1
|
Raimondo F, Corbetta S, Savoia A, Chinello C, Cazzaniga M, Rocco F, Bosari S, Grasso M, Bovo G, Magni F, Pitto M. Comparative membrane proteomics: a technical advancement in the search of renal cell carcinoma biomarkers. MOLECULAR BIOSYSTEMS 2015; 11:1708-16. [DOI: 10.1039/c5mb00020c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Set-up of a specific protocol for membrane protein analysis, applied to label free, comparative proteomics of renal cell carcinoma microdomains.
Collapse
Affiliation(s)
| | | | - Andrea Savoia
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| | - Clizia Chinello
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| | - Marta Cazzaniga
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| | - Francesco Rocco
- Department of Specialistic Surgical Sciences
- Urology unit
- Ospedale Maggiore Policlinico Foundation
- IRCCS
- Milano
| | - Silvano Bosari
- Department of Medicine
- Surgery and Dental Sciences
- Pathology Unit
- Ospedale Maggiore Policlinico Foundation Milano
- IRCCS
| | - Marco Grasso
- Department of Surgical Pathology
- Cytology
- Medical Genetics and Nephropathology
- Azienda Ospedaliera San Gerardo
- Monza
| | - Giorgio Bovo
- Department of Surgical Pathology
- Cytology
- Medical Genetics and Nephropathology
- Azienda Ospedaliera San Gerardo
- Monza
| | - Fulvio Magni
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| | - Marina Pitto
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| |
Collapse
|
2
|
Liu R, Wang K, Yuan K, Wei Y, Huang C. Integrative oncoproteomics strategies for anticancer drug discovery. Expert Rev Proteomics 2014; 7:411-29. [DOI: 10.1586/epr.10.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Hur JY, Teranishi Y, Kihara T, Yamamoto NG, Inoue M, Hosia W, Hashimoto M, Winblad B, Frykman S, Tjernberg LO. Identification of novel γ-secretase-associated proteins in detergent-resistant membranes from brain. J Biol Chem 2012; 287:11991-2005. [PMID: 22315232 DOI: 10.1074/jbc.m111.246074] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer disease, oligomeric amyloid β-peptide (Aβ) species lead to synapse loss and neuronal death. γ-Secretase, the transmembrane protease complex that mediates the final catalytic step that liberates Aβ from its precursor protein (APP), has a multitude of substrates, and therapeutics aimed at reducing Aβ production should ideally be specific for APP cleavage. It has been shown that APP can be processed in lipid rafts, and γ-secretase-associated proteins can affect Aβ production. Here, we use a biotinylated inhibitor for affinity purification of γ-secretase and associated proteins and mass spectrometry for identification of the purified proteins, and we identify novel γ-secretase-associated proteins in detergent-resistant membranes from brain. Furthermore, we show by small interfering RNA-mediated knockdown of gene expression that a subset of the γ-secretase-associated proteins, in particular voltage-dependent anion channel 1 (VDAC1) and contactin-associated protein 1 (CNTNAP1), reduced Aβ production (Aβ40 and Aβ42) by around 70%, whereas knockdown of presenilin 1, one of the essential γ-secretase complex components, reduced Aβ production by 50%. Importantly, these proteins had a less pronounced effect on Notch processing. We conclude that VDAC1 and CNTNAP1 associate with γ-secretase in detergent-resistant membranes and affect APP processing and suggest that molecules that interfere with this interaction could be of therapeutic use for Alzheimer disease.
Collapse
Affiliation(s)
- Ji-Yeun Hur
- Karolinska Institutet Dainippon Sumitomo Pharma Alzheimer Center, KI Alzheimer Disease Research Center, Department of Neurobiology, Karolinska Institutet, Novum, Huddinge SE-141 57, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Raimondo F, Morosi L, Chinello C, Perego R, Bianchi C, Albo G, Ferrero S, Rocco F, Magni F, Pitto M. Protein profiling of microdomains purified from renal cell carcinoma and normal kidney tissue samples. ACTA ACUST UNITED AC 2012; 8:1007-16. [DOI: 10.1039/c2mb05372a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Kim BW, Lee CS, Yi JS, Lee JH, Lee JW, Choo HJ, Jung SY, Kim MS, Lee SW, Lee MS, Yoon G, Ko YG. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane. Expert Rev Proteomics 2011; 7:849-66. [PMID: 21142887 DOI: 10.1586/epr.10.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.
Collapse
Affiliation(s)
- Bong-Woo Kim
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-ku, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Solstad T, Bjørgo E, Koehler CJ, Strozynski M, Torgersen KM, Taskén K, Thiede B. Quantitative proteome analysis of detergent-resistant membranes identifies the differential regulation of protein kinase C isoforms in apoptotic T cells. Proteomics 2010; 10:2758-68. [PMID: 20486122 DOI: 10.1002/pmic.201000164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several lines of evidence suggest that detergent-resistant membranes (DRMs) (also known as lipid rafts and glycosphingolipid-enriched microdomains) may have a role in signaling pathways of apoptosis. Here, we developed a method that combines DRMs isolation and methanol/chloroform extraction with stable isotope labeling with amino acids in cell culture-based quantitative proteome analysis of DRMs from control and cisplatin-induced apoptotic Jurkat T cells. This approach enabled us to enrich proteins with a pivotal role in cell signaling of which several were found with increased or decreased amounts in DRMs upon induction of apoptosis. Specifically, we show that three isoforms of protein kinase C (PKC) are regulated differently upon apoptosis. Although PKC alpha which belongs to the group of conventional PKCs is highly up-regulated in DRMs, the levels of two novel PKCs, PKC eta and PKC theta, are significantly reduced. These alterations/differences in PKC regulation are verified by immunoblotting and confocal microscopy. In addition, a specific enrichment of PKC alpha in apoptotic blebs and buds is shown. Furthermore, we observe an increased expression of ecto-PKC alpha as a result of exposure to cisplatin using flow cytometry. Our results demonstrate that in-depth proteomic analysis of DRMs provides a tool to study differential localization and regulation of signaling molecules important in health and disease.
Collapse
Affiliation(s)
- Therese Solstad
- The Biotechnology Centre of Oslo University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
7
|
Vinnakota KC, Mitchell DA, Deschenes RJ, Wakatsuki T, Beard DA. Analysis of the diffusion of Ras2 in Saccharomyces cerevisiae using fluorescence recovery after photobleaching. Phys Biol 2010; 7:026011. [PMID: 20526029 DOI: 10.1088/1478-3975/7/2/026011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Binding, lateral diffusion and exchange are fundamental dynamic processes involved in protein association with cellular membranes. In this study, we developed numerical simulations of lateral diffusion and exchange of fluorophores in membranes with arbitrary bleach geometry and exchange of the membrane-localized fluorophore with the cytosol during fluorescence recovery after photobleaching (FRAP) experiments. The model simulations were used to design FRAP experiments with varying bleach region sizes on plasma membrane-localized wild-type GFP-Ras2 with a dual lipid anchor and mutant GFP-Ras2C318S with a single lipid anchor in live yeast cells to investigate diffusional mobility and the presence of any exchange processes operating in the time scale of our experiments. Model parameters estimated using data from FRAP experiments with a 1 microm x 1 microm bleach region-of-interest (ROI) and a 0.5 microm x 0.5 microm bleach ROI showed that GFP-Ras2, single or dual lipid modified, diffuses as single species with no evidence of exchange with a cytoplasmic pool. This is the first report of Ras2 mobility in the yeast plasma membrane. The methods developed in this study are generally applicable for studying diffusion and exchange of membrane-associated fluorophores using FRAP on commercial confocal laser scanning microscopes.
Collapse
Affiliation(s)
- Kalyan C Vinnakota
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
8
|
Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry 2009; 14:601-13. [PMID: 18268500 DOI: 10.1038/mp.2008.7] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dorsolateral prefrontal cortex (dlpfc) is strongly implicated in the pathogenesis of schizophrenia (SCZ) and bipolar disorder (BPD) and, within this region, abnormalities in glutamatergic neurotransmission and synaptic function have been described. Proteins associated with these functions are enriched in membrane microdomains (MM). In the current study, we used two complementary proteomic methods, two-dimensional difference gel electrophoresis and one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis followed by reverse phase-liquid chromatography-tandem mass spectrometry (RP-LC-MS/MS) (gel separation liquid chromatography-tandem mass spectrometry (GeLC-MS/MS)) to assess protein expression in MM in pooled samples of dlpfc from SCZ, BPD and control cases (n=10 per group) from the Stanley Foundation Brain series. We identified 16 proteins altered in one/both disorders using proteomic methods. We selected three proteins with roles in synaptic function (syntaxin-binding protein 1 (STXBP1), brain abundant membrane-attached signal protein 1 (BASP1) and limbic system-associated membrane protein (LAMP)) for validation by western blotting. This revealed significantly increased expression of these proteins in SCZ (STXBP1 (24% difference; P<0.001), BASP1 (40% difference; P<0.05) and LAMP (22% difference; P<0.01)) and BPD (STXBP1 (31% difference; P<0.001), BASP1 (23% difference; P<0.01) and LAMP (20% difference; P<0.01)) in the Stanley brain series (n=20 per group). Further validation in dlpfc from the Harvard brain subseries (n=10 per group) confirmed increased protein expression in SCZ of STXBP1 (18% difference; P<0.0001), BASP1 (14% difference; P<0.0001) but not LAMP (20% difference; P=0.14). No significant differences in STXBP1, BASP1 or LAMP protein expression in BPD dlpfc were observed. This study, through proteomic assessments of MM in dlpfc and validation in two brain series, strongly implicates LAMP, STXBP1 and BASP1 in SCZ and supports the view of a neuritic and synaptic dysfunction in the neuropathology of SCZ.
Collapse
|
9
|
Dormeyer W, van Hoof D, Mummery CL, Krijgsveld J, Heck AJR. A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells. Proteomics 2008; 8:4036-53. [DOI: 10.1002/pmic.200800143] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Adam RM, Yang W, Di Vizio D, Mukhopadhyay NK, Steen H. Rapid preparation of nuclei-depleted detergent-resistant membrane fractions suitable for proteomics analysis. BMC Cell Biol 2008; 9:30. [PMID: 18534013 PMCID: PMC2440737 DOI: 10.1186/1471-2121-9-30] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 06/05/2008] [Indexed: 12/13/2022] Open
Abstract
Background Cholesterol-rich membrane microdomains known as lipid rafts have been implicated in diverse physiologic processes including lipid transport and signal transduction. Lipid rafts were originally defined as detergent-resistant membranes (DRMs) due to their relative insolubility in cold non-ionic detergents. Recent findings suggest that, although DRMs are not equivalent to lipid rafts, the presence of a given protein within DRMs strongly suggests its potential for raft association in vivo. Therefore, isolation of DRMs represents a useful starting point for biochemical analysis of lipid rafts. The physicochemical properties of DRMs present unique challenges to analysis of their protein composition. Existing methods of isolating DRM-enriched fractions involve flotation of cell extracts in a sucrose density gradient, which, although successful, can be labor intensive, time consuming and results in dilute sucrose-containing fractions with limited utility for direct proteomic analysis. In addition, several studies describing the proteomic characterization of DRMs using this and other approaches have reported the presence of nuclear proteins in such fractions. It is unclear whether these results reflect trafficking of nuclear proteins to DRMs or whether they arise from nuclear contamination during isolation. To address these issues, we have modified a published differential detergent extraction method to enable rapid DRM isolation that minimizes nuclear contamination and yields fractions compatible with mass spectrometry. Results DRM-enriched fractions isolated using the conventional or modified extraction methods displayed comparable profiles of known DRM-associated proteins, including flotillins, GPI-anchored proteins and heterotrimeric G-protein subunits. Thus, the modified procedure yielded fractions consistent with those isolated by existing methods. However, we observed a marked reduction in the percentage of nuclear proteins identified in DRM fractions isolated with the modified method (15%) compared to DRMs isolated by conventional means (36%). Furthermore, of the 21 nuclear proteins identified exclusively in modified DRM fractions, 16 have been reported to exist in other subcellular sites, with evidence to suggest shuttling of these species between the nucleus and other organelles. Conclusion We describe a modified DRM isolation procedure that generates DRMs that are largely free of nuclear contamination and that is compatible with downstream proteomic analyses with minimal additional processing. Our findings also imply that identification of nuclear proteins in DRMs is likely to reflect legitimate movement of proteins between compartments, and is not a result of contamination during extraction.
Collapse
Affiliation(s)
- Rosalyn M Adam
- Urological Diseases Research Center, Children's Hospital Boston and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
11
|
Dormeyer W, van Hoof D, Braam SR, Heck AJR, Mummery CL, Krijgsveld J. Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells. J Proteome Res 2008; 7:2936-51. [PMID: 18489135 DOI: 10.1021/pr800056j] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human embryonic stem cells (hESCs) are of immense interest in regenerative medicine as they can self-renew indefinitely and can give rise to any adult cell type. Human embryonal carcinoma cells (hECCs) are the malignant counterparts of hESCs found in testis tumors. hESCs that have acquired chromosomal abnormalities in culture are essentially indistinguishable from hECC. Direct comparison of karyotypically normal hESCs with hECCs could lead to understanding differences between their mechanisms of growth control and contribute to implementing safe therapeutic use of stem cells without the development of germ cell cancer. While several comparisons of hECCs and hESCs have been reported, their cell surface proteomes are largely unknown, partly because plasma membrane proteomics is still a major challenge. Here, we present a strategy for the identification of plasma membrane proteins that has been optimized for application to the relatively small numbers of stem cells normally available, and that does not require tedious cell fractionation. The method led to the identification of 237 and 219 specific plasma membrane proteins in the hESC line HUES-7 and the hECC line NT2/D1, respectively. In addition to known stemness-associated cell surface markers like ALP, CD9, and CTNNB, a large number of receptors, transporters, signal transducers, and cell-cell adhesion proteins were identified. Our study revealed that several Hedgehog and Wnt pathway members are differentially expressed in hESCs and hECCs including NPC1, FZD2, FZD6, FZD7, LRP6, and SEMA4D, which play a pivotal role in stem cell self-renewal and cancer growth. Various proteins encoded on chromosome 12p, duplicated in testicular cancer, were uniquely identified in hECCs. These included GAPDH, LDHB, YARS2, CLSTN3, CSDA, LRP6, NDUFA9, and NOL1, which are known to be upregulated in testicular cancer. Distinct HLA molecules were revealed on the surface of hESCs and hECCs, despite their low abundance. Results were compared with genomic and proteomic data sets reported previously for mouse ESCs, hECCs, and germ cell tumors. Our data provides a surface signature for HUES-7 and NT2/D1 cells and distinguishes normal hESCs from hECCs, helping explain their 'benign' versus 'malignant' nature.
Collapse
Affiliation(s)
- Wilma Dormeyer
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Yang W, Steen H, Freeman MR. Proteomic approaches to the analysis of multiprotein signaling complexes. Proteomics 2008; 8:832-51. [PMID: 18297654 DOI: 10.1002/pmic.200700650] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Signal transduction is one of the most active fields in modern biomedical research. Increasing evidence has shown that signaling proteins associate with each other in characteristic ways to form large signaling complexes. These diverse structures operate to boost signaling efficiency, ensure specificity and increase sensitivity of the biochemical circuitry. Traditional methods of protein analysis are inadequate to fully characterize and understand these structures, which are intricate, contain many components and are highly dynamic. Instead, proteomics technologies are currently being applied to investigate the nature and composition of multimeric signaling complexes. This review presents commonly used and potential proteomic methods of analyzing diverse protein complexes along with a discussion and a brief evaluation of alternative approaches. Challenges associated with proteomic analysis of signaling complexes are also discussed.
Collapse
Affiliation(s)
- Wei Yang
- The Urological Diseases Research Center, Department of Urology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | |
Collapse
|
13
|
Abstract
Plasma membrane proteins serve essential functions for cells, interacting with both cellular and extracellular components, structures and signaling molecules. Additionally, plasma membrane proteins comprise more than two-thirds of the known protein targets for existing drugs. Consequently, defining membrane proteomes is crucial to understanding the role of plasma membranes in fundamental biological processes and for finding new targets for action in drug development. MS-based identification methods combined with chromatographic and traditional cell-biology techniques are powerful tools for proteomic mapping of proteins from organelles. However, the separation and identification of plasma membrane proteins remains a challenge for proteomic technology because of their hydrophobicity and microheterogeneity. Creative approaches to solve these problems and potential pitfalls will be discussed. Finally, a representative overview of the impressive achievements in this field will also be given.
Collapse
Affiliation(s)
- Djuro Josic
- Department of Medicine, Brown Medical School, Providence, RI, USA.
| | | |
Collapse
|
14
|
Behan ÁT, Foy M, Wynne K, Clarke M, Sullivan M, Cotter DR, Maguire PB. Analysis of membrane microdomain-associated proteins in the insular cortex of post-mortem human brain. Proteomics Clin Appl 2007; 1:1324-31. [DOI: 10.1002/prca.200700047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Indexed: 12/26/2022]
|
15
|
Affiliation(s)
- Anna E Speers
- Department of Pharmacology, University of Colorado School of Medicine, P.O. Box 6511, MS 8303, Aurora, Colorado 80045, USA
| | | |
Collapse
|
16
|
Abstract
Lipid domains, also known as lipid rafts, are segregated from the bulk of the plasma membrane and have been attributed a multitude of important cellular functions in both health and disease. The large number of recent proteomic studies of their composition has produced a stunning list of potential constituents, leading to many contradictory conclusions. The actual methodology used in the different studies therefore seems to be of pivotal importance with regard to the derived lipid domain proteomes. In this review, we attempt to interpret recent findings in light of the methodology used and identify potential artifacts. This integrative view tries to tentatively define the core composition, the associated functions, the topology, as well as the dynamics of lipid domain proteomes. In other words: who's in and who's out.
Collapse
Affiliation(s)
- Richard R Sprenger
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
Ticozzi-Valerio D, Raimondo F, Pitto M, Rocco F, Bosari S, Perego R, Sarto C, Di Fonzo A, Bosso N, Mocarelli P, Galli-Kienle M, Magni F. Differential expression of AQP1 in microdomain-enriched membranes of renal cell carcinoma. Proteomics Clin Appl 2007; 1:588-97. [DOI: 10.1002/prca.200601048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Indexed: 11/10/2022]
|
18
|
Le Naour F, André M, Boucheix C, Rubinstein E. Membrane microdomains and proteomics: lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics 2007; 6:6447-54. [PMID: 17109380 DOI: 10.1002/pmic.200600282] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological membranes are compartmentalized into microdomains that exhibit particular lipid and protein compositions. Membrane microdomains, such as tetraspanin-enriched microdomains and lipid rafts, have been suggested to play a role in a variety of physiological and pathological processes. Therefore, the characterization of the protein compositions of these microdomains, which is the focus of this review, appears to be a crucial step to better understanding their function. Proteomics has recently allowed the characterization of tetraspanin-enriched microdomains in colon cancer cells. This demonstrated the presence of different categories of membrane proteins and suggested a variation in the composition of tetraspanin-enriched microdomains during tumor progression. On the other hand, proteomics has permitted the identification of hundreds of proteins in lipid rafts of different origins. However, the diversity of methodologies in sample preparation and of strategies in protein identification led to a broad variability in the data obtained. These methodological issues are discussed. Moreover, proteomics has revealed that different sets of proteins were present in tetraspanin-enriched microdomains as compared with lipid rafts, strengthening the idea that these microdomains are distinct structures.
Collapse
|
19
|
Sprenger R, Fontijn R, van Marle J, Pannekoek H, Horrevoets A. Spatial segregation of transport and signalling functions between human endothelial caveolae and lipid raft proteomes. Biochem J 2006; 400:401-10. [PMID: 16886909 PMCID: PMC1698592 DOI: 10.1042/bj20060355] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lipid rafts and caveolae are biochemically similar, specialized domains of the PM (plasma membrane) that cluster specific proteins. However, they are morphologically distinct, implying different, possibly complementary functions. Two-dimensional gel electrophoresis preceding identification of proteins by MS was used to compare the relative abundance of proteins in DRMs (detergent-resistant membranes) isolated from HUVEC (human umbilical-vein endothelial cells), and caveolae immunopurified from DRM fractions. Various signalling and transport proteins were identified and additional cell-surface biotinylation revealed the majority to be exposed, demonstrating their presence at the PM. In resting endothelial cells, the scaffold of immunoisolated caveolae consists of only few resident proteins, related to structure [CAV1 (caveolin-1), vimentin] and transport (V-ATPase), as well as the GPI (glycosylphosphatidylinositol)-linked, surface-exposed protein CD59. Further quantitative characterization by immunoblotting and confocal microscopy of well-known [eNOS (endothelial nitric oxide synthase) and CAV1], less known [SNAP-23 (23 kDa synaptosome-associated protein) and BASP1 (brain acid soluble protein 1)] and novel [C8ORF2 (chromosome 8 open reading frame 2)] proteins showed different subcellular distributions with none of these proteins being exclusive to either caveolae or DRM. However, the DRM-associated fraction of the novel protein C8ORF2 (approximately 5% of total protein) associated with immunoseparated caveolae, in contrast with the raft protein SNAP-23. The segregation of caveolae from lipid rafts was visually confirmed in proliferating cells, where CAV1 was spatially separated from eNOS, SNAP-23 and BASP1. These results provide direct evidence for the previously suggested segregation of transport and signalling functions between specialized domains of the endothelial plasma membrane.
Collapse
Affiliation(s)
- Richard R. Sprenger
- *Department of Medical Biochemistry, Academic Medical Center K1-114, Meibergdreef 15, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Ruud D. Fontijn
- *Department of Medical Biochemistry, Academic Medical Center K1-114, Meibergdreef 15, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Jan van Marle
- †Department of Cell Biology, Academic Medical Centre, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Hans Pannekoek
- *Department of Medical Biochemistry, Academic Medical Center K1-114, Meibergdreef 15, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Anton J. G. Horrevoets
- *Department of Medical Biochemistry, Academic Medical Center K1-114, Meibergdreef 15, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
- To whom correspondence should be addressed (email )
| |
Collapse
|
20
|
Blonder J, Yu LR, Radeva G, Chan KC, Lucas DA, Waybright TJ, Issaq HJ, Sharom FJ, Veenstra TD. Combined chemical and enzymatic stable isotope labeling for quantitative profiling of detergent-insoluble membrane proteins isolated using Triton X-100 and Brij-96. J Proteome Res 2006; 5:349-60. [PMID: 16457601 PMCID: PMC3251957 DOI: 10.1021/pr050355n] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Effective quantitative profiling of detergent-insoluble membrane proteins using high-throughput mass spectrometry (MS)-based proteomics would allow a better understanding of physiological and pathological processes that take place at the cell surface. To increase the coverage of proteins present in detergent-resistant membrane microdomains (DRMMs), a combination of 16O/18O and isotope coded affinity tags (ICAT) labeling was used in a comparative analysis of detergent-insoluble membrane proteins isolated from rat basophilic leukemia cells (RBL-2H3), with either Triton X-100 or Brij-96. The analysis resulted in the quantification of 738 unique proteins from Triton X-100 and Brij-96 isolated DRMMs, significantly exceeding the number of proteins quantified from either single labeling technique. Twenty-five noncysteine-containing proteins were quantified, as well as 32 cysteine-containing proteins that would have been missed if either 16O/18O or ICAT labeling had been used exclusively, which illustrate better proteome coverage and enhanced ability to quantitate. The comparative analysis revealed that proteins were more readily extracted using Triton X-100 than Brij-96; however, Triton X-100 also extracted larger quantities of non-DRMMs-associated proteins. This result confirms previous, targeted studies suggesting that DRMMs isolated using Triton X-100 and Brij-96 differ in their protein content.
Collapse
Affiliation(s)
- Josip Blonder
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland 21702-1201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|