1
|
Reginatto P, Joaquim AR, Teixeira ML, Andrade SFD, Fuentefria AM. 8-Hydroxyquinoline derivative as a promising antifungal agent to combat ocular fungal infections. J Med Microbiol 2025; 74. [PMID: 39787291 DOI: 10.1099/jmm.0.001952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Introduction. Ocular fungal infections are pathologies of slow progression, occurring mainly in the cornea, but can also affect the entire structure of the eyeball. The main aetiological agents are species of the genera Candida and Fusarium. Both diagnosis and treatment require speed and effectiveness. However, the currently available therapy basically consists of the use of azoles and polyenes, known for their low penetration into the ocular tissue and the associated toxicity.Hypothesis. Thus, new strategies to combat these infections are needed, such as the development of new antifungals or the use of associations.Aim. Thus, the compound PH151, derived from a promising class of 8-hydroxyquinolines, and natamycin, amphotericin B (AMB) and voriconazole (VRC), the main antifungals used in ocular antifungal therapy, were considered against Candida spp. and Fusarium spp.Methodology. The MICs of compound PH151 ranged from 1.0 to 16.0 µg ml-1, according to CLSI protocols.Results. The association of PH151 with AMB and VRC showed a synergistic effect for more than 50% of the strains tested.Conclusion. Both the compound alone and its association (VRC-AMB-PH151) demonstrated promising potential as an antifungal agent in ocular infections, since the evaluated ocular toxicity profile was positive and the compounds presented low toxicity.
Collapse
Affiliation(s)
- Paula Reginatto
- Programa de Ps-Graduao em Cincias Farmacuticas, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angélica Rocha Joaquim
- Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Faculty of Pharmacy of the Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Saulo Fernandes de Andrade
- Programa de Ps-Graduao em Cincias Farmacuticas, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Anlises, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Ps-Graduao em Cincias Farmacuticas, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Produo de Matria-Prima, Faculdade de Farmcia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Ansari A, Kumar D, Gupta P, Poluri KM, Rai N, Ameen F, Kumar N. Mechanistic insights into antifungal potential of Alexidine dihydrochloride and hexachlorophene in Candida albicans: a drug repurposing approach. Arch Microbiol 2024; 206:383. [PMID: 39162873 DOI: 10.1007/s00203-024-04103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Candida albicans has been listed in the critical priority group by the WHO in 2022 depending upon its contribution in invasive candidiasis and increased resistance to conventional drugs. Drug repurposing offers an efficient, rapid, and cost-effective solution to develop alternative therapeutics against pathogenic microbes. Alexidine dihydrochloride (AXD) and hexachlorophene (HCP) are FDA approved anti-cancer and anti-septic drugs, respectively. In this study, we have shown antifungal properties of AXD and HCP against the wild type (reference strain) and clinical isolates of C. albicans. The minimum inhibitory concentrations (MIC50) of AXD and HCP against C. albicans ranged between 0.34 and 0.69 µM and 19.66-24.58 µM, respectively. The biofilm inhibitory and eradication concentration of AXD was reported comparatively lower than that of HCP for the strains used in the study. Further investigations were performed to understand the antifungal mode of action of AXD and HCP by studying virulence features like cell surface hydrophobicity, adhesion, and yeast to hyphae transition, were also reduced upon exposure to both the drugs. Ergosterol content in cell membrane of the wild type strain was upregulated on exposure to AXD and HCP both. Biochemical analyses of the exposed biofilm indicated reduced contents of carbohydrate, protein, and e-DNA in the extracellular matrix of the biofilm when compared to the untreated control biofilm. AXD exposure downregulated activity of tissue invading enzyme, phospholipase in the reference strain. In wild type strain, ROS level, and activities of antioxidant enzymes were found elevated upon exposure to both drugs. FESEM analysis of the drug treated biofilms revealed degraded biofilm. This study has indicated mode of action of antifungal potential of alexidine dihydrochloride and hexachlorophene in C. albicans.
Collapse
Affiliation(s)
- Ayesha Ansari
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248001, Uttarakhand, India
| | - Darshan Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248001, Uttarakhand, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248001, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nishant Rai
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248001, Uttarakhand, India
| | - Faud Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Navin Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248001, Uttarakhand, India.
| |
Collapse
|
3
|
Reginatto P, Agostinetto GDJ, Teixeira ML, de Andrade SF, Fuentefria AM. Synergistic activity of clioquinol with voriconazole and amphotericin B against fungi of interest in eye infections. J Mycol Med 2024; 34:101462. [PMID: 38290229 DOI: 10.1016/j.mycmed.2024.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Keratoplasty represents a risk factor for fungal eye infections, despites the antibacterial actives in the corneal tissue preservation means, it does not contain active substances with antifungal action. Among the most commonly associated fungal agents are the species belonging to the genera Fusarium and Candida. These agents can trigger an infectious process characterized by swift progression associated with high rates of morbidity, causing irreversible damage. Polyene and azole antifungals are the main agents of ocular therapy, however, they demonstrate some limitations, such as their toxicity and fungal resistance. In this context, drug repositioning and the combination of antifungals may be an alternative. Hence, the goal of this study was to investigate the potential activity of clioquinol (CLQ), a derivative of 8-hydroxyquinoline with previously described antifungal activity, along with its triple and quadruple combinations with antifungal agents commonly used in ophthalmic fungal therapy, natamycin (NAT), voriconazole (VRC), and amphotericin B (AMB), against main fungal pathogens in eye infections. The MICs for CLQ ranged from 0.25 to 2.0 μg/mL, for NAT from 4.0 to 32.0 μg/mL, for AMB it ranged from 0.25 to 16.0 μg/mL and for VRC from 0.03125 to 512.0 µg/mL. Among the tested combinations, the VRC-AMB-CLQ combination stands out, which showed a synergistic effect for more than 50 % of the tested strains and did not present antagonistic results against any of them. Toxicity data were similar to those antifungals already used, even with lower potential toxicity. Therefore, both clioquinol and the triple combination VCR-AMB-CLQ exhibited promising profiles for use as active components in corneal tissue preservation medium.
Collapse
Affiliation(s)
- Paula Reginatto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | - Saulo Fernandes de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Lin L, Zhuo Y, Dong Q, Yang C, Cheng C, Liu T. Plasma activated Ezhangfeng Cuji as innovative antifungal agent and its inactivation mechanism. AMB Express 2023; 13:65. [PMID: 37368076 DOI: 10.1186/s13568-023-01571-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Candida albicans is a highly drug-resistant fungus for which new treatments are urgently needed due to the lack of clinically effective options. In this study, we evaluated the antifungal activity and mechanism of plasma-activated Ezhangfeng Cuji (PAEC) against Candida albicans and compared it with physiological saline (PS), plasma-activated physiological saline (PAPS) and Ezhangfeng Cuji (EC). After dielectric barrier discharge (DBD) plasma treatment with EC for 20 min followed by a 10 min immersion of Candida albicans, the fungus was reduced by approximately 3 orders of magnitude. High performance liquid chromatography (HPLC) results showed an increase of 41.18% and 129.88% in the concentration of oxymatrine and rhein, respectively, after plasma-treated EC. The concentrations of reactive species (RS), such as H2O2, [Formula: see text], and O3, were found to be higher and the pH value was getting lower in PS after plasma treatment. Detailed analysis of intracellular material leakage, reactive oxygen species (ROS), apoptosis for Candida albicans and observation by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) demonstrated that PAPS, EC and PAEC disrupt the morphological structure of Candida albicans to varying degrees.Additionally, specific analyses on Candida albicans virulence factors, such as adhesion to tissue surfaces, cell surface hydrophobicity (CSH), the transition of yeast-phase cells to mycelium-phase cells, and the secretion of hydrolytic enzymes for Candida albicans were conducted and found to be inhibited after PAPS/EC/PAEC treatment. In our investigation, the inhibitory effects on Candida albicans were ranked from strong to weak as follows: PAEC, EC, PAPS, and PS.
Collapse
Affiliation(s)
- Lin Lin
- The Postgraduate School of Anhui, University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Yue Zhuo
- Department of Dermatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qiran Dong
- Department of Dermatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Chunjun Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Cheng Cheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Taofeng Liu
- Department of Dermatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
5
|
Gong Y, Yin S, Sun S, Li M. Chelerythrine reverses the drug resistance of resistant Candida albicans and the biofilm to fluconazole. Future Microbiol 2022; 17:1325-1333. [DOI: 10.2217/fmb-2021-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the antifungal activity of chelerythrine in combination with fluconazole against planktonic Candida albicans strains and preformed biofilm. Materials & methods: A broth microdilution assay was used to reveal the antifungal activity of chelerythrine combined with fluconazole against C. albicans and the preformed biofilm. A fractional inhibitory concentration index model was used to evaluate the interaction. Results: Chelerythrine strongly synergized with fluconazole against fluconazole-resistant C. albicans and the biofilm preformed for less than 12 h. In addition, chelerythrine combined with fluconazole exhibited a synergistic effect against C. albicans morphogenesis. Conclusion: Chelerythrine could reverse the drug resistance of resistant C. albicans and its biofilm to fluconazole, providing new insights for overcoming the drug resistance of C. albicans.
Collapse
Affiliation(s)
- Ying Gong
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, People's Republic of China
| | - Shulin Yin
- Medical Engineering Section, Weihai Municipal Hosptital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, People's Republic of China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, 250022, People's Republic of China
| | - Min Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China
| |
Collapse
|
6
|
Inhibitory effect of a combination of baicalein and quercetin flavonoids against Candida albicans strains isolated from the female reproductive system. Fungal Biol 2022; 126:407-420. [DOI: 10.1016/j.funbio.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
|
7
|
Li R, Zhu L, Liu D, Wang W, Zhang C, Jiao S, Wei J, Ren L, Zhang Y, Gou X, Yuan X, Du Y, Wang ZA. High molecular weight chitosan oligosaccharide exhibited antifungal activity by misleading cell wall organization via targeting PHR transglucosidases. Carbohydr Polym 2022; 285:119253. [PMID: 35287867 DOI: 10.1016/j.carbpol.2022.119253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
|
8
|
Reginatto P, Joaquim AR, Rocha DA, Berlitz SJ, Külkamp-Guerreiro IC, De Andrade SF, Fuentefria AM. 8-hydroxyquinoline and quinazoline derivatives as potential new alternatives to combat Candida spp. biofilm. Lett Appl Microbiol 2021; 74:395-404. [PMID: 34822194 DOI: 10.1111/lam.13607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/09/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Often associated to the colonization by Candida spp. biofilm, the catheter-related infections are a serious health problem since the absence of a specific therapy. Hence, the main objective of this work was to evaluate the activity of 8-hydroxyquinoline and quinazoline derivatives on Candida spp. biofilms. A quinazoline derivative (PH100) and an 8-hydroxyquinoline derivative (PH157) were tested against nine strains of C. albicans, C. tropicalis and C. parapsilosis, and their biofilms in polystyrene microtitre plates and on polyurethane central venous catheter. The PH157 compound was incorporated into a film-forming system-type formulation and its capacity to inhibit biofilm formation on catheters was evaluated. The compounds were active against planktonic and sessile cells, as well as against the tested biofilms. PH157 compound performed better than the PH100 compound. The formulation containing PH157 presented results very similar to those of the compound in solution, which indicates that its activity was preserved. Both compounds showed activity against Candida spp. strains and their biofilm, with better PH157 activity. The formulation preserved the action of the PH157 compound, in addition, it facilitates its application on the catheter. The structural modifications that these compounds allow can generate compounds that are even more active, both against planktonic cells and biofilms.
Collapse
Affiliation(s)
- P Reginatto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A R Joaquim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - D A Rocha
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - S J Berlitz
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - I C Külkamp-Guerreiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - S F De Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A M Fuentefria
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Chen YC, Chen FJ, Lee CH. Effect of antifungal agents, lysozyme and human antimicrobial peptide LL-37 on clinical Candida isolates with high biofilm production. J Med Microbiol 2021; 70. [PMID: 33252326 DOI: 10.1099/jmm.0.001283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Candida species can form biofilms on tissues and medical devices, making them less susceptible to antifungal agents.Hypothesis/Gap Statement. Antifungal combination may be an effective strategy to fight against Candida biofilm.Aim. In this study, we investigated the in vitro activity of fluconazole, caspofungin and amphotericin B, alone and in combination, against 17 clinical Candida tropicalis and 6 Candida parapsilosis isolates with high biofilm formation. We also tested LL-37 and lysozyme for anti-biofilm activity against a selected C. tropicalis isolate.Methodology. Candida biofilms were prepared using the 96-well plate-based method. The minimum biofilm eradication concentrations were determined for single and combined antifungal drugs. The activity of LL-37 and lysozyme was determined by visual reading for planktonic cells and using the XTT assay for biofilms.Results. Under biofilm conditions, fluconazole plus caspofungin showed synergistic effects against 60.9% (14 of 23) of the tested isolates, including 70.6% of C. tropicalis [fractional inhibitory concentration index (FICI), 0.26-1.03] and 33.3% of C. parapsilosis (FICI, 0.04-2.03) isolates. Using this combination, no antagonism was observed. Amphotericin B plus caspofungin showed no effects against 78.3% (18 of 23) of the tested isolates. Amphotericin B plus fluconazole showed no effects against 65.2% (15 of 23) of the tested isolates and may have led to antagonism against 2 C. tropicalis and 2 C. parapsilosis isolates. LL-37 and lysozyme had no effect on biofilms of the selected C. tropicalis isolate.Conclusions. We found that fluconazole plus caspofungin led to a synergistic effect against C. tropicalis and C. parapsilosis biofilms. The efficacy of the antifungal combination therapies of the proposed schemes against biofilm-associated Candida infections requires careful and constant evaluation.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta-Pei Road, Niao Sung District, Kaohsiung 833, Taiwan, ROC
| | - Fang-Ju Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta-Pei Road, Niao Sung District, Kaohsiung 833, Taiwan, ROC
| | - Chen-Hsiang Lee
- Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao Sung District, Kaohsiung 833, Taiwan, ROC.,Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta-Pei Road, Niao Sung District, Kaohsiung 833, Taiwan, ROC
| |
Collapse
|
10
|
Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol 2021; 47:91-111. [PMID: 33482069 PMCID: PMC7903066 DOI: 10.1080/1040841x.2020.1843400] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022]
Abstract
Candida albicans is a common fungus of the human microbiota. While generally a harmless commensal in healthy individuals, several factors can lead to its overgrowth and cause a range of complications within the host, from localized superficial infections to systemic life-threatening disseminated candidiasis. A major virulence factor of C. albicans is its ability to form biofilms, a closely packed community of cells that can grow on both abiotic and biotic substrates, including implanted medical devices and mucosal surfaces. These biofilms are extremely hard to eradicate, are resistant to conventional antifungal treatment and are associated with high morbidity and mortality rates, making biofilm-associated infections a major clinical challenge. Here, we review the current knowledge of the processes involved in C. albicans biofilm formation and development, including the central processes of adhesion, extracellular matrix production and the transcriptional network that regulates biofilm development. We also consider the advantages of the biofilm lifestyle and explore polymicrobial interactions within multispecies biofilms that are formed by C. albicans and selected microbial species.
Collapse
Affiliation(s)
- Nicole O. Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental School and Hospital, Faculty of Medicine, University of Glasgow, G2 3JZ, United Kingdom
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
11
|
Bezerra CF, de Alencar Júnior JG, de Lima Honorato R, dos Santos ATL, Pereira da Silva JC, Gusmão da Silva T, Leal ALAB, Rocha JE, de Freitas TS, Tavares Vieira TA, Bezerra MCF, Sales DL, Kerntopf MR, de Araujo Delmondes G, Filho JMB, Peixoto LR, Pinheiro AP, Ribeiro-Filho J, Coutinho HDM, Morais-Braga MFB, Gonçalves da Silva T. Antifungal activity of farnesol incorporated in liposomes and associated with fluconazole. Chem Phys Lipids 2020; 233:104987. [DOI: 10.1016/j.chemphyslip.2020.104987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
|
12
|
Potente G, Bonvicini F, Gentilomi GA, Antognoni F. Anti- Candida Activity of Essential Oils from Lamiaceae Plants from the Mediterranean Area and the Middle East. Antibiotics (Basel) 2020; 9:antibiotics9070395. [PMID: 32660009 PMCID: PMC7400371 DOI: 10.3390/antibiotics9070395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
Extensive documentation is available on plant essential oils as a potential source of antimicrobials, including natural drugs against Candida spp. Yeasts of the genus Candida are responsible for various clinical manifestations, from mucocutaneous overgrowth to bloodstream infections, whose incidence and mortality rates are increasing because of the expanding population of immunocompromised patients. In the last decade, although C. albicans is still regarded as the most common species, epidemiological data reveal that the global distribution of Candida spp. has changed, and non-albicans species of Candida are being increasingly isolated worldwide. The present study aimed to review the anti-Candida activity of essential oils collected from 100 species of the Lamiaceae family growing in the Mediterranean area and the Middle East. An overview is given on the most promising essential oils and constituents inhibiting Candida spp. growth, with a particular focus for those natural products able to reduce the expression of virulence factors, such as yeast-hyphal transition and biofilm formation. Based on current knowledge on members of the Lamiaceae family, future recommendations to strengthen the value of these essential oils as antimicrobial agents include pathogen selection, with an extension towards the new emerging Candida spp. and toxicological screening, as it cannot be taken for granted that plant-derived products are void of potential toxic and/or carcinogenic properties.
Collapse
Affiliation(s)
- Giulia Potente
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (G.P.); (F.A.)
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-4290-930
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Fabiana Antognoni
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (G.P.); (F.A.)
| |
Collapse
|
13
|
de Barros PP, Rossoni RD, de Souza CM, Scorzoni L, Fenley JDC, Junqueira JC. Candida Biofilms: An Update on Developmental Mechanisms and Therapeutic Challenges. Mycopathologia 2020; 185:415-424. [PMID: 32277380 DOI: 10.1007/s11046-020-00445-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
Fungi of the genus Candida are important etiological agents of superficial and life-threatening infections in individuals with a compromised immune system. One of the main characteristics of Candida is its ability to form highly drug tolerance biofilms in the human host. Biofilms are a dynamic community of multiple cell types whose formation over time is orchestrated by a network of transcription regulators. In this brief review, we provide an update of the processes involved in biofilm formation by Candida spp. (formation, treatment, and control), as well as the transcriptional circuitry that regulates its development and interactions with other microorganisms. Candida albicans is known to build mixed species biofilms with other Candida species and with various other bacterial species in different host niches. Taken together, these properties play a key role in Candida pathogenesis. In addition, this review gathers recent studies with new insights and perspectives for the treatment and control of Candida biofilms.
Collapse
Affiliation(s)
- Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Cheyenne Marçal de Souza
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Juliana De Camargo Fenley
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| |
Collapse
|
14
|
Reginatto P, Bergamo VZ, Berlitz SJ, Guerreiro ICK, de Andrade SF, Fuentefria AM. Rational selection of antifungal drugs to propose a new formulation strategy to control Candida biofilm formation on venous catheters. Braz J Microbiol 2020; 51:1037-1049. [PMID: 32077074 DOI: 10.1007/s42770-020-00242-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Infections associated with medical devices are often related to colonization by Candida spp. biofilm; in this way, numerous strategies have been developed and studied, mainly in order to prevent this type of fungal growth. AIM Considering the above, the main objective of the present study is to make a rational choice of the best antifungal therapy for the in vitro treatment of the biofilm on venous catheters, proposing an innovative formulation of a film-forming system to coat the surface in order to prevent the formation of biofilms. METHODOLOGY Anidulafungin, fluconazole, voriconazole, ketoconazole, amphotericin B, and the association of anidulafungin and amphotericin B were tested against biofilms of C. albicans, C. tropicalis, and C. parapsilosis strains in microtiter plates and in a polyurethane catheter. Besides, anidulafungin, amphotericin B, and the combination of both were incorporated in a film-forming system and were evaluated against biofilm. RESULTS The superior activity of anidulafungin was demonstrated in relation to the other antifungal agents. Although amphotericin B showed good activity, high concentrations were required. The combination showed a synergistic action, in solution and in the formulation, showing excellent results, with activity above 90%. CONCLUSION Due to the superiority of anidulafungin and the synergistic activity of the combination, these alternatives were the most promising options for use in a formulation proposal as a new strategy to combat the Candida spp. biofilm. These formulations demonstrated high in vitro performance in the prevention of biofilms, indicating that they are candidates with great potential for in vivo tests.
Collapse
Affiliation(s)
- Paula Reginatto
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Laboratório de Micologia Aplicada, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Vanessa Zafanelli Bergamo
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Simone Jacobus Berlitz
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Irene Clemes Kulkamp Guerreiro
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Saulo Fernandes de Andrade
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
15
|
Li X, Wu X, Gao Y, Hao L. Synergistic Effects and Mechanisms of Combined Treatment With Harmine Hydrochloride and Azoles for Resistant Candida albicans. Front Microbiol 2019; 10:2295. [PMID: 31749766 PMCID: PMC6843067 DOI: 10.3389/fmicb.2019.02295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Several studies have demonstrated the significant antiviral, antimicrobial, antiplasmodial, antioxidative, antifungal, antimutagenic, and antitumor properties of harmine hydrochloride (HMH). The main objective of the present study was to investigate the antifungal effects and underlying mechanisms of HMH when combined with azoles to determine whether such combinations act in a synergistic manner. As a result, we found that HMH exhibits synergistic antifungal effects in combination with azoles against resistant Candida albicans (C. albicans) planktonic cells, as well as resistant C. albicans biofilm in the early stage. Antifungal potential of HMH with fluconazole was also explored in vivo using an invertebrate model. Our results suggest that HMH combined with azoles is synergistic against resistant C. albicans in vitro and in vivo. No synergy is seen with azole sensitive C. albicans strains nor with other Candida species. Such synergistic mechanisms on resistance C. albicans are involved in increasing intracellular azoles, inhibiting hyphal growth, disturbing cytosolic calcium concentration, and inducing apoptosis of resistant C. albicans cells.
Collapse
Affiliation(s)
- Xiuyun Li
- Department of Pharmacy, Qilu Children's Hospital, Shandong University, Jinan, China
| | - Xuexin Wu
- Department of Pharmacy, Qilu Children's Hospital, Shandong University, Jinan, China
| | - Yan Gao
- Department of Pharmacy, Qilu Children's Hospital, Shandong University, Jinan, China
| | - Lina Hao
- Department of Pharmacy, Qilu Children's Hospital, Shandong University, Jinan, China
| |
Collapse
|
16
|
Wong JH, Ng TB, Wang H, Cheung RCF, Ng CCW, Ye X, Yang J, Liu F, Ling C, Chan K, Ye X, Chan WY. Antifungal Proteins with Antiproliferative Activity on Cancer Cells and HIV-1 Enzyme Inhibitory Activity from Medicinal Plants and Medicinal Fungi. Curr Protein Pept Sci 2019; 20:265-276. [PMID: 29895244 DOI: 10.2174/1389203719666180613085704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
A variety of fungi, plants, and their different tissues are used in Traditional Chinese Medicine to improve health, and some of them are recommended for dietary therapy. Many of these plants and fungi contain antifungal proteins and peptides which suppress spore germination and hyphal growth in phytopathogenic fungi. The aim of this article is to review antifungal proteins produced by medicinal plants and fungi used in Chinese medicine which also possess anticancer and human immunodeficiency virus-1 (HIV-1) enzyme inhibitory activities.
Collapse
Affiliation(s)
- Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, China
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Charlene Cheuk Wing Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiuyun Ye
- National Engineering Laboratory for High-Efficiency Enzyme Expression and College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Jie Yang
- National Engineering Laboratory for High-Efficiency Enzyme Expression and College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Fang Liu
- Department of Microbiology, Nankai University, Tianjin, China
| | - Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida 32611, FL, United States
| | - Ki Chan
- Biomedical and Tissue Engineering Research Group, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, China
| | - Xiujuan Ye
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, and Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Shi D, Yang J, Wang Q, Li D, Zheng H, Mei H, Liu W. SOCS3 ablation enhances DC-derived Th17 immune response against Candida albicans by activating IL-6/STAT3 in vitro. Life Sci 2019; 222:183-194. [PMID: 30851337 DOI: 10.1016/j.lfs.2019.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Abstract
AIMS Enhancing the potency of dendritic cells (DCs) by downregulating negative immunoregulatory pathways may provide immunotherapeutic possibilities against candidiasis. MAIN METHODS In this study, a si-RNA method is used to repress expression of the cytokine signaling-3 suppressor (SOCS3) in murine bone marrow-DCs, and then the maturation of DCs and the subsequent T-cell response after exposure to C. albicans are monitored in vitro. KEY FINDINGS Along with a higher expression of the DC maturation markers CD40, CD86 and MHC-II, IL-6/STAT3 is markedly upregulated in the SOCS3 siRNA-treated DCs after exposure to C. albicans as compared with control DCs. In response to DCs maturation, CD4+ T cells have an increased expression of Th17 cell markers -- including the retinoic acid-related orphan nuclear hormone receptors γt (RORγt), IL-17A and IL-23R -- and increased release of IL-17. We note that this enhanced Th17 cell differentiation induced by siSOCS3-treated DCs in presence of C. albicans can be partly offset when anti-IL-6 antibody is added into the co-culture. SIGNIFICANCE As with SOCS1 in our previous report, suppression of SOCS3 alone also has the potential to fully activate DCs maturation. However, while SOCS1 knockdown in DCs during C. albicans infection specifically augments Th1 differentiation, SOCS3 silencing particularly increases Th17 differentiation.
Collapse
Affiliation(s)
- Dongmei Shi
- Department of Dermatology& Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Shandong, PR China.
| | - Jia Yang
- Zhejiang Province Hospital of TCM, Hangzhou, Zhejiang, PR China
| | - Qiong Wang
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, PR China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Dongmei Li
- Georgetown University Medical Center, Washington D.C., USA
| | - Hailin Zheng
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, PR China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Huan Mei
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, PR China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Weida Liu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, PR China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
18
|
Liu X, Ma Z, Zhang J, Yang L. Antifungal Compounds against Candida Infections from Traditional Chinese Medicine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4614183. [PMID: 29445739 PMCID: PMC5763084 DOI: 10.1155/2017/4614183] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
Infections caused by Candida albicans, often refractory and with high morbidity and mortality, cause a heavy burden on the public health while the current antifungal drugs are limited and are associated with toxicity and resistance. Many plant-derived molecules including compounds isolated from traditional Chinese medicine (TCM) are reported to have antifungal activity through different targets such as cell membrane, cell wall, mitochondria, and virulence factors. Here, we review the recent progress in the anti-Candida compounds from TCM, as well as their antifungal mechanisms. Considering the diverse targets and structures, compounds from TCM might be a potential library for antifungal drug development.
Collapse
Affiliation(s)
- Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jingxiao Zhang
- Department of Emergency, The Second Hospital of Jilin University, Changchun 130041, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
19
|
Cools TL, Struyfs C, Drijfhout JW, Kucharíková S, Lobo Romero C, Van Dijck P, Ramada MHS, Bloch C, Cammue BPA, Thevissen K. A Linear 19-Mer Plant Defensin-Derived Peptide Acts Synergistically with Caspofungin against Candida albicans Biofilms. Front Microbiol 2017; 8:2051. [PMID: 29104569 PMCID: PMC5655031 DOI: 10.3389/fmicb.2017.02051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/06/2017] [Indexed: 01/04/2023] Open
Abstract
Public health problems are associated with device-associated biofilm infections, with Candida albicans being the major fungal pathogen. We previously identified potent antibiofilm combination treatment in which the antifungal plant defensin HsAFP1 is co-administered with caspofungin, the preferred antimycotic to treat such infections. In this study, we identified the smallest linear HsAFP1-derived peptide that acts synergistically with caspofungin or anidulafungin against C. albicans as HsLin06_18, a 19-mer peptide derived from the C-terminal part of HsAFP1. The [caspofungin + HsLin06_18] combination significantly reduced in vitro biofilm formation of Candida glabrata and C. albicans on catheters, as well as biofilm formation of a caspofungin-resistant C. albicans strain. The [caspofungin + HsLin06_18] combination was not cytotoxic and reduced biofilm formation of C. albicans in vivo using a subcutaneous rat catheter model, as compared to control treatment. Mode of action research on the [caspofungin + HsLin06_18] combination pointed to caspofungin-facilitated HsLin06_18 internalization and immediate membrane permeabilization. All these findings point to broad-spectrum antibiofilm activity of a combination of HsLin06_18 and caspofungin.
Collapse
Affiliation(s)
- Tanne L Cools
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Jan W Drijfhout
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Soňa Kucharíková
- Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Belgium.,Department of Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Belgium.,Department of Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Belgium.,Department of Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Marcelo H S Ramada
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia, Brazil.,Mass Spectrometry Laboratory, Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Carlos Bloch
- Mass Spectrometry Laboratory, Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Lu M, Yu C, Cui X, Shi J, Yuan L, Sun S. Gentamicin synergises with azoles against drug-resistant Candida albicans. Int J Antimicrob Agents 2017; 51:107-114. [PMID: 28943366 DOI: 10.1016/j.ijantimicag.2017.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 11/29/2022]
Abstract
Candida spp. are the primary opportunistic pathogens of nosocomial fungal infections, causing both superficial and life-threatening systemic infections. Combination therapy for fungal infections has attracted considerable attention, especially for those caused by drug-resistant fungi. Gentamicin (GM), an aminoglycoside antibiotic, has weak antifungal activity against Fusarium spp. The aim of this study was to investigate the interactions of GM with azoles against Candida spp. and the underlying mechanisms. In a chequerboard assay, GM was found not only to work synergistically with azoles against planktonic cells of drug-resistant Candida albicans with a fractional inhibitory concentration index (FICI) of 0.13-0.14, but also synergised with fluconazole (FLC) against C. albicans biofilms pre-formed in <12 h. Synergism of GM with FLC was also confirmed in vivo in a Galleria mellonella infection model. In addition, mechanism studies showed that GM not only suppressed the efflux pump of resistant C. albicans in a dose-dependent manner but also inhibited extracellular phospholipase activity of resistant C. albicans when combined with FLC. These findings suggest that GM enhances the efficacy of azoles against resistant C. albicans via efflux inhibition and decreased activity of extracellular phospholipase.
Collapse
Affiliation(s)
- Mengjiao Lu
- School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, Shandong Province, China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University, Ji'nan, Shandong Province, China
| | - Xueyan Cui
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Ji'nan, 250014, Shandong Province, China
| | - Jinyi Shi
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Ji'nan, 250014, Shandong Province, China
| | - Lei Yuan
- Department of Pharmacy, Baodi People's Hospital, Baodi 301800, Tianjin, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Ji'nan, 250014, Shandong Province, China.
| |
Collapse
|
21
|
Cools TL, Struyfs C, Cammue BPA, Thevissen K. Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol 2017; 12:441-454. [DOI: 10.2217/fmb-2016-0181] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plant defensins are small, cationic peptides with a highly conserved 3D structure. They have been studied extensively in the past decades. Various biological activities have been attributed to plant defensins, such as anti-insect and antimicrobial activities, but they are also known to affect ion channels and display antitumor activity. This review focuses on the structure, biological activity and antifungal mode of action of some well-characterized plant defensins, with particular attention to their fungal membrane target(s), their induced cell death mechanisms as well as their antibiofilm activity. As plant defensins are, in general, not toxic to human cells, show in vivo efficacy and have low frequencies of resistance occurrence, they are of particular interest in the fight against fungal infections.
Collapse
Affiliation(s)
- Tanne L Cools
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Caroline Struyfs
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Bruno PA Cammue
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| |
Collapse
|
22
|
The in vitro and in vivo efficacy of fluconazole in combination with farnesol against Candida albicans isolates using a murine vulvovaginitis model. J Microbiol 2016; 54:753-760. [PMID: 27796932 DOI: 10.1007/s12275-016-6298-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
Abstract
Farnesol is a quorum-sensing molecule that inhibits biofilm formation in Candida albicans. Previous in vitro data suggest that, in combination with certain antifungals, farnesol may have an adjuvant anti-biofilm agent. However, the in vivo efficacy of farnesol is very questionable. Therefore, the in vitro and in vivo activity of fluconazole combined with farnesol was evaluated against C. albicans biofilms using fractional inhibitory concentration index (FICI) determination, time-kill experiments and a murine vulvovaginitis model. The median biofilm MICs of fluconazole-sensitive C. albicans isolates ranged between 4 -> 512 mg/L and 150-300 μM for fluconazole and farnesol, respectively. These values were 512 -> 512 mg/L and > 300 μM for fluconazole-resistant clinical isolates. Farnesol decreased the median MICs of fluconazole by 2-64-fold for biofilms. Based on FICI, synergistic interaction was observed only in the case of the sessile SC5314 reference strain (FICIs: 0.16-0.27). In time-kill studies, only the 512 mg/L fluconazole and 512 mg/L fluconazole + 75 μM farnesol reduced biofilm mass significantly at each time point in the case of all isolates. The combination reduced the metabolic activity of biofilms for all isolates in a concentration- and time-dependent manner. Our findings revealed that farnesol alone was not protective in a murine vulvovaginitis model. Farnesol was not beneficial in combination with fluconazole for fluconazole-susceptible isolates, but partially increased fluconazole activity against one fluconazole-resistant isolate, but not the other one.
Collapse
|
23
|
Verbandt S, Henriques ST, Spincemaille P, Harvey PJ, Chandhok G, Sauer V, De Coninck B, Cassiman D, Craik DJ, Cammue BPA, De Cremer K, Thevissen K. Identification of survival-promoting OSIP108 peptide variants and their internalization in human cells. Mech Ageing Dev 2016; 161:247-254. [PMID: 27491841 DOI: 10.1016/j.mad.2016.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/30/2016] [Accepted: 07/30/2016] [Indexed: 11/19/2022]
Abstract
The plant-derived decapeptide OSIP108 increases tolerance of yeast and human cells to apoptosis-inducing agents, such as copper and cisplatin. We performed a whole amino acid scan of OSIP108 and conducted structure-activity relationship studies on the induction of cisplatin tolerance (CT) in yeast. The use of cisplatin as apoptosis-inducing trigger in this study should be considered as a tool to better understand the survival-promoting nature of OSIP108 and not for purposes related to anti-cancer treatment. We found that charged residues (Arg, His, Lys, Glu or Asp) or a Pro on positions 4-7 improved OSIP108 activity by 10% or more. The variant OSIP108[G7P] induced the most pronounced tolerance to toxic concentrations of copper and cisplatin in yeast and/or HepG2 cells. Both OSIP108 and OSIP108[G7P] were shown to internalize equally into HeLa cells, but at a higher rate than the inactive OSIP108[E10A], suggesting that the peptides can internalize into cells and that OSIP108 activity is dependent on subsequent intracellular interactions. In conclusion, our studies demonstrated that tolerance/survival-promoting properties of OSIP108 can be significantly improved by single amino acid substitutions, and that these properties are dependent on (an) intracellular target(s), yet to be determined.
Collapse
Affiliation(s)
- Sara Verbandt
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | | | - Pieter Spincemaille
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Laboratory Medicine, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Peta J Harvey
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gursimran Chandhok
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Vanessa Sauer
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - David Cassiman
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - David J Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
24
|
How promising are combinatorial drug strategies in combating Candida albicans biofilms? Future Med Chem 2016; 8:1383-5. [PMID: 27463947 DOI: 10.4155/fmc-2016-0127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|