1
|
Cree ML, Abdul-Aziz MH, Schlapbach LJ, Roberts JA, Parker SL. The impact of extracorporeal support on antimicrobial pharmacokinetics in critically ill neonatal and paediatric patients: A systematic review. Int J Antimicrob Agents 2024; 64:107311. [PMID: 39197687 DOI: 10.1016/j.ijantimicag.2024.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVES Infections represent a major risk for critically ill neonatal and paediatric patients requiring extracorporeal life-saving support such as extracorporeal membrane oxygenation (ECMO) and/or continuous renal replacement therapies (CRRT). Patient outcomes rely on achieving target antimicrobial concentrations. In critically ill adults on extracorporeal support, suboptimal antimicrobial concentrations have been shown to be common. Our objective was to systematically review antimicrobial pharmacokinetic studies in critically ill term neonatal and paediatric patients receiving ECMO and/or CRRT and compare them to similar cohorts of patients not receiving ECMO or CRRT. METHODS Studies published between 1990 and 2022 were identified through systematic searches in PUBMED, Embase, Web of Science, Medline, Google Scholar and CINAHL. Studies were included which provided antimicrobial pharmacokinetic parameters (volume of distribution and clearance) in the neonatal and paediatric patients receiving ECMO and/or CRRT. Studies were excluded if no antimicrobial pharmacokinetic parameters were described or could be calculated. RESULTS Forty-four pharmacokinetic studies were identified describing 737 patients, with neonatal patients recruited in 70% of the ECMO studies and <1% of the CRRT studies. Of all the studies, 50% were case reports or case series. The pharmacokinetics were altered for gentamicin, daptomycin, ceftolozane, micafungin, voriconazole, cefepime, fluconazole, piperacillin, and vancomycin, although considerable patient variability was described. CONCLUSION Significant gaps remain in our understanding of the pharmacokinetic alterations in neonatal and paediatric patients receiving ECMO and CRRT support.
Collapse
Affiliation(s)
- Michele L Cree
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Pharmacy Department, Queensland Children's Hospital, Brisbane, Australia
| | - Mohd Hafiz Abdul-Aziz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Luregn J Schlapbach
- Pediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, Australia; Centre for Children's Health Research, The University of Queensland, Brisbane Australia; Department of Intensive Care and Neonatology, and Children`s Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jason A Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane Australia; Faculty of Medicine, Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France; Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Suzanne L Parker
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
2
|
Castro-Balado A, Varela-Rey I, Mejuto B, Mondelo-García C, Zarra-Ferro I, Rodríguez-Jato T, Fernández-Ferreiro A. Updated antimicrobial dosing recommendations for obese patients. Antimicrob Agents Chemother 2024; 68:e0171923. [PMID: 38526051 PMCID: PMC11064535 DOI: 10.1128/aac.01719-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
The prevalence of obesity has increased considerably in the last few decades. Pathophysiological changes in obese patients lead to pharmacokinetic (PK) and pharmacodynamic (PD) alterations that can condition the correct exposure to antimicrobials if standard dosages are used. Inadequate dosing in obese patients can lead to toxicity or therapeutic failure. In recent years, additional antimicrobial PK/PD data, extended infusion strategies, and studies in critically ill patients have made it possible to obtain data to provide a better dosage in obese patients. Despite this, it is usually difficult to find information on drug dosing in this population, which is sometimes contradictory. This is a comprehensive review of the dosing of different types of antimicrobials (antibiotics, antifungals, antivirals, and antituberculosis drugs) in obese patients, where the literature on PK and possible dosing strategies in obese adults was critically assessed.
Collapse
Affiliation(s)
- Ana Castro-Balado
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Iria Varela-Rey
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Beatriz Mejuto
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Cristina Mondelo-García
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Irene Zarra-Ferro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Teresa Rodríguez-Jato
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
3
|
Alsowaida YS, Alamer A, Thabit AK, Almulhim AS, Aleissa MM, Kalbasi A, Eljaaly K, Almangour TA, Erstad BL. Echinocandin exposures in obese patients: A scoping review and clinical perspectives. Am J Health Syst Pharm 2023; 80:503-517. [PMID: 36680786 DOI: 10.1093/ajhp/zxad021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Echinocandins are favored drugs for the treatment of fungal infections. There is growing evidence that obese patients treated with echinocandins have lower exposures due to pharmacokinetic (PK) alterations. We conducted a scoping review to characterize, evaluate, and summarize the available evidence on echinocandins exposures in obese patients. SUMMARY A comprehensive search of PubMed, Embase, and Cochrane Library for studies on echinocandins published from database inception to October 28, 2022, was conducted using PRISMA-ScR methodology. A total of 25 studies comprising more than 3,174 subjects (8 micafungin studies, 7 caspofungin studies, 9 anidulafungin studies, and 1 rezafungin study) were included in this review. Seventeen studies reported lower echinocandins exposures in overweight and obese individuals compared with normal-weight individuals; the authors of these studies recommended dose adjustments. Conversely, 8 studies did not find significant differences in echinocandin exposure among subjects in varying body weight categories. Clinicians may consider dose adjustments of echinocandins in obese patients; however, there is limited evidence on the ideal dose adjustment strategy to overcome the low echinocandins exposures in obese patients. CONCLUSION This scoping review shed light on a growing body of evidence indicating that obese patients have lower echinocandin exposures relative to targeted PK indices, which may lead to negative therapeutic implications. Currently, a lack of high-quality evidence impedes reaching consensus on recommendations for echinocandin dosing adjustment in obese patients. Future research evaluating the optimal echinocandin dosing strategy for obese patients is needed.
Collapse
Affiliation(s)
- Yazed S Alsowaida
- Center for Health Outcomes and PharmacoEconomic Research, College of Pharmacy, University of Arizona, Tucson, AZ, USA
- Department of Clinical Pharmacy, College of Pharmacy, Hail University, Hail, Saudi Arabia
| | - Ahmad Alamer
- Center for Health Outcomes and PharmacoEconomic Research, College of Pharmacy, University of Arizona, Tucson, AZ, USA
- Department of Clinical Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abrar K Thabit
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulaziz S Almulhim
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Muneerah M Aleissa
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Alireza Kalbasi
- Department of Pharmacy Services, Brigham and Women's Hospital, Boston, MA, USA
| | - Khaled Eljaaly
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi ArabiaCollege of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Thamer A Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Brian L Erstad
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
4
|
Yang Q, Zhang T, Zhang Y, Sun D, Zheng X, Du Q, Wang X, Cheng X, Xing J, Dong Y. The recommended dosage regimen for caspofungin in patients with higher body weight or hypoalbuminaemia will result in low exposure: Five years of data based on a population pharmacokinetic model and Monte-Carlo simulations. Front Pharmacol 2022; 13:993330. [PMID: 36408257 PMCID: PMC9669616 DOI: 10.3389/fphar.2022.993330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 01/04/2024] Open
Abstract
Background: To develop a population pharmacokinetic (PPK) model for caspofungin, identify parameters influencing caspofungin pharmacokinetics, and assess the required probability of target attainment (PTA) and cumulative fraction of response (CFR) for various dosing regimens of caspofungin in all patients and intensive care unit (ICU)-subgroup patients. Method: The general PPK model was developed based on data sets from all patients (299 patients). A ICU-subgroup PPK model based on data sets from 136 patients was then analyzed. The effects of demographics, clinical data, laboratory data, and concomitant medications were tested. Monte-Carlo simulations (MCS) were used to evaluate the effectiveness of different caspofungin dosage regimens. Results: One-compartment model best described the data of all patients and ICU patients. Clearances (CL) were 0.32 L/h and 0.40 L/h and volumes of distribution (V) were 13.31 L and 10.20 L for the general and ICU-subgroup PPK models, respectively. In the general model, CL and V were significantly associated with albumin (ALB) concentration and body weight (WT). In the ICU-subgroup model, CL was associated with WT. The simulated exposure in ICU patients was lower than that in all patients (p < 0.05). MCS indicated that higher caspofungin maintenance doses of 70-150 mg may achieve target CFR of >90% for patients with higher WT (>70 kg) or with C. albicans or C. parapsilosis infections, and especially for ICU patients with hypoalbuminaemia. Conclusion: The PPK model and MCS presented in the study demonstrated that the recommended dosage regimen for caspofungin in patients with higher body weight or hypoalbuminaemia will result in low exposure.
Collapse
Affiliation(s)
- Qianting Yang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dan Sun
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xiaowei Zheng
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
- Department of Pharmacy, Xi’an No.1 Hospital, Xi’an, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xue Wang
- Department of Pharmacy, Xi’an No.1 Hospital, Xi’an, China
- Department of Intensive Care Unit, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoliang Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianfeng Xing
- Department of Intensive Care Unit, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Szymański M, Chmielewska S, Czyżewska U, Malinowska M, Tylicki A. Echinocandins - structure, mechanism of action and use in antifungal therapy. J Enzyme Inhib Med Chem 2022; 37:876-894. [PMID: 35296203 PMCID: PMC8933026 DOI: 10.1080/14756366.2022.2050224] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
With increasing number of immunocompromised patients as well as drug resistance in fungi, the risk of fatal fungal infections in humans increases as well. The action of echinocandins is based on the inhibition of β-(1,3)-d-glucan synthesis that builds the fungal cell wall. Caspofungin, micafungin, anidulafungin and rezafungin are semi-synthetic cyclic lipopeptides. Their specific chemical structure possess a potential to obtain novel derivatives with better pharmacological properties resulting in more effective treatment, especially in infections caused by Candida and Aspergillus species. In this review we summarise information about echinocandins with closer look on their chemical structure, mechanism of action, drug resistance and usage in clinical practice. We also introduce actual trends in modification of this antifungals as well as new methods of their administration, and additional use in viral and bacterial infections.
Collapse
Affiliation(s)
- Mateusz Szymański
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| | - Sandra Chmielewska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Bialystok, Poland
| | - Urszula Czyżewska
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| | - Marta Malinowska
- Department of Organic Chemistry, Laboratory of Natural Product Chemistry, University of Bialystok, Bialystok, Poland
| | - Adam Tylicki
- Department of Microbiology and Biotechnology, Laboratory of Cytobiochemistry, University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Ekinci F, Yildizdas D, Horoz OO, Ozgur Gundeslioglu O, Alabaz D. Treatment of Candida urinary tract infections with micafungin in children. Pediatr Int 2022; 64:e15033. [PMID: 35146837 DOI: 10.1111/ped.15033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/30/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Candida urinary tract infections (UTIs) are common nosocomial infections among critically ill patients hospitalized in pediatric intensive care Units (PICU). We aimed to report outcomes of critically ill pediatric patients who received micafungin for hospital acquired Candida UTIs. We analyzed treatment success rates and success rates among different Candida species. METHODS This retrospective cohort study included patients who received micafungin for Candida UTI as first choice in our PICU between January 2017 and July 2018. Data, including demographic and clinical features, were retrospectively collected from medical files of the patients. Treatment efficacy was defined as resolution of clinical symptoms and a negative culture for Candida at day 14 after initiation of micafungin treatment. RESULTS Twenty-four pediatric patients (median age 5.72 years, range, 2 months-16 years) were included in the present study. Fourteen (58.3%) patients had urinary catheters at the time of Candida isolation. Resolution of symptoms and a negative culture at day 3 of micafungin treatment were achieved in 17 (70.8%) and 14 (58.3%) patients, respectively. Moreover, 19 (79.2%) patients had a normal urine analysis and negative culture 14 days after initiation of micafungin treatment. Treatment responses did not statistically differ between Candida species. CONCLUSIONS Micafungin is safe and efficacious in critically ill pediatric patients with Candida UTIs. Its efficacy in our pediatric population was as comparable to that observed in adult studies, therefore, it should be considered as an effective therapeutic option in Candida UTIs of critically ill pediatric patients.
Collapse
Affiliation(s)
- Faruk Ekinci
- Department of Pediatric Intensive Care, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Dincer Yildizdas
- Department of Pediatric Intensive Care, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Ozden Ozgur Horoz
- Department of Pediatric Intensive Care, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Ozlem Ozgur Gundeslioglu
- Department of Pediatric Infectious Diseases, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Derya Alabaz
- Department of Pediatric Infectious Diseases, Çukurova University Faculty of Medicine, Adana, Turkey
| |
Collapse
|
7
|
Ylipalosaari P, Ala‐Kokko TI, Koskenkari J, Laurila JJ, Ämmälä S, Syrjälä H. Use and outcome of empiric echinocandins in critically ill patients. Acta Anaesthesiol Scand 2021; 65:944-951. [PMID: 33481252 DOI: 10.1111/aas.13783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Echinocandins are recommended as a first-line empiric treatment for fungal infections of patients in an intensive care unit (ICU) with critical illness. The primary aim of the study was to compare outcomes among ICU patients treated with empiric anidulafungin (ANI), caspofungin (CASPO), or micafungin (MICA). METHODS A retrospective cohort study in a mixed adult ICU. Patient demographics, reason for ICU admission, ICU risk scores and organ support therapies were analyzed. Outcome parameters included ICU and hospital stay, 30-day mortality and 1-year mortality. RESULTS Empiric echinocandin therapy was given to 367 patients (ANI; 73 patients, CASPO; 84 patients, and MICA; 210 patients) with a median duration of 3 days in an ICU. Patient median age was 60.7 years. As a first-line therapy, 52% of patients received fluconazole. Positive Candida cultures were found in the following samples: blood, 16 (4.4%); central line, 27 (7.4%); deep site, 92 (25.1%). Median ICU stay (ANI 6.4 days, CASPO 5.3 days, MICA 8.1 days), hospital stay (ANI 33 days, CASPO 30 days, MICA 30 days), 30-day mortality (ANI 27%, CASPO 32%, MICA 32%), and 1-year mortality (ANI 33%, CASPO 44%, MICA 45%) did not differ between the groups . The cost of antifungal therapy during the ICU period was similar in the three echinocandin groups (ANI; €1 872, CASPO; €1 799, and MICA; €1783). CONCLUSION Our results show that ICU, hospital stay, and mortality (hospital, 30-day and 1-year) did not differ among patients with empiric anidulafungin, caspofungin, or micafungin treatment in a mixed adult ICU.
Collapse
Affiliation(s)
- Pekka Ylipalosaari
- Department of Infection Control Oulu University Hospital Medical Research Center Oulu University of Oulu Oulu Finland
| | - Tero I. Ala‐Kokko
- Division of Intensive Care Medicine Research Group of Surgery, Anesthesiology and Intensive Care Medicine Oulu University Hospital Medical Research Center Oulu University of Oulu Oulu Finland
| | - Juha Koskenkari
- Division of Intensive Care Medicine Research Group of Surgery, Anesthesiology and Intensive Care Medicine Oulu University Hospital Medical Research Center Oulu University of Oulu Oulu Finland
| | - Jouko J. Laurila
- Division of Intensive Care Medicine Research Group of Surgery, Anesthesiology and Intensive Care Medicine Oulu University Hospital Medical Research Center Oulu University of Oulu Oulu Finland
| | - Sirpa Ämmälä
- Hospital Pharmacy Oulu University Hospital Oulu Finland
| | - Hannu Syrjälä
- Department of Infection Control Oulu University Hospital Medical Research Center Oulu University of Oulu Oulu Finland
| |
Collapse
|
8
|
Zhong S, Zhu X, Zhao L, Song Y, Yu J, Zheng Z, Zang B. Optimization of Micafungin Dosage for Chinese Patients with Sepsis in the Intensive Care Unit Based on a Population Pharmacokinetic-Pharmacodynamic Analysis. Pharm Res 2021; 38:67-77. [PMID: 33404989 DOI: 10.1007/s11095-020-02980-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE This study aimed to identify parameters that influence micafungin pharmacokinetics in Chinese patients with sepsis in the intensive care unit and optimize micafungin dosage by determining the probability of reaching pharmacodynamic targets. METHODS Blood samples were collected from 32 Chinese patients with sepsis who were treated with micafungin. The samples were analyzed and used to build a population pharmacokinetic model. Monte Carlo simulations were performed to estimate the probability of achieving adequate plasma levels of micafungin against Candida species. RESULTS Alanine aminotransferase and sequential organ failure assessment score were found to significantly influence the clearance and peripheral distribution volume of micafungin, respectively. Monte Carlo simulations based on area under the plasma concentration-time curve over 24 h showed that patients must be administered at least 200 and 250 mg micafungin daily to reach minimum inhibitory concentration breakpoints of 0.032 and 0.064 mg/L for Candida glabrata and Candida tropicalis, respectively. Additionally, a probability of target attainment of ≥ 90% could not be achieved for Candida krusei or Candida parapsilosis with a 300 mg daily dose. CONCLUSIONS The recommended daily dose of micafungin (100 mg) may produce low clinical success ratios in non-Candida albicans infections; therefore, higher doses should be administered to improve clinical outcomes.
Collapse
Affiliation(s)
- Shubai Zhong
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Zhu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Song
- Department of Critical Care Medicine, Central Hospital of Shenyang Medical College, Shenyang, Liaoning, China
| | - Jian Yu
- Department of Critical Care Medicine, Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Zhen Zheng
- Department of Critical Care Medicine, Liaoning Cancer Hospital, Shenyang, 110042, Liaoning, China
| | - Bin Zang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
9
|
Ferrarese A, Cattelan A, Cillo U, Gringeri E, Russo FP, Germani G, Gambato M, Burra P, Senzolo M. Invasive fungal infection before and after liver transplantation. World J Gastroenterol 2020; 26:7485-7496. [PMID: 33384549 PMCID: PMC7754548 DOI: 10.3748/wjg.v26.i47.7485] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/15/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Invasive infections are a major complication before liver transplantation (LT) and in the early phase after surgery. There has been an increasing prevalence of invasive fungal disease (IFD), especially among the sickest patients with decompensated cirrhosis and acute-on-chronic liver failure, who suffer from a profound state of immune dysfunction and receive intensive care management. In such patients, who are listed for LT, development of an IFD often worsens hepatic and extra-hepatic organ dysfunction, requiring a careful evaluation before surgery. In the post-transplant setting, the burden of IFD has been reduced after the clinical advent of antifungal prophylaxis, even if several major issues still remain, such as duration, target population and drug type(s). Nevertheless, the development of IFD in the early phase after surgery significantly impairs graft and patient survival. This review outlines presentation, prophylactic and therapeutic strategies, and outcomes of IFD in LT candidates and recipients, providing specific considerations for clinical practice.
Collapse
Affiliation(s)
- Alberto Ferrarese
- Multivisceral Transplant Unit, Padua University Hospital, Padua 35128, Italy
| | - Annamaria Cattelan
- Tropical and Infectious Disease Unit, Padua University Hospital, Padua 35128, Italy
| | - Umberto Cillo
- Padua University Hospital, Hepatobiliary Surgery and Liver Transplant Center, Padua 35128, Italy
| | - Enrico Gringeri
- Padua University Hospital, Hepatobiliary Surgery and Liver Transplant Center, Padua 35128, Italy
| | | | - Giacomo Germani
- Multivisceral Transplant Unit, Padua University Hospital, Padua 35128, Italy
| | - Martina Gambato
- Multivisceral Transplant Unit, Padua University Hospital, Padua 35128, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Padua University Hospital, Padua 35128, Italy
| | - Marco Senzolo
- Multivisceral Transplant Unit, Padua University Hospital, Padua 35128, Italy
| |
Collapse
|
10
|
Koehler P, Bassetti M, Chakrabarti A, Chen SCA, Colombo AL, Hoenigl M, Klimko N, Lass-Flörl C, Oladele RO, Vinh DC, Zhu LP, Böll B, Brüggemann R, Gangneux JP, Perfect JR, Patterson TF, Persigehl T, Meis JF, Ostrosky-Zeichner L, White PL, Verweij PE, Cornely OA. Defining and managing COVID-19-associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. THE LANCET. INFECTIOUS DISEASES 2020; 21:e149-e162. [PMID: 33333012 PMCID: PMC7833078 DOI: 10.1016/s1473-3099(20)30847-1] [Citation(s) in RCA: 562] [Impact Index Per Article: 112.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 causes direct damage to the airway epithelium, enabling aspergillus invasion. Reports of COVID-19-associated pulmonary aspergillosis have raised concerns about it worsening the disease course of COVID-19 and increasing mortality. Additionally, the first cases of COVID-19-associated pulmonary aspergillosis caused by azole-resistant aspergillus have been reported. This article constitutes a consensus statement on defining and managing COVID-19-associated pulmonary aspergillosis, prepared by experts and endorsed by medical mycology societies. COVID-19-associated pulmonary aspergillosis is proposed to be defined as possible, probable, or proven on the basis of sample validity and thus diagnostic certainty. Recommended first-line therapy is either voriconazole or isavuconazole. If azole resistance is a concern, then liposomal amphotericin B is the drug of choice. Our aim is to provide definitions for clinical research and up-to-date recommendations for clinical management of the diagnosis and treatment of COVID-19-associated pulmonary aspergillosis.
Collapse
Affiliation(s)
- Philipp Koehler
- Faculty of Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany; Department I of Internal Medicine, European Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Cologne, Germany
| | - Matteo Bassetti
- Infectious Diseases Clinic, Department of Health Sciences, University of Genoa, Genoa, Italy; Policlinico San Martino Hospital, Genoa, Italy
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sharon C A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, NSW, Australia; Department of Infectious Diseases, Westmead Hospital, Sydney, NSW, Australia; School of Medicine, University of Sydney, Sydney, NSW, Australia
| | | | - Martin Hoenigl
- Clinical and Translational Fungal-Working Group and Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA, USA; Section of Infectious Diseases and Tropical Medicine and Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Nikolay Klimko
- Department of Clinical Mycology, Allergology and Immunology, North Western State Medical University, St Petersburg, Russia
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, ECMM, Medical University of Innsbruck, Innsbruck, Austria
| | - Rita O Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Donald C Vinh
- Division of Infectious Diseases, Department of Medicine, Department of Medical Microbiology, and Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, QC, Canada
| | - Li-Ping Zhu
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Boris Böll
- Faculty of Medicine, University of Cologne, Cologne, Germany; Department I of Internal Medicine, European Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Cologne, Germany
| | - Roger Brüggemann
- Department of Pharmacy, ECMM, Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Radboud University, Nijmegen, Netherlands; Radboudumc Institute of Health Science, ECMM, Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Radboud University, Nijmegen, Netherlands
| | - Jean-Pierre Gangneux
- Université de Rennes, CHU de Rennes, EHESP, Institut de Recherche en Santé, Environnement et travail, Inserm UMR_S 1085, Rennes, France
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Thomas F Patterson
- University of Texas Health San Antonio, San Antonio, TX, USA; University Health, San Antonio, TX, USA; South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Thorsten Persigehl
- Faculty of Medicine, University of Cologne, Cologne, Germany; Department of Radiology, University Hospital Cologne, Cologne, Germany
| | - Jacques F Meis
- Department of Medical Microbiology, ECMM, Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Radboud University, Nijmegen, Netherlands; Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, Netherlands; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, McGovern Medical School, University of Texas, Houston, TX, USA
| | - P Lewis White
- Mycology Reference Laboratory, Public Health Wales Microbiology Cardiff, Cardiff, UK
| | - Paul E Verweij
- Department of Medical Microbiology, ECMM, Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Radboud University, Nijmegen, Netherlands; Center for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Oliver A Cornely
- Faculty of Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany; Department I of Internal Medicine, European Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Cologne, Germany; Clinical Trials Centre Cologne, ZKS Köln, Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu X, Liu D, Pan Y, Li Y. Pharmacokinetic/pharmacodynamics variability of echinocandins in critically ill patients: A systematic review and meta-analysis. J Clin Pharm Ther 2020; 45:1207-1217. [PMID: 32672361 PMCID: PMC7689702 DOI: 10.1111/jcpt.13211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Anidulafungin, caspofungin and micafungin are three widely used echinocandin drugs licensed for the treatment of invasive fungal infections, and their clinical use is widespread. To evaluate pharmacokinetic/pharmacodynamics variability of echinocandins in critically ill patients by comparing the differences in pharmacokinetic parameters between critically ill patients and healthy volunteers or general patients. METHODS MEDLINE, EMBASE, The Cochrane Library and Pubmed were searched from inception until 6 September 2018. Studies investigating the pharmacokinetic parameters of echinocandins in critically ill patients, healthy volunteers or general patients were included. Our primary outcomes included AUC0-24 h , Cmax and Cmin (24 hours). Two reviewers independently reviewed all titles, abstracts and text, and extracted data. We applied R software (R 2017) to conduct meta-analysis. RESULTS AND DISCUSSION Of 3235 articles screened, 17 studies were included in the data synthesis. Descriptive data from single-arm studies show that critically ill patients who received caspofungin had more stable AUC0-24 h than those who received anidulafungin and micafungin. The Cmax of critically ill patients who received caspofungin and micafungin was similar to healthy volunteers. However, the Cmax in critically ill patients who received anidulafungin was lower than in healthy volunteers. The Cmin and T1/2 of critically ill patients who received caspofungin were larger than in healthy volunteers. The Vd and CL of critically ill patients receiving anidulafungin and micafungin were larger than in healthy volunteers. WHAT IS NEW AND CONCLUSION This systematic review provides an analysis of the pharmacokinetic/pharmacodynamics variability of echinocandins in critically ill patients. Based on the limited data available, caspofungin has less pharmacokinetic/pharmacodynamics variability than anidulafungin and micafungin.
Collapse
Affiliation(s)
- Xiaoqing Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory HealthGuangzhouChina
| | - Dongdong Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory HealthGuangzhouChina
| | - Ying Pan
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory HealthGuangzhouChina
| | - Yimin Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory HealthGuangzhouChina
| |
Collapse
|
12
|
Berthier J, Benmameri M, Sauvage FL, Fabre G, Chantemargue B, Arnion H, Marquet P, Trouillas P, Picard N, Saint-Marcoux F. MRP4 is responsible for the efflux transport of mycophenolic acid β-d glucuronide (MPAG) from hepatocytes to blood. Xenobiotica 2020; 51:105-114. [PMID: 32820679 DOI: 10.1080/00498254.2020.1813352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mycophenolic acid (MPA) has become a cornerstone of immunosuppressive therapy, in particular for transplant patients. In the gastrointestinal tract, the liver and the kidney, MPA is mainly metabolized into phenyl-β-d glucuronide (MPAG). Knowledge about the interactions between MPA/MPAG and membrane transporters is still fragmented. The aim of the present study was to explore these interactions with the basolateral hepatic MRP4 transporter. The inhibition of the MRP4-driven transport by various drugs which can be concomitantly prescribed was also evaluated. In vitro experiments using vesicles overexpressing MRP4 showed an ATP-dependent transport of MPAG driven by MRP4 (Michaelis-Menten constant of 233.9 ± 32.8 µM). MPA was not effluxed by MRP4. MRP4-mediated transport of MPAG was inhibited (from -43% to -84%) by ibuprofen, cefazolin, cefotaxime and micafungin. An in silico approach based on molecular docking and molecular dynamics simulations rationalized the mode of binding of MPAG to MRP4. The presence of the glucuronide moiety in MPAG was highlighted as key, being prone to make electrostatic and H-bond interactions with specific residues of the MRP4 protein chamber. This explains why MPAG is a substrate of MRP4 whereas MPA is not.
Collapse
Affiliation(s)
- Joseph Berthier
- INSERM, UMR 1248, Univ. Limoges, Limoges, France.,CHU Limoges, Service de Pharmacologie, Toxicologie et Pharmacovigilance, Limoges, France
| | | | | | - Gabin Fabre
- INSERM, UMR 1248, Univ. Limoges, Limoges, France
| | | | | | - Pierre Marquet
- INSERM, UMR 1248, Univ. Limoges, Limoges, France.,CHU Limoges, Service de Pharmacologie, Toxicologie et Pharmacovigilance, Limoges, France
| | - Patrick Trouillas
- INSERM, UMR 1248, Univ. Limoges, Limoges, France.,RCPTM, Univ. Palacký of Olomouc, Olomouc, Czech Republic
| | - Nicolas Picard
- INSERM, UMR 1248, Univ. Limoges, Limoges, France.,CHU Limoges, Service de Pharmacologie, Toxicologie et Pharmacovigilance, Limoges, France
| | - Franck Saint-Marcoux
- INSERM, UMR 1248, Univ. Limoges, Limoges, France.,CHU Limoges, Service de Pharmacologie, Toxicologie et Pharmacovigilance, Limoges, France
| |
Collapse
|
13
|
Zhu B, Dong Y, Ma J, Chen M, Ruan S, Zhao W, Feng J. The synthesis and activity evaluation of N‐acylated analogs of echinocandin B with improved solubility and lower toxicity. J Pept Sci 2020; 26:e3278. [DOI: 10.1002/psc.3278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Bing Zhu
- School of Pharmacy Fudan University Shanghai China
| | | | - Jie Ma
- Shanghai Duomirui Biotechnology Ltd. Shanghai China
| | - Minwei Chen
- Shanghai Duomirui Biotechnology Ltd. Shanghai China
| | - Sida Ruan
- State Key Lab of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry China State Institute of Pharmaceutical Industry Shanghai China
| | - Wenjie Zhao
- State Key Lab of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry China State Institute of Pharmaceutical Industry Shanghai China
| | - Jun Feng
- State Key Lab of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry China State Institute of Pharmaceutical Industry Shanghai China
- Shanghai Duomirui Biotechnology Ltd. Shanghai China
| |
Collapse
|
14
|
Hashemian SM, Farhadi T, Velayati AA. Caspofungin: a review of its characteristics, activity, and use in intensive care units. Expert Rev Anti Infect Ther 2020; 18:1213-1220. [PMID: 32662712 DOI: 10.1080/14787210.2020.1794817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Candidemia is the fourth frequent reason of healthcare-related bloodstream infections in critically ill patients. For initial management of (suspected) invasive candidiasis in critically ill patients, usage of an echinocandin, e.g. caspofungin, has been recommended. AREAS COVERED In this study, characteristics of caspofungin and its use in intensive care unit (ICU) patients are reviewed based on an electronic search using PubMed and Google scholar. EXPERT OPINION Caspofungin is a semisynthetic derivative from pneumocandin B and the first member of the echinocandins that was approved by the U.S. Food and Drug Administration (FDA) to fight fungal infection. Caspofungin inhibits the enzyme β(1,3)-D-glucan synthase of the fungal cell wall resulted in inhibition of the synthesis of β(1,3)-D-glucan. For critically ill patients, inter- and intraindividual variations affect the caspofungin concentration. The incidence rates and densities of candidemia in surgical ICUs may be higher than medical ICUs resulting in a higher burden of candidemia in surgical ICUs. However, the mortality rate in surgical ICU patients with candidemia is higher than that medical ICU patients due to differences in their underlying conditions.
Collapse
Affiliation(s)
- Seyed MohammadReza Hashemian
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Tayebeh Farhadi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Ali Akbar Velayati
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
15
|
López-Sánchez M, Moreno-Puigdollers I, Rubio-López MI, Zarragoikoetxea-Jauregui I, Vicente-Guillén R, Argente-Navarro MP. Pharmacokinetics of micafungin in patients treated with extracorporeal membrane oxygenation: an observational prospective study. Rev Bras Ter Intensiva 2020; 32:277-283. [PMID: 32667449 PMCID: PMC7405733 DOI: 10.5935/0103-507x.20200044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/28/2020] [Indexed: 01/19/2023] Open
Abstract
Objective To determine micafungin plasma levels and pharmacokinetic behavior in patients treated with extracorporeal membrane oxygenation. Methods The samples were taken through an access point before and after the membrane in two tertiary hospitals in Spain. The times for the calculation of pharmacokinetic curves were before the administration of the drug and 1, 3, 5, 8, 18 and 24 hours after the beginning of the infusion on days one and four. The area under the curve, drug clearance, volume of distribution and plasma half-life time with a noncompartmental pharmacokinetic data analysis were calculated. Results The pharmacokinetics of the values analyzed on the first and fourth day of treatment did not show any concentration difference between the samples taken before the membrane (Cin) and those taken after the membrane (Cout), and the pharmacokinetic behavior was similar with different organ failures. The area under the curve (AUC) before the membrane on day 1 was 62.1 (95%CI 52.8 - 73.4) and the AUC after the membrane on this day was 63.4 (95%CI 52.4 - 76.7), p = 0.625. The AUC before the membrane on day 4 was 102.4 (95%CI 84.7 - 142.8) and the AUC was 100.9 (95%CI 78.2 - 138.8), p = 0.843. Conclusion The pharmacokinetic parameters of micafungin were not significantly altered.
Collapse
Affiliation(s)
- Marta López-Sánchez
- Departamento de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Espanha
| | | | - Maria Isabel Rubio-López
- Departamento de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Espanha
| | | | - Rosario Vicente-Guillén
- Departamento de Anestesiologia e Reanimação, Hospital Universitario La Fé, Valencia, Espanha
| | | |
Collapse
|
16
|
Gómez-López A. Antifungal therapeutic drug monitoring: focus on drugs without a clear recommendation. Clin Microbiol Infect 2020; 26:1481-1487. [PMID: 32535150 DOI: 10.1016/j.cmi.2020.05.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The goal of therapeutic drug monitoring (TDM) is to determine the appropriate exposure of difficult-to-manage medications to optimize the clinical outcomes in patients in various clinical situations. Concerning antifungal treatment, and knowing that this procedure is expensive and time-consuming, TDM is particularly recommended for certain systemic antifungals: i.e., agents with a well-defined exposure-response relationship and unpredictable pharmacokinetic profile or narrow therapeutic index. Little evidence supports the routine use of TDM for polyenes (amphotericin B), echinocandins, fluconazole or new azoles such as isavuconazole, despite the fact that a better understanding of antifungal exposure may lead to a better response. AIMS The aim of this work is to review published pharmacokinetic/pharmacodynamic data on systemically administered antifungals, focusing on those for which monitoring is not routinely recommended by experts. SOURCES A MEDLINE search of the literature in English was performed introducing the following search terms: amphotericin B, fluconazole, itraconazole, voriconazole, posaconazole, triazoles, caspofungin, micafungin, anidulafungin, echinocandins, pharmacokinetics, pharmacodynamics, and therapeutic drug monitoring. Review articles and guidelines were also screened. CONTENT This review collects different pharmacokinetic/pharmacodynamic aspects of systemic antifungals and summarizes recent threshold values for clinical outcomes and adverse events. Although for polyenes, echinocandins, fluconazole and isavuconazole extensive clinical validation is still required for a clear threshold and a routine monitoring recommendation, particular points such as liposome structure or complex pathophysiological conditions affecting final exposure are discussed. For the rest, their better-defined exposure-response/toxicity relationships allow access to useful threshold values and to justify routine monitoring. Additionally, clinical data are needed to better define thresholds that can minimize the development of antifungal resistance. IMPLICATIONS General TDM for all systemic antifungals is not recommended; however, this approach may help to establish an adequate antifungal exposure for a favourable response, prevention of toxicity or development of resistance in special clinical circumstances.
Collapse
Affiliation(s)
- A Gómez-López
- Mycology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III (CNM-ISCIII), Majadahonda, 28220, Madrid, Spain.
| |
Collapse
|
17
|
Neonatal Antifungal Consumption Is Dominated by Prophylactic Use; Outcomes From The Pediatric Antifungal Stewardship: Optimizing Antifungal Prescription Study. Pediatr Infect Dis J 2019; 38:1219-1223. [PMID: 31568253 DOI: 10.1097/inf.0000000000002463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Diagnostic challenges combined with the vulnerability of neonates to develop invasive candidiasis (IC) may lead to antifungal administration in the absence of IC. A modified point-prevalence study was performed to obtain an improved insight and understanding of antifungal prescribing in this specific patient population. METHODS Neonates and infants ≤90 days of age receiving systemic antifungals from 12 centers in England were included. Data were collected prospectively during 26 consecutive weeks and entered into an online REDCap database. RESULTS Two hundred eighty neonates and infants were included, the majority ≤1 month of age (68.2%). Prematurity was the commonest underlying condition (68.9%). Antifungals were prescribed for prophylactic reason in 79.6%; of those, 64.6% and 76.3% were extreme low birth weight infants and prematurely born neonates, respectively. Additional risk factors were present in almost all patients, but only 44.7% had ≥3 risk factors rendering them more susceptible to develop IC. Nonpremature and non extremely low birth weight premature infants only scored ≥3 risk factors in 32.6% and 15%, respectively. Fluconazole was the most common antifungal used (76.7% of all prescriptions), and commonly underdosed as treatment. The number of microbiologic proven IC was low, 5.4%. CONCLUSIONS Neonatal antifungal prophylaxis is commonly prescribed outside the recommendations based on known risk profiles. Fluconazole is the main antifungal prescribed in neonates and infants, with underdosing frequently observed when prescribed for treatment. Number of proven IC was very low. These observations should be taken into consideration to develop a national pediatric Antifungal Stewardship program aiming to guide rational prescribing.
Collapse
|
18
|
Koch C, Schneck E, Arens C, Markmann M, Sander M, Henrich M, Weigand MA, Lichtenstern C. Hemodynamic changes in surgical intensive care unit patients undergoing echinocandin treatment. Int J Clin Pharm 2019; 42:72-79. [DOI: 10.1007/s11096-019-00939-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/08/2019] [Indexed: 01/05/2023]
|
19
|
Yang Q, Zhang T, Zhao D, Zhang Y, Dong Y, Sun D, Du Q, Zheng J, Lu H, Dong Y. Factors influencing caspofungin plasma concentrations in kidney transplant patients with high incidence of invasive fungal infections. J Clin Pharm Ther 2019; 45:72-80. [PMID: 31468555 DOI: 10.1111/jcpt.13026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/03/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Caspofungin is commonly used in kidney transplant patients for prophylaxis or treatment of invasive fungal infections (IFIs) caused by Candida spp. and Aspergillus spp. Factors such as concomitant medications, co-morbidity and rejection often cause caspofungin pharmacokinetic parameters alterations in kidney transplant patients. Here, we aimed to investigate factors influencing caspofungin plasma concentrations and evaluate its prophylaxis and treatment efficiency for IFIs in kidney transplant patients. METHODS The prophylaxis and treatment efficiency of caspofungin for IFIs were assessed in 164 kidney transplant patients in the study. Six hundred and fifty-two caspofungin trough concentrations (Cmin ) from the 164 patients were monitored by the liquid chromatography-tandem mass spectrometry method. Basic demographic variables, baseline disease, surgery, rejection, indwelling catheter, coinfection, concomitant medication and other caspofungin-related factors were collected. Univariate and multivariate analyses were used to assess factors influencing caspofungin plasma concentrations. RESULTS AND DISCUSSION The success rates were 94.96% (132/139) for caspofungin prevention and 80% (20/25) for caspofungin for IFIs. Caspofungin Cmin in the kidney recipients varied largely compared with healthy volunteers (0.10-12.25 mg/L vs. 1.12-1.78 mg/L). Caspofungin Cmin significantly increased in patients with continuous renal replacement therapy before transplantation (P = .001), concomitant medication of cyclosporine A (CsA, P = .009), ALB concentration of > 30 g/L (P = .019). WHAT IS NEW AND CONCLUSION This is an uncontrolled observational study of caspofungin as prophylaxis or treatment for IFIs in kidney transplant patients. Caspofungin could be an effective and well-tolerated option for antifungal prophylaxis and treatment in kidney transplant patients, and a number of factors could influence caspofungin Cmin in these patients.
Collapse
Affiliation(s)
- Qianting Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Zhao
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuzhu Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Sun
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Zheng
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haidong Lu
- Departments of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Multani A, Subramanian AK, Liu AY. Successful eradication of chronic symptomatic Candida krusei urinary tract infection with increased dose micafungin in a liver and kidney transplant recipient: Case report and review of the literature. Transpl Infect Dis 2019; 21:e13118. [PMID: 31111613 DOI: 10.1111/tid.13118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/26/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022]
Abstract
Treatment of symptomatic candiduria is notoriously challenging because of the limited repository of antifungals that achieve adequate urinary concentrations. Fluconazole, amphotericin B-based products, and flucytosine are established treatment options for most Candida species. Candida krusei exhibits intrinsic resistance to fluconazole and decreased susceptibility to amphotericin B and flucytosine. In transplant patients, both amphotericin B-based products and flucytosine are less desirable because of their toxicities. Other triazole antifungals are unappealing because they do not achieve adequate urinary concentrations, have multiple toxicities, and interact with transplant-related immunosuppressive medications. Echinocandins are well-tolerated but have been traditionally deferred in the treatment of symptomatic funguria because of their poor urinary concentrations but there is a small but emerging body of literature supporting their use. Here, we present a case of successful eradication of chronic symptomatic C krusei urinary tract infection with micafungin 150 milligrams daily in a liver and kidney transplant recipient, and we review the literature on treatment of symptomatic candiduria.
Collapse
Affiliation(s)
- Ashrit Multani
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Aruna K Subramanian
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Anne Y Liu
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
21
|
Arockianathan PM, Mishra M, Niranjan R. Recent Status and Advancements in the Development of Antifungal Agents: Highlights on Plant and Marine Based Antifungals. Curr Top Med Chem 2019; 19:812-830. [PMID: 30977454 DOI: 10.2174/1568026619666190412102037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
The developing resistance in fungi has become a key challenge, which is being faced nowadays with the available antifungal agents in the market. Further search for novel compounds from different sources has been explored to meet this problem. The current review describes and highlights recent advancement in the antifungal drug aspects from plant and marine based sources. The current available antifungal agents act on specific targets on the fungal cell wall, like ergosterol synthesis, chitin biosynthesis, sphingolipid synthesis, glucan synthesis etc. We discuss some of the important anti-fungal agents like azole, polyene and allylamine classes that inhibit the ergosterol biosynthesis. Echinocandins inhibit β-1, 3 glucan synthesis in the fungal cell wall. The antifungals poloxins and nikkomycins inhibit fungal cell wall component chitin. Apart from these classes of drugs, several combinatorial therapies have been carried out to treat diseases due to fungal resistance. Recently, many antifungal agents derived from plant and marine sources showed potent activity. The renewed interest in plant and marine derived compounds for the fungal diseases created a new way to treat these resistant strains which are evident from the numerous literature publications in the recent years. Moreover, the compounds derived from both plant and marine sources showed promising results against fungal diseases. Altogether, this review article discusses the current antifungal agents and highlights the plant and marine based compounds as a potential promising antifungal agents.
Collapse
Affiliation(s)
- P Marie Arockianathan
- PG & Research Department of Biochemistry, St. Joseph's College of Arts & Science (Autonomous), Cuddalore-607001, Tamil Nadu, India
| | - Monika Mishra
- Neurobiology laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rituraj Niranjan
- Unit of Microbiology and Molecular Biology, ICMR-Vector Control Research Center, Puducherry 605006, India
| |
Collapse
|
22
|
Caspofungin Modulates Ryanodine Receptor-Mediated Calcium Release in Human Cardiac Myocytes. Antimicrob Agents Chemother 2018; 62:AAC.01114-18. [PMID: 30150463 DOI: 10.1128/aac.01114-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/18/2018] [Indexed: 01/21/2023] Open
Abstract
Recent studies showed that critically ill patients might be at risk for hemodynamic impairment during caspofungin (CAS) therapy. The aim of our present study was to examine the mechanisms behind CAS-induced cardiac alterations. We revealed a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) after CAS treatment. Ca2+ ions were found to be released from intracellular caffeine-sensitive stores, most probably via the activation of ryanodine receptors.
Collapse
|
23
|
Yang QT, Zhai YJ, Chen L, Zhang T, Yan Y, Meng T, Liu LC, Chen LM, Wang X, Dong YL. Whole-body physiology-based pharmacokinetics of caspofungin for general patients, intensive care unit patients and hepatic insufficiency patients. Acta Pharmacol Sin 2018; 39:1533-1543. [PMID: 29849129 DOI: 10.1038/aps.2017.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/26/2017] [Indexed: 12/22/2022] Open
Abstract
Caspofungin is an echinocandin antifungal agent licensed as a first-line therapy for invasive candidiasis in patients with moderate to severe illness or recent exposure to azoles. In this study we developed a whole-body physiology-based pharmacokinetics (WB-PBPK) model to predict the pharmacokinetics (PK) of caspofungin, and combined with Monte Carlo simulation (MCS) to optimize clinical dosage regimens of caspofungin in different kinds of patients. A WB-PBPK model of caspofungin was built and validated with raw data from 4 previous trials of general patients, intensive care unit (ICU) patients with Child-Pugh B, ICU patients on continuous renal replacement therapy, mild and moderate hepatic insuffciency (HI) patients. MCS was used to optimize clinical dosage regimens of caspofungin in these patients. A cumulative fraction of response (CFR) value of ≥90% was considered to be the minimum for achieving optimal empirical therapy. The simulated results of the WB-PBPK model were in good agreement with observed values of all trials. For general and ICU patients with caspofungin 70/50 mg, AUC and Cmax were decreased with the increase of body weight (BW) and showed great variation. MCS showed all general patients achieved CFR≥90% regardless of BW. But not all ICU patients with higher BW (≥70 kg) could achieve CFR≥90%. Compared with standard dosage regimens in general patients, caspofungin 70/35 mg in ICU patients with Child-Pugh B achieved significantly decreased AUC and Cmax, but obtained similar AUC and Cmax in moderate HI patients with Child-Pugh B. The WB-PBPK model of caspofungin is able to predict PK of all populations correctly. The combined WB-PBPK model with MCS can successfully optimize clinical dosage regimens of caspofungin in all patient populations.
Collapse
|
24
|
Yeoh SF, Lee TJ, Chew KL, Lin S, Yeo D, Setia S. Echinocandins for management of invasive candidiasis in patients with liver disease and liver transplantation. Infect Drug Resist 2018; 11:805-819. [PMID: 29881298 PMCID: PMC5985852 DOI: 10.2147/idr.s165676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Candida species remains one of the most important causes of opportunistic infections worldwide. Invasive candidiasis (IC) is associated with considerable morbidity and mortality in liver disease (LD) patients if not treated promptly. Echinocandins are often recommended as a first-line empirical treatment for managing IC and can especially play a critical role in managing IC in LD patients. However, advanced LD patients are often immunocompromised and critically ill. Hence altered pharmacokinetics, drug interactions as well as tolerance issues of antifungal treatments are a concern in these patients. This comprehensive review examines the epidemiology, risk factors and diagnosis of IC in patients with LD and evaluates differences between three available echinocandins for treating this group of patients.
Collapse
Affiliation(s)
- Siang Fei Yeoh
- Department of Pharmacy, National University Health System, Singapore, Singapore
| | - Tae Jin Lee
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Ka Lip Chew
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Stephen Lin
- Global Medical Affairs, Asia-Pacific region, Pfizer, Hong Kong, People’s Republic of China
| | - Dennis Yeo
- Medical Affairs, Pfizer Pte. Ltd., Singapore, Singapore
| | - Sajita Setia
- Medical Affairs, Pfizer Pte. Ltd., Singapore, Singapore
| |
Collapse
|
25
|
Martínez-Casanova J, Carballo N, Luque S, Sorli L, Grau S. Posaconazole achieves prompt recovery of voriconazole-induced liver injury in a case of invasive aspergillosis. Infect Drug Resist 2018; 11:317-321. [PMID: 29551905 PMCID: PMC5844257 DOI: 10.2147/idr.s154457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Azole antifungals have frequently been linked to the presence of hepatotoxicity, but there is scarce information on cross-toxicity between these drugs or on the possibility of using some of them when this type of toxicity occurs. We report the case of a 64-year-old man with invasive aspergillosis (IA) leading to spondylodiscitis with neurological involvement. Early management included intravenous (iv) voriconazole, which had to be interrupted after 1 week due to liver damage. Therapeutic drug monitoring (TDM) of voriconazole showed that the plasma concentration was within the therapeutic range. However, it was replaced by a combination therapy of oral posaconazole plus iv caspofungin. Posaconazole allowed normalization of liver enzymes. After finishing posaconazole monotherapy on an outpatient basis, the patient made a full recovery. This case report provides further evidence that oral posaconazole is safe and effective as rescue therapy after the appearance of voriconazole-induced liver toxicity.
Collapse
Affiliation(s)
| | | | - Sonia Luque
- Pharmacy Department, Hospital del Mar, Barcelona, Spain
| | - Luisa Sorli
- Infectious Diseases Department, Hospital del Mar, Barcelona, Spain
| | - Santiago Grau
- Pharmacy Department, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
26
|
High Performance Liquid Chromatography–Tandem Mass Spectrometry Method for Simultaneous Quantification of Caspofungin, Anidulafungin and Micafungin in Human Plasma for Feasible Applications in Pediatric Haematology/Oncology. Chromatographia 2017. [DOI: 10.1007/s10337-017-3329-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
|
28
|
Chang YL, Yu SJ, Heitman J, Wellington M, Chen YL. New facets of antifungal therapy. Virulence 2017; 8:222-236. [PMID: 27820668 PMCID: PMC5354158 DOI: 10.1080/21505594.2016.1257457] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 01/13/2023] Open
Abstract
Invasive fungal infections remain a major cause of morbidity and mortality in immunocompromised patients, and such infections are a substantial burden to healthcare systems around the world. However, the clinically available armamentarium for invasive fungal diseases is limited to 3 main classes (i.e., polyenes, triazoles, and echinocandins), and each has defined limitations related to spectrum of activity, development of resistance, and toxicity. Further, current antifungal therapies are hampered by limited clinical efficacy, high rates of toxicity, and significant variability in pharmacokinetic properties. New antifungal agents, new formulations, and novel combination regimens may improve the care of patients in the future by providing improved strategies to combat challenges associated with currently available antifungal agents. Likewise, therapeutic drug monitoring may be helpful, but its present use remains controversial due to the lack of available data. This article discusses new facets of antifungal therapy with a focus on new antifungal formulations and the synergistic effects between drugs used in combination therapy.
Collapse
Affiliation(s)
- Ya-Lin Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Shang-Jie Yu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Melanie Wellington
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
29
|
Chang CC, Slavin MA, Chen SCA. New developments and directions in the clinical application of the echinocandins. Arch Toxicol 2017; 91:1613-1621. [DOI: 10.1007/s00204-016-1916-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/13/2016] [Indexed: 01/05/2023]
|
30
|
Inhibitory Potential of Antifungal Drugs on ATP-Binding Cassette Transporters P-Glycoprotein, MRP1 to MRP5, BCRP, and BSEP. Antimicrob Agents Chemother 2016; 60:3372-9. [PMID: 27001813 DOI: 10.1128/aac.02931-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/10/2016] [Indexed: 12/21/2022] Open
Abstract
Inhibition of ABC transporters is a common mechanism underlying drug-drug interactions (DDIs). We determined the inhibitory potential of antifungal drugs currently used for invasive fungal infections on ABC transporters P-glycoprotein (P-gp), MRP1 to MRP5, BCRP, and BSEP in vitro Membrane vesicles isolated from transporter-overexpressing HEK 293 cells were used to investigate the inhibitory potential of antifungal drugs (250 μM) on transport of model substrates. Concentration-inhibition curves were determined if transport inhibition was >60%. Fifty percent inhibitory concentrations (IC50s) for P-gp and BCRP were both 2 μM for itraconazole, 5 and 12 μM for hydroxyitraconazole, 3 and 6 μM for posaconazole, and 3 and 11 μM for isavuconazole, respectively. BSEP was strongly inhibited by itraconazole and hydroxyitraconazole (3 and 17 μM, respectively). Fluconazole and voriconazole did not inhibit any transport for >60%. Micafungin uniquely inhibited all transporters, with strong inhibition of MRP4 (4 μM). Anidulafungin and caspofungin showed strong inhibition of BCRP (7 and 6 μM, respectively). Amphotericin B only weakly inhibited BCRP-mediated transport (127 μM). Despite their wide range of DDIs, azole antifungals exhibit selective inhibition on efflux transporters. Although echinocandins display low potential for clinically relevant DDIs, they demonstrate potent in vitro inhibitory activity. This suggests that inhibition of ABC transporters plays a crucial role in the inexplicable (non-cytochrome P450-mediated) DDIs with antifungal drugs.
Collapse
|
31
|
Lempers VJ, Brüggemann RJ. Antifungal therapy: drug–drug interactions at your fingertips. J Antimicrob Chemother 2015; 71:285-9. [DOI: 10.1093/jac/dkv350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Cardiac Effects of Echinocandins in Endotoxemic Rats. Antimicrob Agents Chemother 2015; 60:301-6. [PMID: 26503647 DOI: 10.1128/aac.01766-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/18/2015] [Indexed: 02/04/2023] Open
Abstract
Echinocandins are known as effective and safe agents for the prophylaxis and treatment of different cohorts of patients with fungal infections. Recent studies revealed that certain pharmacokinetics of echinocandin antifungals might impact clinical efficacy and safety in special patient populations. The aim of our study was to evaluate echinocandin-induced aggravation of cardiac impairment in septic shock. Using an in vivo endotoxemic shock model in rats, we assessed hemodynamic parameters and time to hemodynamic failure (THF) after additional central-venous application of anidulafungin (2.5 mg/kg of body weight [BW]), caspofungin (0.875 mg/kg BW), micafungin (3 mg/kg BW), and control (0.9% sodium chloride). In addition, echinocandin-induced cytotoxicity was evaluated in isolated rat cardiac myocytes. THF of the animals in the caspofungin group (n = 7) was significantly reduced compared to that in the control (n = 6) (136 min versus 180 min; P = 0.0209). The anidulafungin group (n = 7) also showed a trend of reduced THF (136 min versus 180 min; log-rank test P = 0.0578). Animals in the micafungin group (n = 7) did not show significant differences in THF compared to those in the control. Control group animals and also micafungin group animals did not show altered cardiac output (CO) during our experiments. In contrast, administration of anidulafungin or caspofungin induced a decrease in CO. We also revealed a dose-dependent increase of cytotoxicity in anidulafungin- and caspofungin-treated cardiac myocytes. Treatment with micafungin did not cause significantly increased cytotoxicity. Further studies are needed to explore the underlying mechanism.
Collapse
|
33
|
Lempers VJC, Martial LC, Schreuder MF, Blijlevens NM, Burger DM, Aarnoutse RE, Brüggemann RJM. Drug-interactions of azole antifungals with selected immunosuppressants in transplant patients: strategies for optimal management in clinical practice. Curr Opin Pharmacol 2015. [DOI: 10.1016/j.coph.2015.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|