups and copy numbers of bla NDM, and to investigate the genetic relationship of 37 NDM-positive K. pneumoniae in Kerman, Iran.Methodology. The bla NDM-1 gene was detected and confirmed by PCR-sequencing. The plasmid replicon types were determined by PCR-based replicon typing (PBRT) and the copy number of bla NDM-1 was determined by quantitaive real time-PCR (qPCR). Random amplified polymorphic DNA (RAPD)-PCR typing was used to detect genetic relationships between the strains.Results. In this study, 10 different replicon types, including Frep [n=25 (67.5 %)], FIIAs [n=11 (29.7 %)], FIA [n=5 (13.5 %)], FIB [n=3 (8.1 %)], I1-Iγ [n=2 (5.4 %)], L/M [n=7 (18.9 %)], A/C [n=7 (18.9 %)], Y [n=3 (8.1 %)], P [n=1 (2.7 %)] and FIC [n=1 (2.7 %)] were reported. The copy numbers of the bla NDM-1 gene varied from 30.00 to 5.0×106 and no statistically significant correlation was observed between a rise of the MIC to imipenem and the copy numbers of bla NDM-1 (P>0.05). According to RAPD typing results, 35 strains were divided into five clusters, while two strains were non-typeable.Conclusion. The spread of NDM-1-producing K. pneumoniae strains that carry several plasmid replicon types increases the chance of horizontal transfer of antibiotic resistance genes in hospital settings. In this study, 10 different replicon types were identified. We could not find any relationship between the increase of MIC levels to imipenem and the copy numbers of bla NDM-1. Therefore, due to the identification of different replicon types in this study, the type and genetic characteristics of bla NDM-1-carrying plasmids, and other factors such as antibiotic selective pressure, probably affect the copy number of bla NDM-1 and change the MIC level to imipenem.
Collapse
Affiliation(s)
- Sajad Aslani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Kiaei
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - José Rubén Morones-Ramírez
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Mexico
| | - Hossein Alishah Aratboni
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Mexico
| | - Ashkan Faridi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Luis Roberto Rivera-Mackintosh
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Mexico
| | - Davood Kalantar-Neyestanaki
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Co-occurrence of Carbapenemase-encoding Genes Among Klebsiella pneumoniae Clinical Isolates: Positive Relationship of bla NDM and bla SIM with Imipenem Resistance. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.112486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Carbapenem-resistant Klebsiella pneumoniae (CR-KP), known as a significant public health threat, is the most common causative agent of nosocomial and community-acquired infections. Objectives: This study aimed to evaluate resistance to carbapenems and determine the prevalence of carbapenemase genes and multilocus sequence typing (MLST) of K. pneumoniae clinical isolates. Methods: One-hundred K. pneumoniae isolates were evaluated. The minimum inhibitory concentrations (MIC) of imipenem and meropenem were assessed by the broth microdilution method. Multiplex-polymerase chain reaction (PCR) was applied to detect 11 carbapenemase-encoding genes belonging to different classes. The alleles and sequence types (ST) of three isolates were identified by MLST. Results: The MIC of carbapenems for the isolates ranged from 0.062 to 32 µg/mL. Overall, resistance rates to imipenem and meropenem were reported 11% and 34%, respectively. The bla IMP gene was the most abundant (78.4%), followed by bla OXA-48 (48.6%), bla GIM (27%), bla KPC (27%), bla SIM (21.6%), bla BIC (21.6%), bla NDM (16.2%), bla AIM (16.2%), bla VIM (16.2%), bla DIM (8.1%), and bla SPM (8.1%). The co-existence of carbapenemase genes was observed in 81.8% of the isolates. A positive relationship was found between the presence of bla NDM and bla SIM and resistance to imipenem. Multilocus sequence typing results showed three different sequence types, including ST14, ST5188, and ST1861. Conclusions: This study revealed a high prevalence of CR-KP isolates that suggests a high risk of horizontal gene transfer and potential to spread resistance among other strains. Since STs are reported for the first time in Iran, they can be considered as emerging strains.
Collapse
|
17
|
Wang X, Xu LL, Zuo XY, Lin JW, Jin Z, Shen R, Du D, Tang YZ. Rapid detection of the New Delhi metallo-β-lactamase (NDM) gene by recombinase polymerase amplification. INFECTION GENETICS AND EVOLUTION 2020; 87:104678. [PMID: 33321225 DOI: 10.1016/j.meegid.2020.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022]
Abstract
New Delhi metallo-β-lactamase (NDM) is a series of enzyme conferring resistance to β-lactam antibiotics including the carbapenems. The blaNDM gene has been reported in a variety of Gram-negative bacilli, especially in the Enterobacteriaceae and Acinetobacter spp., which is deeply disconcerting for public health worldwide. In this study, recombinase polymerase amplification assays using a basic detection (Basic-RPA) and a real-time fluorescent detection (Exo-RPA) were established for detecting blaNDM gene. The RPA reactions were performed at 39 °C and finished within 20 min. Using different copy numbers of pMD18T-NDM plasmid DNA as templates, we identified the detection limit of Basic-RPA assay (1.85 × 103 copies/μL), conventional PCR assay (1.85 × 104 copies/μL), Exo-RPA assay (1.85 × 102 copies/μL) and real-time PCR assay (1.85 × 102 copies/μL). Both Basic-RPA and Exo-RPA assays were highly specific for detecting blaNDM, as there were no cross-reactions with the strains without blaNDM gene. Examination of 62 clinical samples by RPA assays and PCR assays showed the same results, suggesting that RPA assays are reliable in clinical diagnosis. The amplification time of RPA is much shorter than that of other molecular techniques, it is easy to implement and has the potential for clinical application.
Collapse
Affiliation(s)
- Xiao Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ling-Ling Xu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiang-Yi Zuo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jia-Wen Lin
- Cancer Research Center, Department of Stomatology, School of medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Rong Shen
- Cancer Research Center, Department of Stomatology, School of medicine, Xiamen University, Xiamen, Fujian, China
| | - Dan Du
- Cancer Research Center, Department of Stomatology, School of medicine, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Reproductive Health Research, School of medicine, Xiamen University, Xiamen, Fujian, China.
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
18
|
Dziri O, Dziri R, Ali El Salabi A, Chouchani C. Carbapenemase Producing Gram-Negative Bacteria in Tunisia: History of Thirteen Years of Challenge. Infect Drug Resist 2020; 13:4177-4191. [PMID: 33262613 PMCID: PMC7699306 DOI: 10.2147/idr.s259562] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 11/23/2022] Open
Abstract
The wide spread of multidrug-resistant bacteria, particularly carbapenem-resistant Gram-negative bacteria (CR-GNB), constitutes a major public health threat worldwide, owing to the limited therapeutic options. This review will describe and uncover the Tunisian experience in the challenge against carbapenem resistance. Indeed, we illuminate on the dissemination of CR-GNB in different hospitals, animals, and other natural environments in this country. We resumed the different carbapenemase variants detected from various bacterial species and mapped their regional distribution, basing on Tunisian published data during a period extended from 2006, the date of its first description in Tunisia, to February 2019. We also resumed the different mobile genetic elements implicated in their dissemination. This review shows that the majority of the research reports focused in the north and the coastal cities in spite of the fact that KPC and IMP carbapenemases were uncommonly detected in our country. However, VIM, NDM-1, and OXA-48 enzymes were usually reported with the predominance of OXA-48 among Enterobacteriaceae. Furthermore, OXA-23, OXA-51, and OXA-58 carbapenemases constituted the main mechanism conferring carbapenem resistance among Acinetobacter baumannii in Tunisia. Collaborative efforts and raising awareness of the threat of antibiotic resistance are required in order to minimize the spread of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Olfa Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Research in Sciences and Technology of Environment, High Institute of Science and Technology of Environment, University of Carthage, Hammam-Lif, Tunisia
| | - Raoudha Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Allaaeddin Ali El Salabi
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya.,Infection Control and Patient Safety Office, New Marwa Hospital, Benghazi, Libya
| | - Chedly Chouchani
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Research in Sciences and Technology of Environment, High Institute of Science and Technology of Environment, University of Carthage, Hammam-Lif, Tunisia
| |
Collapse
|
19
|
Inhibitory Potential of Polyclonal Camel Antibodies against New Delhi Metallo-β-lactamase-1 (NDM-1). Molecules 2020; 25:molecules25194453. [PMID: 32998307 PMCID: PMC7584030 DOI: 10.3390/molecules25194453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022] Open
Abstract
New Delhi Metallo-β-lactamase-1 (NDM-1) is the most prevalent type of metallo-β-lactamase, able to hydrolyze almost all antibiotics of the β-lactam group, leading to multidrug-resistant bacteria. To date, there are no clinically relevant inhibitors to fight NDM-1. The use of dromedary polyclonal antibody inhibitors against NDM-1 represents a promising new class of molecules with inhibitory activity. In the current study, immunoreactivities of dromedary Immunoglobulin G (IgG) isotypes containing heavy-chain and conventional antibodies were tested after successful immunization of dromedary using increasing amounts of the recombinant NDM-1 enzyme. Inhibition kinetic assays, performed using a spectrophotometric method with nitrocefin as a reporter substrate, demonstrated that IgG1, IgG2, and IgG3 were able to inhibit not only the hydrolytic activity of NDM-1 but also Verona integron-encoded metallo-β-lactamase (VIM-1) (subclass B1) and L1 metallo-β-lactamase (L1) (subclass B3) with inhibitory concentration (IC50) values ranging from 100 to 0.04 μM. Investigations on the ability of IgG subclasses to reduce the growth of recombinant Escherichia coli BL21(DE3)/codon plus cells containing the recombinant plasmid expressing NDM-1, L1, or VIM-1 showed that the addition of IgGs (4 and 8 mg/L) to the cell culture was unable to restore the susceptibility of carbapenems. Interestingly, IgGs were able to interact with NDM-1, L1, and VIM-1 when tested on the periplasm extract of each cultured strain. The inhibitory concentration was in the micromolar range for all β-lactams tested. A visualization of the 3D structural basis using the three enzyme Protein Data Bank (PDB) files supports preliminarily the recorded inhibition of the three MBLs.
Collapse
|
20
|
Politi L, Gartzonika K, Spanakis N, Zarkotou O, Poulou A, Skoura L, Vrioni G, Tsakris A. Emergence of NDM-1-producing Klebsiella pneumoniae in Greece: evidence of a widespread clonal outbreak. J Antimicrob Chemother 2020; 74:2197-2202. [PMID: 31065697 DOI: 10.1093/jac/dkz176] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES NDM-producing Enterobacteriaceae clinical isolates remain uncommon in the European region. We describe the emergence and broad dissemination of one successful NDM-1-producing Klebsiella pneumoniae clone in Greek hospitals. METHODS During a 4 year survey (January 2013-December 2016), 480 single-patient carbapenem non-susceptible K. pneumoniae isolates, phenotypically MBL positive, were consecutively recovered in eight Greek hospitals from different locations and subjected to further investigation. Antimicrobial susceptibility testing, combined-disc test, identification of resistance genes by PCR and sequencing, molecular fingerprinting by PFGE, plasmid profiling, replicon typing, conjugation experiments and MLST were performed. RESULTS Molecular analysis confirmed the presence of the blaNDM-1 gene in 341 (71%) K. pneumoniae isolates. A substantially increasing trend of NDM-1-producing K. pneumoniae was noticed during the survey (R2 = 0.9724). Most blaNDM-1-carrying isolates contained blaCTX-M-15, blaOXA-1, blaOXA-2 and blaTEM-1 genes. PFGE analysis clustered NDM-1 producers into five distinct clonal types, with five distinct STs related to each PFGE clone. The predominant ST11 PFGE clonal type was detected in all eight participating hospitals, despite adherence to the national infection control programme; it was identical to that observed in the original NDM-1 outbreak in Greece in 2011, as well as in a less-extensive NDM-1 outbreak in Bulgaria in 2015. The remaining four ST clonal types (ST15, ST70, ST258 and ST1883) were sporadically detected. blaNDM-1 was located in IncFII-type plasmids in all five clonal types. CONCLUSIONS This study gives evidence of possibly the largest NDM-1-producing K. pneumoniae outbreak in Europe; it may also reinforce the hypothesis of an NDM-1 clone circulating in the Balkans.
Collapse
Affiliation(s)
- Lida Politi
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | | | - Nicholas Spanakis
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | - Olympia Zarkotou
- Department of Microbiology, Tzaneio General Hospital, Piraeus, Greece
| | - Aggeliki Poulou
- Department of Microbiology, Serres General Hospital, Serres, Greece
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgia Vrioni
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
21
|
Abstract
Abstract
Carbapenemase-producing Enterobacterales (CPE) have emerged and spread in Romania since 2010. According to the reports of the EuSPACE (European survey of carbapenemase-producing Enterobacteriaceae) the epidemio-logical stage of the CPE expansion in Romania has shifted from sporadic occurrence in 2013 directly to inter-regional spread in 2014-2015. In this study we aimed to provide data from the timeframe when the dissemination of the carbapenemase genes in Romania began, by retrospectively analyzing CPE strains in a tertiary care university hospital. During the period of November 2012 – October 2013 we found 107 CPE (8.78%) out of 1219 non-duplicate Enterobacterales strains. 26 isolates of various Enterobacterales species carried blaNDM-1, 83 Klebsiella pneumoniae strains were positive for blaOXA-48-like and 2 of these co-harboured blaNDM-1. The increased incidence of OXA-48 producing K. pneumoniae was linked to a two-peaked hospital outbreak during February and May 2013. The percentage of 24.3% of NDM-1 producers was alarming due to the diversity of involved species and the higher resistance levels to carbapenems compared with blaOXA-48-like gene carriers. Plasmid replicon typing revealed a great diversity of plasmids in NDM-1-positive strains, belonging to incompatibility groups A/C, FII, FIIk, HI2, L and M. The strong connection between certain plasmid groups and host species suggests that the transfer of broad host-range plasmids through conjugation does not play the main role in the successful spread of blaNDM-1 among Enterobacterales species.
Collapse
|
22
|
Gondal AJ, Saleem S, Jahan S, Choudhry N, Yasmin N. Novel Carbapenem-Resistant Klebsiella pneumoniae ST147 Coharboring bla NDM-1, bla OXA-48 and Extended-Spectrum β-Lactamases from Pakistan. Infect Drug Resist 2020; 13:2105-2115. [PMID: 32669863 PMCID: PMC7337428 DOI: 10.2147/idr.s251532] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose The emergence of multidrug-resistant Klebsiella pneumoniae (K. pneumoniae) is associated with the acquisition of multiple carbapenemases. Their clonal spread is a worldwide concern due to their critical role in nosocomial infections. Therefore, the identification of high-risk clones with antibiotic resistance genes is very crucial for controlling its global spread. Materials and Methods A total of 227 K. pneumoniae strains collected during April 2018 to November 2019 were confirmed by PCR. Carbapenemases and extended-spectrum β-lactamases (ESBL) were detected phenotypically. Confirmation of carbapenemases was carried out by PCR and Sanger sequencing. The clonal lineages were assigned to selected isolates by multilocus sequence typing (MLST), and the plasmid analysis was done by PCR-based detection of the plasmid replicon typing. Results Of the total K. pneumoniae, 117 (51.5%) were carbapenem resistant (CRKP) and 140 (61.7%) were identified as ESBL producers. Intermediate to high resistance was detected in the tested β-lactam drugs while polymyxin-B and tigecycline were found to be susceptible. Among CRKP, 91 (77.8%) isolates were detected as carbapenemase producing, while 55 (47%) were positive for blaNDM-1 23.9% (n=28), blaOXA-48 22.2% (n=26) and blaVIM 0.85% (n=1) while 12.7% (n=7) carried both blaNDM-1 and blaOXA-48 genes. The CRKP coharboring blaNDM-1 and blaOXA-48 genes (n=7) were positive for blaCTX-MblaSHV (n=3), blaSHV (n=1) and blaCTX-M (n=3). The novel CRKP with the coexistence of blaNDM-1, blaOXA-48, blaCTX-M and blaSHV genes were associated with the high-risk clone ST147 (n=5) and ST11 (n=2). The assigned replicon types were IncL/M, IncFII, IncA/C and IncH1. Conclusion This is the first report of the coexistence of blaNDM-1, blaOXA-48, blaCTX-M and blaSHV genes on a high-risk lineage ST147 from Pakistan. This study highlights the successful dissemination of carbapenemase resistance genes in the high-risk clones that emphasizes the importance of monitoring and controlling the spread of these diverse clones globally.
Collapse
Affiliation(s)
- Aamir Jamal Gondal
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan.,Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| |
Collapse
|
23
|
Behrmann O, Hügle M, Eckardt F, Bachmann I, Heller C, Schramm M, Turner C, Hufert FT, Dame G. 3D Printed Monolithic Microreactors for Real-Time Detection of Klebsiella pneumoniae and the Resistance Gene blaNDM-1 by Recombinase Polymerase Amplification. MICROMACHINES 2020; 11:mi11060595. [PMID: 32560308 PMCID: PMC7344889 DOI: 10.3390/mi11060595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/07/2023]
Abstract
We investigate the compatibility of three 3D printing materials towards real-time recombinase polymerase amplification (rtRPA). Both the general ability of the rtRPA reaction to occur while in contact with the cured 3D printing materials as well as the residual autofluorescence and fluorescence drift in dependence on post curing of the materials is characterized. We 3D printed monolithic rtRPA microreactors and subjected the devices to different post curing protocols. Residual autofluorescence and drift, as well as rtRPA kinetics, were then measured in a custom-made mobile temperature-controlled fluorescence reader (mTFR). Furthermore, we investigated the effects of storage on the devices over a 30-day period. Finally, we present the single- and duplex rtRPA detection of both the organism-specific Klebsiella haemolysin (khe) gene and the New Delhi metallo-β-lactamase 1 (blaNDM-1) gene from Klebsiella pneumoniae. Results: No combination of 3D printing resin and post curing protocol completely inhibited the rtRPA reaction. The autofluorescence and fluorescence drift measured were found to be highly dependent on printing material and wavelength. Storage had the effect of decreasing the autofluorescence of the investigated materials. Both khe and blaNDM-1 were successfully detected by single- and duplex-rtRPA inside monolithic rtRPA microreactors printed from NextDent Ortho Clear (NXOC). The reaction kinetics were found to be close to those observed for rtRPA performed in a microcentrifuge tube without the need for mixing during amplification. Singleplex assays for both khe and blaNDM-1 achieved a limit of detection of 2.5 × 101 DNA copies while the duplex assay achieved 2.5 × 101 DNA copies for khe and 2.5 × 102 DNA copies for blaNDM-1. Impact: We expand on the state of the art by demonstrating a technology that can manufacture monolithic microfluidic devices that are readily suitable for rtRPA. The devices exhibit very low autofluorescence and fluorescence drift and are compatible with RPA chemistry without the need for any surface pre-treatment such as blocking with, e.g., BSA or PEG.
Collapse
Affiliation(s)
- Ole Behrmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
- Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Matthias Hügle
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
- Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Franz Eckardt
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
| | - Iris Bachmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
| | - Cecilia Heller
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
| | - Marina Schramm
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
| | - Carrie Turner
- National Infections Service, Public Health England, Porton Down SP4 0JG, UK;
| | - Frank T. Hufert
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
| | - Gregory Dame
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (O.B.); (M.H.); (F.E.); (I.B.); (C.H.); (M.S.); (F.T.H.)
- Correspondence:
| |
Collapse
|
24
|
He P, Wu Y, Huang W, Wu X, Lv J, Liu P, Bu L, Bai Z, Chen S, Feng W, Yang Z. Characteristics of and variation in airborne ARGs among urban hospitals and adjacent urban and suburban communities: A metagenomic approach. ENVIRONMENT INTERNATIONAL 2020; 139:105625. [PMID: 32251897 DOI: 10.1016/j.envint.2020.105625] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 05/21/2023]
Abstract
Environmental antibiotic resistance genes (ARGs) have received much attention, while the characteristics of ARGs carried by particulate matter (PM) as a function of urban functional region are almost unknown. In this study, ARGs carried by PM2.5 and PM10 in an urban hospital, a nearby urban community and the nearest suburban community were detected using metagenomics. In total, 643 ARG subtypes belonging to 22 different ARG types were identified. The chloramphenicol exporter gene, sul1, bacA, and lnuA were the most abundant ARG subtypes in all air samples. The hospital exhibited higher ARG abundance and richness than the nearby communities. ARG profiles depended on functional region: hospital and suburban samples clustered separately, and samples from the nearby urban community interspersed among them. The representation of multidrug and quinolone resistance genes decayed with distance from the hospital to the urban community to the suburban community, indicating that hospital PM may be a hotspot for ARGs encoding proteins conferring multidrug and quinolone resistance. Airborne ARGs carried by PM in the hospital environment were more closely associated with clinically important pathogens than were those in nearby communities. In particular, carbapenemase genes, including blaNDM,blaKPC,blaIMP,blaVIM,and blaOXA-48, were discovered in hospital PM. In the suburban community, crAssphage, a human host-specific bacteriophage, was applied to predict ARG abundance and found to be enriched due to anthropogenic pollution but showed no clear evidence for ARG selection. In the hospital and the nearby urban community, the drivers of ARGs were complex. Our results highlighted that PM ARGs were closely related to human activities and revealed a potential hotspot, which could provide new evidence for further research and consequently mitigate the formation of airborne ARGs and transfer risks.
Collapse
Affiliation(s)
- Peng He
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Yan Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Wenzhong Huang
- School of Public Health, Sun Yat-sen University, Guangzhou 510006, Guangdong, PR China
| | - Xinwei Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Jiayun Lv
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Pengda Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Li Bu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Zhijun Bai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Shouyi Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China
| | - Wenru Feng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China.
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, PR China.
| |
Collapse
|
25
|
Xiang T, Chen C, Wen J, Liu Y, Zhang Q, Cheng N, Wu X, Zhang W. Resistance of Klebsiella pneumoniae Strains Carrying bla NDM-1 Gene and the Genetic Environment of bla NDM-1. Front Microbiol 2020; 11:700. [PMID: 32425903 PMCID: PMC7203411 DOI: 10.3389/fmicb.2020.00700] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/25/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Regional dissemination is the major cause of the widespread prevalence of a plasmid-encoding NDM-1 enzyme. We investigated the drug resistance, joint efficiency, and gene environment of a Klebsiella pneumoniae strain carrying bla NDM-1 gene. MATERIALS AND METHODS Carbapenem-non-susceptible strains were analyzed using the VITEK 2 Compact. Strains carrying bla NDM-1 were identified using polymerase chain reaction and sequencing. Antimicrobial susceptibility testing and plasmid conjugation experiments were then conducted. Strains carrying bla NDM-1 were subjected to Southern blot analysis. After the gene mapping of bla NDM-1, library construction, and sequencing, plasmids were subsequently spliced and genotyped using the software Glimmer 3.0, and then analyzed using Mauve software. RESULTS Among 1735 carbapenem-non-susceptible strains, 54 strains of bla NDM-1-positive bacteria were identified, which consisted of 44 strains of K. pneumoniae, 8 strains of Acinetobacter baumannii and 2 strains of Escherichia coli. Strains carrying bla NDM-1 had a resistance rate of more than 50% in most antibiotics. Plasmid conjugation between strains carrying bla NDM-1 and E. coli strain J53 had a success rate of 50%. Southern blot analysis indicated that each strain had multiple plasmids containing bla NDM-1. Among the five plasmids containing bla NDM-1 in K. pneumoniae for sequencing, two plasmids with complete sequences were obtained. The findings were as follows: (i) The p11106 and p12 plasmids were highly similar to pNDM-BTR; (ii) the p11106 and p12 plasmids showed differences in the 20-30 kb region (orf00032-orf00043) from the other six plasmids; and (iii) bla NDM-1 was located at orf00037, while ble was found at orf00038. Two tnpA genes were located in the upstream region, and orf00052 (tnpA) in the 36 kb region was in the downstream sequence. CONCLUSION bla NDM-1-containing bacteria exhibit multidrug resistance, which rapidly spreads and is transferred through efficient plasmid conjugation; the multidrug resistance of these bacteria may be determined by analyzing their drug-resistant plasmids. The presence of ble and tnpA genes suggests a possible hypothesis that bla NDM-1 originates from A. baumannii, which is retained in K. pneumoniae over a long period by transposition of mobile elements.
Collapse
Affiliation(s)
- Tianxin Xiang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chuanhui Chen
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiangxiong Wen
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Liu
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Zhang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Na Cheng
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoping Wu
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Zhang
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Xiong S, Liu X, Deng W, Zhou Z, Li Y, Tu Y, Chen L, Wang G, Fu B. Pharmacological Interventions for Bacterial Prostatitis. Front Pharmacol 2020; 11:504. [PMID: 32425775 PMCID: PMC7203426 DOI: 10.3389/fphar.2020.00504] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Prostatitis is a common urinary tract condition but bring innumerable trouble to clinicians in treatment, as well as great financial burden to patients and the society. Bacterial prostatitis (acute bacterial prostatitis plus chronic bacterial prostatitis) accounting for approximately 20% among all prostatitis have made the urological clinics complain about the genital and urinary systems all over the world. The international challenges of antibacterial treatment (emergence of multidrug-resistant bacteria, extended-spectrum beta-lactamase-producing bacteria, bacterial biofilms production and the shift in bacterial etiology) and the transformation of therapeutic strategy for classic therapy have attracted worldwide attention. To the best of our knowledge currently, there is not a single comprehensive review, which can completely elaborate these important topics and the corresponding treatment strategy in an effective way. This review summarizes the general treatment choices for bacterial prostatitis also provides the alternative pharmacological therapies for those patients resistant or intolerant to general treatment.
Collapse
Affiliation(s)
- Situ Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Zhengtao Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Yulei Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Yechao Tu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
27
|
Kizilay F, Aliyev B, Şimşir A, Kalemci S, Köse T, Taşbakan M, Pullukçu H. Carbapenem-resistant Klebsiella pneumonia infection outbreak in a tertiary urology clinic: analysis of influencing factors with a controlled trial. Turk J Med Sci 2020; 50:239-247. [PMID: 31865666 PMCID: PMC7080388 DOI: 10.3906/sag-1909-46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/22/2019] [Indexed: 11/22/2022] Open
Abstract
Background/aim Carbapenem-resistantKlebsiella pneumoniae (CR-KP) infections encountered in urology patients differentiate from infections caused by other factors, both in respect to prophylaxis and treatment stage, and require a special approach. We aimed to analyse the predisposing factors and the antibiotherapies for CR-KP infection outbreak in a tertiary urology clinic. Materials and methods There were 75 patients in the CR-KP positive group (Group I) and 146 patients in the CR-KP negative group (Group II). Analysis of the predisposing factors for CR-KP infection and comparison of the reinfection rate and the antibiotherapies in the 2 groups were the endpoints. Results In the first group, age, comorbidity, previous antibiotic use, and nephrostomy tube rates were higher (P = 0.015, P = 0.001, P = 0.004, and P < 0.001, respectively). In the second group, open urological surgery rate, and the proportion of patients presenting with flank pain, lower urinary tract symptoms, and haematuria were higher (P = 0.029, P < 0.001, P < 0.001, and P = 0.007). In the first group, the proportion of patients treated with transurethral bladder tumour resection was higher, whereas, percutaneous nephrolithotomy was higher in the second group (P = 0.045 for both). While hospitalization and Foley catheterization duration were longer in the first group (P < 0.001 for both), double J stent and nephrostomy duration were longer in the second group (P < 0.001 and P = 0.005). Mean leukocyte count at admission was higher in the first group (P < 0.001). Conclusion Advanced age, comorbidities, previous antibiotic use, and prolonged Foley catheterization duration are predisposing factors for this infection in the urology department. Two-week administration of combination antibiotic regimens containing carbapenem were effective for the treatment of this infection.
Collapse
Affiliation(s)
- Fuat Kizilay
- Department of Urology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Bayram Aliyev
- Department of Urology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Adnan Şimşir
- Department of Urology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Serdar Kalemci
- Department of Urology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Timur Köse
- Department of Biostatistics, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Meltem Taşbakan
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Hüsnü Pullukçu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Ege University, İzmir, Turkey
| |
Collapse
|
28
|
Raju R, Agrawal A, Varun C, Shette A, John D. The presence of gram-negative bacteria carrying the New Delhi metallo-β-Lactamase gene on abiotic touch surfaces at a tertiary care center. BIOMEDICAL RESEARCH JOURNAL 2020. [DOI: 10.4103/bmrj.bmrj_23_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
29
|
Characteristics of Carbapenem-Resistant and Colistin-Resistant Escherichia coli Co-Producing NDM-1 and MCR-1 from Pig Farms in China. Microorganisms 2019; 7:microorganisms7110482. [PMID: 31652858 PMCID: PMC6920953 DOI: 10.3390/microorganisms7110482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
The emergence of carbapenem-resistant and colistin-resistant Enterobacteriaceae represents a great risk for public health. In this study, the phenotypical and genetic characteristics of eight carbapenem-resistant and colistin-resistant isolates from pig farms in China were determined by the broth microdilution method and whole genome sequencing. Antimicrobial susceptibility testing showed that the eight carbapenem-resistant and colistin-resistant strains were resistant to three aminoglycosides, twelve β-lactams, one of the phenicols, one of the tetracyclines, and one of the fluoroquinolones tested, simultaneously. The prediction of acquired resistant genes using the whole genome sequences revealed the co-existence of blaNDM-1 and mcr-1 as well as the other genes that were responsible for the multidrug-resistant phenotypes. Bioinformatics analysis also showed that the carbapenem-resistant gene blaNDM-1 was located on a putative IncFII-type plasmid, which also carried the other acquired resistant genes identified, including fosA3, blaTEM-1B and rmtB, while the colistin-resistant gene mcr-1 was carried by a putative IncX4-type plasmid. Finally, we found that these resistant genes/plasmids were conjugative, and they could be co-conjugated, conferring resistance to multiple types of antibiotics, including the carbapenems and colistin, to the recipient Escherichia coli strains.
Collapse
|
30
|
Searching for the Optimal Treatment for Metallo- and Serine-β-Lactamase Producing Enterobacteriaceae: Aztreonam in Combination with Ceftazidime-avibactam or Meropenem-vaborbactam. Antimicrob Agents Chemother 2019:AAC.01426-19. [PMID: 31570403 DOI: 10.1128/aac.01426-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: Metallo-β-lactamase (MBL)-producing Enterobacteriaceae, particularly those that co-harbor serine β-lactamases, are a serious emerging public health threat given their rapid dissemination and the limited number of treatment options. Pre-clinical and anecdotal clinical data support the use of aztreonam in combination with ceftazidime-avibactam against these pathogens, but other aztreonam-based combinations have not been explored. The objective of this study was to evaluate the in vitro activity and compare synergy between aztreonam in combination with ceftazidime-avibactam and meropenem-vaborbactam against serine and MBL-producing Enterobacteriaceae via time-kill analyses. Methods: 8 clinical Enterobacteriaceae strains (4 Escherichia coli and 4 Klebsiella pneumoniae) co-producing NDM and at least one serine β-lactamase were used for all experiments. Drugs were tested alone, in dual β-lactam combinations, and in triple drug combinations against all strains. Results: All strains were resistant to ceftazidime-avibactam and meropenem-vaborbactam and 7/8 (87.5%) strains were resistant to aztreonam. Aztreonam combined with ceftazidime-avibactam was synergistic against all 7 aztreonam-resistant strains. Aztreonam combined with meropenem-vaborbactam was synergistic against all aztreonam-resistant strains with the exception of an OXA-232-producing K. pneumoniae strain. Neither triple combination was synergistic against the aztreonam-susceptible strain. Likewise, neither dual β-lactam combination was synergistic against any strain. Conclusions: These data suggest that aztreonam plus meropenem-vaborbactam has similar activity to aztreonam plus ceftazidime-avibactam against Enterobacteriaceae producing NDM and other non-OXA-48-like serine β-lactamases. Confirmation of these findings in future in vitro and in vivo models is warranted.
Collapse
|
31
|
Martino F, Tijet N, Melano R, Petroni A, Heinz E, De Belder D, Faccone D, Rapoport M, Biondi E, Rodrigo V, Vazquez M, Pasteran F, Thomson NR, Corso A, Gomez SA. Isolation of five Enterobacteriaceae species harbouring blaNDM-1 and mcr-1 plasmids from a single paediatric patient. PLoS One 2019; 14:e0221960. [PMID: 31498841 PMCID: PMC6733481 DOI: 10.1371/journal.pone.0221960] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/19/2019] [Indexed: 11/18/2022] Open
Abstract
In Argentina, NDM metallo-β-lactamase was first reported in 2013. By now, it has disseminated throughout the country in diverse Gram negative bacteria. Here, we report the case of a paediatric patient that underwent a 1-year hospitalisation due to erythrodermic psoriasis in 2014 and received multiple antimicrobial treatments. During his stay, five isolates were obtained from rectal swabs (rs) or blood culture (bc) suspicious of carbapenemase production: a K. quasipneumoniae subsp. quasipneumoniae (rs), Citrobacter freundii (rs), Escherichia coli (bc), Enterobacter cloacae (rs), and a Serratia marcescens (bc). The isolates were studied with broth microdilution, biparental conjugation and plasmid and whole genome sequencing (Illumina). All isolates harboured an 138,998-bp type 1 IncC plasmid that carried blaNDM-1, bleMBL, blaCMY-6, rmtC, aac(6’)-Ib, and sul1 resistance genes. Additionally, the blaNDM-plasmids contained ISKpn8 an insertion sequence previously described as associated only to blaKPC. One isolate, a colistin-resistant E. coli, also carried a mcr-1-containing an IncI2 plasmid, which did not harbour additional resistance. The whole genome of K. quasipneumoniae subsp. quasipneumoniae isolate was fully sequenced. This isolate harboured, additionally to blaNDM, three plasmid-mediated quinolone resistance genes: qnrB4, qnrB52 and aac(6’)-Ib-cr1. The E. cloacae isolate also harboured qnrA1. These findings alert to the underestimated horizontal dissemination of multidrug-resistant plasmids limiting treatment options with last resort antimicrobials.
Collapse
Affiliation(s)
- F. Martino
- Servicio Antimicrobianos (National Reference Laboratory on Antimicrobial Resistance), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - N. Tijet
- Public Health Ontario Laboratories, Toronto, Ontario, Canada
| | - R. Melano
- Public Health Ontario Laboratories, Toronto, Ontario, Canada
| | - A. Petroni
- Servicio Antimicrobianos (National Reference Laboratory on Antimicrobial Resistance), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - E. Heinz
- The Welcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - D. De Belder
- Servicio Antimicrobianos (National Reference Laboratory on Antimicrobial Resistance), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - D. Faccone
- Servicio Antimicrobianos (National Reference Laboratory on Antimicrobial Resistance), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - M. Rapoport
- Servicio Antimicrobianos (National Reference Laboratory on Antimicrobial Resistance), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - E. Biondi
- Hospital de Niños “Dr. Ricardo Gutiérrez”, Ciudad Autónoma de Buenos Aires, Argentina
| | - V. Rodrigo
- Hospital de Niños “Dr. Ricardo Gutiérrez”, Ciudad Autónoma de Buenos Aires, Argentina
| | - M. Vazquez
- Hospital de Niños “Dr. Ricardo Gutiérrez”, Ciudad Autónoma de Buenos Aires, Argentina
| | - F. Pasteran
- Servicio Antimicrobianos (National Reference Laboratory on Antimicrobial Resistance), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - N. R. Thomson
- The Welcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - A. Corso
- Servicio Antimicrobianos (National Reference Laboratory on Antimicrobial Resistance), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - S. A. Gomez
- Servicio Antimicrobianos (National Reference Laboratory on Antimicrobial Resistance), Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
32
|
Zhao Z, Liao C, Chang S, Ding K, Liu Z, Xue Y. NDM-1-producing Escherichia coli isolated from pigs induces persistent infection with limited pathogenicity. Microb Pathog 2019; 135:103620. [PMID: 31310833 DOI: 10.1016/j.micpath.2019.103620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/23/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
NDM-1-producing Enterobacteriaceae are multidrug-resistant bacteria, also called superbacteria, that have become important global human health threats in recent years. However, data about NDM-1-producing bacteria in animals are rare. In this study, an NDM-1-producing Escherichia coli isolate (designated E120413) was obtained from pigs in Henan province, China in 2012. The susceptibility of E. coli E120413 to antimicrobial agents was determined using Kirby-Bauer disk diffusion and micro-dilution methods. Susceptibility tests indicated that E. coli E120413 was resistant to almost all common antibiotics with high MIC values obtained for most antibiotics tested. E. coli E120413 was detected in the heart, liver, spleen, lung, kidney, brain, stomach, duodenum, mesenteric lymph nodes, and fecal samples of piglets in both cohabitation and experimental groups and the bacteria persisted for more than 2 weeks. However, no obvious clinical symptoms or serious pathological lesions were observed. This is the first investigation of NDM-1-producing E. coli isolate from pigs in China. Although no significant pathological lesions were observed, NDM-1-producing E. coli was found to be highly transmissible and to cause persistent infection in pigs.
Collapse
Affiliation(s)
- Zhanqin Zhao
- Lab of Veterinary Biological Products, College of Animal Science and Technology, Henan University of Science and Techology, China
| | - Chengshui Liao
- Lab of Veterinary Biological Products, College of Animal Science and Technology, Henan University of Science and Techology, China
| | - Shikai Chang
- Lab of Veterinary Biological Products, College of Animal Science and Technology, Henan University of Science and Techology, China
| | - Ke Ding
- Lab of Veterinary Biological Products, College of Animal Science and Technology, Henan University of Science and Techology, China
| | - Zhijun Liu
- Lab of Veterinary Biological Products, College of Animal Science and Technology, Henan University of Science and Techology, China
| | - Yun Xue
- Lab of Medical Microbiological Engineering, College of Medical Technology and Engineering, Henan University of Science and Techology, Luoyang, China.
| |
Collapse
|
33
|
Spreading Patterns of NDM-Producing Enterobacteriaceae in Clinical and Environmental Settings in Yangon, Myanmar. Antimicrob Agents Chemother 2019; 63:AAC.01924-18. [PMID: 30530602 DOI: 10.1128/aac.01924-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 12/05/2018] [Indexed: 01/23/2023] Open
Abstract
The spread of carbapenemase-producing Enterobacteriaceae (CPE), contributing to widespread carbapenem resistance, has become a global concern. However, the specific dissemination patterns of carbapenemase genes have not been intensively investigated in developing countries, including Myanmar, where NDM-type carbapenemases are spreading in clinical settings. In the present study, we phenotypically and genetically characterized 91 CPE isolates obtained from clinical (n = 77) and environmental (n = 14) samples in Yangon, Myanmar. We determined the dissemination of plasmids harboring genes encoding NDM-1 and its variants using whole-genome sequencing and plasmid analysis. IncFII plasmids harboring bla NDM-5 and IncX3 plasmids harboring bla NDM-4 or bla NDM-7 were the most prevalent plasmid types identified among the isolates. The IncFII plasmids were predominantly carried by clinical isolates of Escherichia coli, and their clonal expansion was observed within the same ward of a hospital. In contrast, the IncX3 plasmids were found in phylogenetically divergent isolates from clinical and environmental samples classified into nine species, suggesting widespread dissemination of plasmids via horizontal transfer. Half of the environmental isolates were found to possess IncX3 plasmids, and this type of plasmid was confirmed to transfer more effectively to recipient organisms at a relatively low temperature (25°C) compared to the IncFII plasmid. Moreover, various other plasmid types were identified harboring bla NDM-1, including IncFIB, IncFII, IncL/M, and IncA/C2, among clinical isolates of Klebsiella pneumoniae or Enterobacter cloacae complex. Overall, our results highlight three distinct patterns of the dissemination of bla NDM-harboring plasmids among CPE isolates in Myanmar, contributing to a better understanding of their molecular epidemiology and dissemination in a setting of endemicity.
Collapse
|
34
|
Diverse Vectors and Mechanisms Spread New Delhi Metallo-β-Lactamases among Carbapenem-Resistant Enterobacteriaceae in the Greater Boston Area. Antimicrob Agents Chemother 2019; 63:AAC.02040-18. [PMID: 30530605 DOI: 10.1128/aac.02040-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 12/27/2022] Open
Abstract
New Delhi metallo-beta-lactamases (NDMs) are an uncommon but emerging cause of carbapenem resistance in the United States. Genomic factors promoting their domestic spread remain poorly characterized. A prospective genomic surveillance program among Boston-area hospitals identified multiple new occurrences of NDM-carrying strains of Escherichia coli and Enterobacter cloacae complex in inpatient and outpatient settings, representing the first occurrences of NDM-mediated resistance since initiating genomic surveillance in 2011. Cases included domestic patients with no international exposures. PacBio sequencing of isolates identified strain characteristics, resistance genes, and the complement of mobile vectors mediating spread. Analyses revealed a common 3,114-bp region containing the bla NDM gene, with carriage of this conserved region among unique strains by diverse transposon and plasmid backbones. Functional studies revealed a broad capacity for bla NDM transmission by conjugation, transposition, and complex interplasmid recombination events. NDMs represent a rapidly spreading form of drug resistance that can occur in inpatient and outpatient settings and in patients without international exposures. In contrast to Tn4401-based spread of Klebsiella pneumoniae carbapenemases (KPCs), diverse transposable elements mobilize NDM enzymes, commonly with other resistance genes, enabling naive strains to acquire multi- and extensively drug-resistant profiles with single transposition or plasmid conjugation events. Genomic surveillance provides effective means to rapidly identify these gene-level drivers of resistance and mobilization in order to inform clinical decisions to prevent further spread.
Collapse
|
35
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
36
|
Multidrug-Resistant Gram-Negative Pathogens: The Urgent Need for 'Old' Polymyxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:9-13. [PMID: 31364068 DOI: 10.1007/978-3-030-16373-0_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antibiotic resistance has presented a major health challenge in the world and many isolates of Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa become resistant to almost all current antibiotics. This chapter provides an overview on the mechanisms of antibiotic resistance in these Gram-negative pathogens and outlines the formidable problem of the genetics of bacterial resistance. Prevalent multidrug-resistance in Gram-negative bacteria underscores the need for optimizing the clinical use of the last-line polymyxins.
Collapse
|
37
|
Multidrug-resistant Citrobacter freundii ST139 co-producing NDM-1 and CMY-152 from China. Sci Rep 2018; 8:10653. [PMID: 30006537 PMCID: PMC6045649 DOI: 10.1038/s41598-018-28879-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/02/2018] [Indexed: 11/14/2022] Open
Abstract
The emergence of carbapenemase-producing Citrobacter freundii poses a significant threat to public health worldwide. Here, we reported a C. freundii strain CWH001 which was resistant to all tested antimicrobials except tetracycline. Whole genome sequencing and analysis were performed. The strain, which belonged to a new sequence type ST139, showed close relationship with other foreign C. freundii strains through phylogenetic analysis. A novel variant of the intrinsic blaCMY gene located on the chromosome was identified and designated as blaCMY-152. Coexistence of blaNDM-1 with qnrS1 was found on a conjugative IncN plasmid, which had a backbone appearing in various plasmids. Other class A ESBL genes (blaVEB-3 and blaTEM-1) were also detected on two different novel plasmids. The emergence of multidrug-resistant C. freundii is of major concern, causing great challenges to the treatment of clinical infections. Great efforts need to be taken for the specific surveillance of this opportunistic pathogen.
Collapse
|
38
|
Cui L, Lei L, Lv Y, Zhang R, Liu X, Li M, Zhang F, Wang Y. bla NDM-1 -producing multidrug-resistant Escherichia coli isolated from a companion dog in China. J Glob Antimicrob Resist 2018; 13:24-27. [DOI: 10.1016/j.jgar.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022] Open
|
39
|
Sugawara Y, Akeda Y, Sakamoto N, Takeuchi D, Motooka D, Nakamura S, Hagiya H, Yamamoto N, Nishi I, Yoshida H, Okada K, Zin KN, Aye MM, Tonomo K, Hamada S. Genetic characterization of blaNDM-harboring plasmids in carbapenem-resistant Escherichia coli from Myanmar. PLoS One 2017; 12:e0184720. [PMID: 28910381 PMCID: PMC5598989 DOI: 10.1371/journal.pone.0184720] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/29/2017] [Indexed: 11/19/2022] Open
Abstract
The bacterial enzyme New Delhi metallo-β-lactamase hydrolyzes almost all β-lactam antibiotics, including carbapenems, which are drugs of last resort for severe bacterial infections. The spread of carbapenem-resistant Enterobacteriaceae that carry the New Delhi metallo-β-lactamase gene, blaNDM, poses a serious threat to public health. In this study, we genetically characterized eight carbapenem-resistant Escherichia coli isolates from a tertiary care hospital in Yangon, Myanmar. The eight isolates belonged to five multilocus-sequence types and harbored multiple antimicrobial-resistance genes, resulting in resistance against nearly all of the antimicrobial agents tested, except colistin and fosfomycin. Nine plasmids harboring blaNDM genes were identified from these isolates. Multiple blaNDM genes were found in the distinct Inc-replicon types of the following plasmids: an IncA/C2 plasmid harboring blaNDM-1 (n = 1), IncX3 plasmids harboring blaNDM-4 (n = 2) or blaNDM-7 (n = 1), IncFII plasmids harboring blaNDM-4 (n = 1) or blaNDM-5 (n = 3), and a multireplicon F plasmid harboring blaNDM-5 (n = 1). Comparative analysis highlighted the diversity of the blaNDM-harboring plasmids and their distinct characteristics, which depended on plasmid replicon types. The results indicate circulation of phylogenetically distinct strains of carbapenem-resistant E. coli with various plasmids harboring blaNDM genes in the hospital.
Collapse
Affiliation(s)
- Yo Sugawara
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- * E-mail: (YA); (YS)
| | - Yukihiro Akeda
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan
- * E-mail: (YA); (YS)
| | - Noriko Sakamoto
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Dan Takeuchi
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hideharu Hagiya
- Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan
| | - Norihisa Yamamoto
- Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan
| | - Isao Nishi
- Laboratory for Clinical Investigation, Osaka University Hospital, Suita, Japan
| | - Hisao Yoshida
- Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan
| | - Kazuhisa Okada
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Khwar Nyo Zin
- Clinical Laboratory Department, Yangon General Hospital, Yangon, Myanmar
| | - Mya Mya Aye
- Bacteriology Research Division, Department of Medical Research, Yangon, Myanmar
| | - Kazunori Tonomo
- Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan
| | - Shigeyuki Hamada
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
40
|
Savov E, Politi L, Spanakis N, Trifonova A, Kioseva E, Tsakris A. NDM-1 Hazard in the Balkan States: Evidence of the First Outbreak of NDM-1-Producing Klebsiella pneumoniae in Bulgaria. Microb Drug Resist 2017; 24:253-259. [PMID: 28876169 DOI: 10.1089/mdr.2017.0230] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
New Delhi MBL (NDM) carbapenemase-producing Klebsiella pneumoniae has become one of the most concerning multidrug-resistant pathogens. The Balkan counties are considered a reservoir for the spread of such strains based on several reports documenting NDM infections after hospitalization in this region. Nevertheless, NDM-producing K. pneumoniae have been only occasionally documented from Balkans. The current study documents the first polyclonal outbreak caused by NDM-1-producing K. pneumoniae in Bulgaria. From July 2015 to April 2016, all 25 single-patient carbapenem-nonsusceptible K. pneumoniae isolates were collected. Phenotypic and molecular screening revealed that 17 produced NDM-1 carbapenemase. All NDM-1 producers harbored blaCTX-M-15, blaCMY-4, blaTEM-1, and blaOXA-2; five also harbored blaOXA-1. In all cases, blaNDM-1 was flanked upstream by ISAba125 element and downstream by bleMBL. Pulsed-field gel electrophoresis (PFGE) clustered NDM-1-positive isolates into four distinct clonal types, A to D. MLST assigned isolates of the dominant clonal type A (n = 14) to sequence type (ST) 11, while isolates of clonal types B, C, and D to ST16, ST15, and ST391, respectively. Of interest, ST11 isolates belonged to the same PFGE type as those of the recently described NDM-1 ST11 clonal outbreak in Greece. Traveling abroad or overseas hospitalization was not reported in any case, suggesting most likely intra- and interhospital dissemination. The study presents the first polyclonal outbreak of NDM-producing K. pneumoniae in the Balkans and underlines the need for larger epidemiological studies in the region to illustrate commonalities in the transmission of NDM clones and possible sources in the community.
Collapse
Affiliation(s)
- Encho Savov
- 1 Laboratory of Microbiology , Military Medical Academy, Sofia, Bulgaria
| | - Lida Politi
- 2 Department of Microbiology, Medical School, University of Athens , Athens, Greece
| | - Nicholas Spanakis
- 2 Department of Microbiology, Medical School, University of Athens , Athens, Greece
| | - Angelina Trifonova
- 1 Laboratory of Microbiology , Military Medical Academy, Sofia, Bulgaria
| | - Elena Kioseva
- 1 Laboratory of Microbiology , Military Medical Academy, Sofia, Bulgaria
| | - Athanasios Tsakris
- 2 Department of Microbiology, Medical School, University of Athens , Athens, Greece
| |
Collapse
|
41
|
Direct and convenient measurement of plasmid stability in lab and clinical isolates of E. coli. Sci Rep 2017; 7:4788. [PMID: 28684862 PMCID: PMC5500522 DOI: 10.1038/s41598-017-05219-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/25/2017] [Indexed: 01/01/2023] Open
Abstract
Plasmids are important mobile elements in bacteria, contributing to evolution, virulence, and antibiotic resistance. Natural plasmids are generally large and maintained at low copy number and thus prone to be lost. Therefore, dedicated plasmid maintenance systems have evolved, leading to plasmid loss rates as low as 1 per 107 divisions. These low rates complicate studies of plasmid loss, as traditional techniques for measuring plasmid loss are laborious and not quantitative. To overcome these limitations, we leveraged a stringent negative selection system to develop a method for performing direct, quantitative measurements of plasmid loss in E. coli. We applied our method to gain mechanistic insights into a heterologously reconstituted segregation system in lab strains and clinical isolates of E. coli. We also performed direct stability studies of a currently circulating resistance plasmid in a clinical isolate, strain EC958, which is a member of the rapidly expanding global ST131 E. coli clone. Our results establish the foundational assays required to screen for small molecules targeting plasmid stability, which could complement current strategies for reducing the spread of antibiotic resistance, complementing other strategies for treating antibiotic resistant bacteria.
Collapse
|
42
|
Shen B, Zhu C, Gao X, Liu G, Song J, Yu Y. Oligopeptides as full-length New Delhi metallo-β-lactamase-1 (NDM-1) inhibitors. PLoS One 2017; 12:e0177293. [PMID: 28542279 PMCID: PMC5441612 DOI: 10.1371/journal.pone.0177293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 04/25/2017] [Indexed: 01/10/2023] Open
Abstract
‘Superbug’ bacteria producing NDM-1 enzyme causing wide public concern were first detected in a patient who visited India in 2008. It's an effective approach to combining β-lactam antibiotics with NDM-1 inhibitor for treating NDM-1 producing strain infection. In our research, we designed ten oligopeptides, tested IC50 values against NDM-1 enzyme, determined the MIC values of synergistic antibacterial effect and explored the binding model. We found that the oligopeptides 2 (Cys-Phe) and 5 (Cys-Asp) respectively presented IC50 values of 113 μM and 68 μM and also displayed favorable synergistic effects of the inhibitors in combination with ertapenem against genetic engineering-host E. coli BL21 (DE3)/pET30a-NDM-1 and a clinical isolate of P. aeruginosa with blaNDM-1. Flexible docking and partial charge study suggested the interaction between oligopeptide and NDM-1. Three types of action effects, hydrogen bond, electrostatic effect and π-π interaction, contributed to the inhibitory activities.
Collapse
Affiliation(s)
- Bingzheng Shen
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xiang Gao
- Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Gang Liu
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jinchun Song
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
- * E-mail: (JS); (YY)
| | - Yan Yu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (JS); (YY)
| |
Collapse
|
43
|
Yang P, Wang N, Wang C, Yao Y, Fu X, Yu W, Cai R, Yao M. 460nm visible light irradiation eradicates MRSA via inducing prophage activation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 166:311-322. [DOI: 10.1016/j.jphotobiol.2016.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 12/20/2022]
|
44
|
Kandil H, Cramp E, Vaghela T. Trends in Antibiotic Resistance in Urologic Practice. Eur Urol Focus 2016; 2:363-373. [PMID: 28723468 DOI: 10.1016/j.euf.2016.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022]
Abstract
CONTEXT The significant global upsurge in antimicrobial resistance, particularly among Enterobacteriaceae, represents a serious threat to health care systems. The implications for urologic practice are of particular concern. OBJECTIVE To review trends in antibiotic resistance in urologic practice. EVIDENCE ACQUISITION We report current European trends of resistance in Gram-negative uropathogens. EVIDENCE SYNTHESIS In addition to β-lactam resistance, Gram-negative pathogens are often resistant to multiple drug classes, including aminoglycosides, fluoroquinolones, and carbapenems, commonly used to treat urologic infections. Interest is renewed in old antibiotics, and several new antibiotics are in the pipeline to meet the challenge of treating these infections. In this review, we summarise emerging trends in antimicrobial resistance and its impact on urologic practice. We also review current guidelines on the treatment and prevention of urologic infections with these organisms, and some key antibiotics in the era of resistance. CONCLUSIONS Increasing antimicrobial resistance represents a challenge to urologic practice for both treatment and prophylaxis. Antibiotic choice should be determined according to risk factors for multidrug resistance. Good knowledge of the local microbial prevalence and resistance profile is required to guide antimicrobial therapy. PATIENT SUMMARY Antimicrobial resistance represents a challenge in urology. We summarise emerging trends in antimicrobial resistance and review current guidelines on the treatment and prevention of urologic infections, as well as some key antibiotics in the era of resistance.
Collapse
Affiliation(s)
- Hala Kandil
- Microbiology Department, West Hertfordshire Hospitals NHS Trust, Watford, UK
| | - Emma Cramp
- Pharmacy Department, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Tejal Vaghela
- Pharmacy Department, West Hertfordshire Hospitals NHS Trust, Watford, UK.
| |
Collapse
|
45
|
An J, Guo L, Zhou L, Ma Y, Luo Y, Tao C, Yang J. NDM-producing Enterobacteriaceae in a Chinese hospital, 2014-2015: identification of NDM-producing Citrobacterwerkmanii and acquisition of blaNDM-1-carrying plasmid in vivo in a clinical Escherichia coli isolate. J Med Microbiol 2016; 65:1253-1259. [PMID: 27667823 DOI: 10.1099/jmm.0.000357] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM)-producing Enterobacteriaceae (NPE) shows prevalence in China. Little is known about the mechanisms related to the spread of NPE. Recently, a total of 51 non-duplicated NPE isolates were collected from a tertiary-care hospital in China and analysed for genetic relatedness by PFGE, antimicrobial susceptibility by Etest and sequence type by multilocus sequence typing. S1-PFGE and Southern blot analysis or PCR amplification were used for plasmid profiling. Between 2014 and 2015, 22 Escherichia coli, 10 Klebsiella pneumoniae, 9 Enterobacter cloacae, 2 Enterobacter aerogenes, 3 Providencia rettgeri, 1 Klebsiella oxytoca, 1 Proteus mirabilis, 1 Citrobacter freundii, 1 Citrobacterwerkmanii and 1 Raoultella planticola were identified as NPE. Results of PFGE and multilocus sequence typing showed that most strains were genetically unrelated. Among the 45 blaNDM-carrying plasmids, there were 25 IncX3 plasmids with a size of about 30 to 50 kb, one 100 kb IncX3 plasmid, 11 IncA/C plasmids with a size range from 70 to 300 kb, six 90 to 120 kb IncB/O plasmids, one IncN plasmid with a size of 100 kb and one 140 kb IncFrep plasmid. An NDM-1-producing isolate of C. werkmanii was identified, which had not been reported previously. An Escherichia coli strain was found acquiring a blaNDM-1-carrying IncFrep plasmid in vivo during infection. In conclusion, an NDM-1-producing isolate of C. werkmanii was identified. An Escherichia coli strain acquired a blaNDM-1-carrying plasmid in vivo. IncX3 and IncA/C plasmids with various sizes might have emerged as the main platforms mediating the spread of the blaNDM genes in China.
Collapse
Affiliation(s)
- Jingna An
- Department of Microbiology, Chinese PLA General Hospital, Beijing, PR China.,Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ling Guo
- Department of Microbiology, Chinese PLA General Hospital, Beijing, PR China
| | - Lin Zhou
- Department of Microbiology, Chinese PLA General Hospital, Beijing, PR China
| | - Yanning Ma
- Department of Microbiology, Chinese PLA General Hospital, Beijing, PR China
| | - Yanping Luo
- Department of Microbiology, Chinese PLA General Hospital, Beijing, PR China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiyong Yang
- Department of Microbiology, Chinese PLA General Hospital, Beijing, PR China
| |
Collapse
|
46
|
Chung PY. The emerging problems of Klebsiella pneumoniae infections: carbapenem resistance and biofilm formation. FEMS Microbiol Lett 2016; 363:fnw219. [PMID: 27664057 DOI: 10.1093/femsle/fnw219] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2016] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that commonly causes nosocomial infections in the urinary tract, respiratory tract, lung, wound sites and blood in individuals with debilitating diseases. Klebsiella pneumoniae is still a cause of severe pneumonia in alcoholics in Africa and Asia, and the predominant primary pathogen of primary liver abscess in Taiwan and Southeast Asia, particularly in Asian and Hispanic patients, and individuals with diabetes mellitus. In the United States and Europe, K. pneumoniae infections are most frequently associated with nosocomial infections. The emergence of antibiotic-resistant strains of K. pneumoniae worldwide has become a cause of concern where extended-spectrum β-lactamases (ESBLs) and carbapenemase-producing strains have been isolated with increasing frequency. The pathogen's ability to form biofilms on inserted devices such as urinary catheter has been proposed as one of the important mechanisms in nosocomially acquired and persistent infections, adding to the increased resistance to currently used antibiotics. In this review, infections caused by K. pneumoniae, antibiotic resistance and formation of biofilm will be discussed.
Collapse
Affiliation(s)
- Pooi Yin Chung
- Department of Pathology, School of Medicine, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Khong WX, Marimuthu K, Teo J, Ding Y, Xia E, Lee JJ, Ong RTH, Venkatachalam I, Cherng B, Pada SK, Choong WL, Smitasin N, Ooi ST, Deepak RN, Kurup A, Fong R, Van La M, Tan TY, Koh TH, Lin RTP, Tan EL, Krishnan PU, Singh S, Pitout JD, Teo YY, Yang L, Ng OT. Tracking inter-institutional spread of NDM and identification of a novel NDM-positive plasmid, pSg1-NDM, using next-generation sequencing approaches. J Antimicrob Chemother 2016; 71:3081-3089. [PMID: 27494913 DOI: 10.1093/jac/dkw277] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/23/2016] [Accepted: 06/09/2016] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Owing to gene transposition and plasmid conjugation, New Delhi metallo-β-lactamase (NDM) is typically identified among varied Enterobacteriaceae species and STs. We used WGS to characterize the chromosomal and plasmid molecular epidemiology of NDM transmission involving four institutions in Singapore. METHODS Thirty-three Enterobacteriaceae isolates (collection years 2010-14) were sequenced using short-read sequencing-by-synthesis and analysed. Long-read single molecule, real-time sequencing (SMRTS) was used to characterize genetically a novel plasmid pSg1-NDM carried on Klebsiella pneumoniae ST147. RESULTS In 20 (61%) isolates, blaNDM was located on the pNDM-ECS01 plasmid in the background of multiple bacterial STs, including eight K. pneumoniae STs and five Escherichia coli STs. In six (18%) isolates, a novel blaNDM-positive plasmid, pSg1-NDM, was found only in K. pneumoniae ST147. The pSg1-NDM-K. pneumoniae ST147 clone (Sg1-NDM) was fully sequenced using SMRTS. pSg1-NDM, a 90 103 bp IncR plasmid, carried genes responsible for resistance to six classes of antimicrobials. A large portion of pSg1-NDM had no significant homology to any known plasmids in GenBank. pSg1-NDM had no conjugative transfer region. Combined chromosomal-plasmid phylogenetic analysis revealed five clusters of clonal bacterial NDM-positive plasmid transmission, of which two were inter-institution clusters. The largest inter-institution cluster involved six K. pneumoniae ST147-pSg1-NDM isolates. Fifteen patients were involved in transmission clusters, of which four had ward contact, six had hospital contact and five had an unknown transmission link. CONCLUSIONS A combined sequencing-by-synthesis and SMRTS approach can determine effectively the transmission clusters of blaNDM and genetically characterize novel plasmids. Plasmid molecular epidemiology is important to understanding NDM spread as blaNDM-positive plasmids can conjugate extensively across species and STs.
Collapse
Affiliation(s)
- Wei Xin Khong
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, 11 Jalan Tan Tock Seng, 308433, Singapore
| | - Kalisvar Marimuthu
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, 11 Jalan Tan Tock Seng, 308433, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd 119228, NUHS Tower Block, Level 11, 117597, Singapore
| | - Jeanette Teo
- National University Hospital, 5 Lower Kent Ridge Rd, 119074, Singapore
| | - Yichen Ding
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Eryu Xia
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), #05-01Medical Drive, 117456, Singapore
| | - Jia Jun Lee
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, 11 Jalan Tan Tock Seng, 308433, Singapore
| | - Rick Twee-Hee Ong
- Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, #10-01, 117549, Singapore
| | | | | | - Surinder Kaur Pada
- Ng Teng Fong General Hospital, 1 Jurong East Street 21, 609606, Singapore
| | - Weng Lam Choong
- Ng Teng Fong General Hospital, 1 Jurong East Street 21, 609606, Singapore
| | - Nares Smitasin
- National University Hospital, 5 Lower Kent Ridge Rd, 119074, Singapore
| | - Say Tat Ooi
- Khoo Teck Puat Hospital, 90 Yishun Central, 768828, Singapore
| | | | - Asok Kurup
- Mount Elizabeth Hospital, 3 Mount Elizabeth, 228510, Singapore
| | - Raymond Fong
- Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - My Van La
- National Public Health Laboratory, College of Medicine Building, 16 College Road, 169854, Singapore
| | - Thean Yen Tan
- Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - Tse Hsien Koh
- Singapore General Hospital, Outram Road, 169608, Singapore
| | - Raymond Tzer Pin Lin
- National University Hospital, 5 Lower Kent Ridge Rd, 119074, Singapore.,National Public Health Laboratory, College of Medicine Building, 16 College Road, 169854, Singapore
| | - Eng Lee Tan
- Singapore Polytechnic, 500 Dover Road, 139651, Singapore
| | | | | | - Johann D Pitout
- Division of Microbiology, 1829 Ranchlands Blvd NW, Calgary, AB T3G 2A7, Canada.,Departments of Pathology and Laboratory Medicine, Microbiology Immunology and Infectious Diseases, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.,Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Yik-Ying Teo
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), #05-01Medical Drive, 117456, Singapore.,Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, #10-01, 117549, Singapore.,Department of Statistics & Applied Probability, Block S16, Level 7, 6 Science Drive 2, Faculty of Science, National University of Singapore, 117546, Singapore.,Life Sciences Institute, National University of Singapore, Centre for Life 42 Sciences, #05-02, 28 Medical Drive, 117456, Singapore.,Genome Institute of Singapore, 60 Biopolis St, #02-01, 138672, Singapore
| | - Liang Yang
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Oon Tek Ng
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, 11 Jalan Tan Tock Seng, 308433, Singapore
| | | |
Collapse
|
48
|
Mechanisms Involved in Acquisition of blaNDM Genes by IncA/C2 and IncFIIY Plasmids. Antimicrob Agents Chemother 2016; 60:4082-8. [PMID: 27114281 DOI: 10.1128/aac.00368-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022] Open
Abstract
blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1, and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A, and ISCR1 may have been involved in the acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones, but different regions carrying blaNDM are found in different locations. Tn3-derived inverted-repeat transposable elements (TIME) appear to have been involved in the acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterization of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements, and plasmids and provide insights into the possible routes for transmission of blaNDM genes among species of the Enterobacteriaceae family.
Collapse
|
49
|
Khong WX, Xia E, Marimuthu K, Xu W, Teo YY, Tan EL, Neo S, Krishnan PU, Ang BSP, Lye DCB, Chow ALP, Ong RTH, Ng OT. Local transmission and global dissemination of New Delhi Metallo-Beta-Lactamase (NDM): a whole genome analysis. BMC Genomics 2016; 17:452. [PMID: 27297071 PMCID: PMC4906610 DOI: 10.1186/s12864-016-2740-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/14/2016] [Indexed: 12/13/2022] Open
Abstract
Background New Delhi metallo-β-lactamase (blaNDM), a plasmid-borne carbapenemase gene associated with significant mortality and severely limited treatment options, is of global public health concern as it is found in extremely diverse Gram-negative bacterial strains. This study thus aims to genetically characterize local and global spread of blaNDM. Methods To investigate local transmission patterns in the context of a single hospital, whole genome sequencing data of the first 11 blaNDM-positive bacteria isolated in a local hospital were analyzed to: (1) identify and compare blaNDM-positive plasmids; and (2) study the phylogenetic relationship of the bacteria chromosomes. The global analysis was conducted by analyzing 2749 complete plasmid sequences (including 39 blaNDM-positive plasmids) in the NCBI database, where: (1) the plasmids were clustered based on their gene composition similarity; (2) phylogenetic study was conducted for each blaNDM-positive plasmid cluster to infer the phylogenetic relationship within each cluster; (3) gene transposition events introducing blaNDM into different plasmid backbones were identified; and (4) clustering pattern was correlated with the plasmids’ incompatibility group and geographical distribution. Results Analysis of the first 11 blaNDM-positive isolates from a single hospital revealed very low blaNDM-positive plasmid diversity. Local transmission was characterized by clonal spread of a predominant plasmid with 2 sporadic instances of plasmid introduction. In contrast to the low diversity locally, global blaNDM spread involved marked plasmid diversity with no predominant bacterial clone. Thirty-nine (1.4 %) out of the 2749 complete plasmid sequences were blaNDM-positive, and could be resolved into 7 clusters, which were associated with plasmid incompatibility group and geographical distribution. The blaNDM gene module was witnessed to mobilize between different plasmid backbones on at least 6 independent occasions. Conclusions Our analysis revealed the complex genetic pathways of blaNDM spread, with global dissemination characterized mainly by transposition of the blaNDM gene cassette into varied plasmids. Early local transmission following plasmid introduction is characterized by plasmid conjugation and bacterial spread. Our findings emphasize the importance of plasmid molecular epidemiology in understanding blaNDM spread. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2740-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Xin Khong
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore, Singapore
| | - Eryu Xia
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Kalisvar Marimuthu
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wenting Xu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yik-Ying Teo
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Eng Lee Tan
- Centre for Biomedical and Life Sciences, Singapore Polytechnic, Singapore, Singapore.,Department of Pediatrics, University Children's Medical Institute, National University of Singapore, Singapore, Singapore
| | - Shiyong Neo
- Centre for Biomedical and Life Sciences, Singapore Polytechnic, Singapore, Singapore
| | | | - Brenda S P Ang
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore, Singapore
| | - David C B Lye
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Angela L P Chow
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Oon Tek Ng
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore, Singapore. .,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore. .,Communicable Disease Centre, Tan Tock Seng Hospital, 11, Jalan Tan Tock Seng, Singapore, 308433, Singapore.
| |
Collapse
|
50
|
Guillard T, Pons S, Roux D, Pier GB, Skurnik D. Antibiotic resistance and virulence: Understanding the link and its consequences for prophylaxis and therapy. Bioessays 2016; 38:682-93. [PMID: 27248008 DOI: 10.1002/bies.201500180] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
"Antibiotic resistance is usually associated with a fitness cost" is frequently accepted as common knowledge in the field of infectious diseases. However, with the advances in high-throughput DNA sequencing that allows for a comprehensive analysis of bacterial pathogenesis at the genome scale, including antibiotic resistance genes, it appears that this paradigm might not be as solid as previously thought. Recent studies indicate that antibiotic resistance is able to enhance bacterial fitness in vivo with a concomitant increase in virulence during infections. As a consequence, strategies to minimize antibiotic resistance turn out to be not as simple as initially believed. Indeed, decreased antibiotic use may not be sufficient to let susceptible strains outcompete the resistant ones. Here, we put in perspective these findings and review alternative approaches, such as preventive and therapeutic anti-bacterial immunotherapies that have the potential to by-pass the classic antibiotics.
Collapse
Affiliation(s)
- Thomas Guillard
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Laboratoire de Bactériologie-Virologie-Hygiène hospitalière, Hôpital Robert Debré - CHU de Reims, UFR de Médecine, Université de Reims Champagne-Ardenne, Reims, France
| | - Stéphanie Pons
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,INSERM, IAME, UMR 1137, Paris, France.,Univ Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France.,AP-HP, Hôpital Louis Mourier, Service de Réanimation Médico-Chirurgicale, Colombes, France
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|