1
|
Lee J, Han K, Yoo J, Park KA, Oh SY. Proteinuria and risk of ocular motor cranial nerve palsy: a nationwide population-based study. Sci Rep 2024; 14:12012. [PMID: 38797738 PMCID: PMC11128444 DOI: 10.1038/s41598-024-62576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Understanding the association between dipstick-detected proteinuria and oculomotor cranial nerve palsy (CNP) could have significant implications for understanding the mechanism of CNP development and for developing preventive strategies against CNP development in patients with proteinuria. This study aimed to determine the relationship between dipstick-determined proteinuria and ocular motor CNP using National Sample Cohort (NSC) database from Korea's National Health Insurance Service (NHIS). A nationwide population-based cohort study was conducted using data from the NSC database of Korea's NHIS. These data were collected from 2009 to 2018. A one-year time lag was established to prevent a situation in which the causal link was inverted. Participants aged 20 years or more who were diagnosed with proteinuria in 2009 were included. Individuals with specific pre-existing CNP, missing data, and those who were newly diagnosed with CNP or who died within one year of being tested were excluded. The study population was classified into six groups according to the degree of proteinuria (negative, trace, or between 1 + and 4 +) based on the urine dipstick test. A Cox proportional hazard regression analysis was performed to determine the linkage between the degree of proteinuria and ocular motor CNP. A total of 5,807 (0.14% of subjects) with ocular motor CNP were assigned to the ocular motor CNP group and 4,047,205 subjects were assigned to the control group. After full adjustment of comorbidities, hazard ratios (HRs) for 1 + , 2 + , 3 + and 4 + proteinuria groups were 1.449 (95% confidence interval [CI] 1.244-1.687), 2.081 (1.707-2.538), 1.96 (1.322-2.904), and 3.011 (1.507-6.014), respectively, for developing ocular motor CNP compared to the proteinuria-negative group. In subgroup analysis, the HR of patients with proteinuria for the development of ocular motor CNP was higher in the younger age group (less than 40 years) (P = 0.0242) and the group with DM (P = 0.04). Our population-based cohort study demonstrated a significant association between proteinuria and the incidence of CNP, suggesting that urine protein level could be a new clinical marker for predicting the development of CNP.
Collapse
Affiliation(s)
- Juha Lee
- Department of Ophthalmology, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Juhwan Yoo
- Department of Biomedicine and Health Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Sei Yeul Oh
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
2
|
Chouhan AS, Kaple M, Hingway S. A Brief Review of Diagnostic Techniques and Clinical Management in Chronic Kidney Disease. Cureus 2023; 15:e49030. [PMID: 38116359 PMCID: PMC10728575 DOI: 10.7759/cureus.49030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023] Open
Abstract
Given its increasing incidence and detrimental effects on life expectancy and quality of life, chronic kidney disease (CKD) is a significant worldwide health concern. This review article provides a complete summary of current information on the diagnosis and management of CKD, focusing on recent advances and innovative approaches. The article discusses the most current findings on CKD risk assessment, emphasizing the need for early diagnosis utilizing better biomarkers and predictive models. A rigorous examination of diagnostic tools such as albumin-to-creatinine ratio (ACR) in urine and glomerular filtration rate (GFR) highlights their importance in determining CKD phases and etiologies. In terms of therapy, the study explores evidence-based techniques to reduce the development of CKD, such as enhanced blood pressure control, glycemic management in diabetic patients, dietary changes, and renin-angiotensin-aldosterone system (RAAS) blocking. Novel therapeutic approaches, including antifibrotic and precision medicine, are evaluated regarding their potential to revolutionize CKD treatment. The study also underlines the need for multidisciplinary therapy and patient education to achieve the best possible CKD patient outcomes. It also highlights the financial and social effects of CKD, highlighting the importance of early treatment to lower medical expenses and enhance the patient's standard of living. Finally, this review article provides a comprehensive update on CKD diagnosis and treatment, highlighting present successes alongside future potential. It is a valuable resource for healthcare professionals, academics, and policymakers who want to improve CKD treatment methods and patient outcomes.
Collapse
Affiliation(s)
- Anant Shourya Chouhan
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Meghali Kaple
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Snehlata Hingway
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Rowe PS, McCarthy EM, Yu AL, Stubbs JR. Correction of Vascular Calcification and Hyperphosphatemia in CKD Rats Treated with ASARM Peptide. KIDNEY360 2022; 3:1683-1698. [PMID: 36514737 PMCID: PMC9717652 DOI: 10.34067/kid.0002782022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Background Abnormalities in calcium, phosphorus, PTH, vitamin D metabolism, bone, and vascular calcification occur in chronic kidney disease mineral bone disorder (CKD-MBD). Calciphylaxis, involving painful, ulcerative skin lesions, is also a major problem associated with CKD-MBD. There are no quality medical interventions to address these clinical issues. Bone ASARM peptides are strong inhibitors of mineralization and induce hypophosphatemia by inhibiting phosphate uptake from the gut. We hypothesize treatment of CKD-MBD rats with ASARM peptides will reverse hyperphosphatemia, reduce soft-tissue calcification, and prevent calciphylaxis. Methods To test our hypothesis, we assessed the effects of synthetic ASARM peptide in rats that had undergone a subtotal 5/6th nephrectomy (56NEPHREX), a rodent model of CKD-MBD. All rats were fed a high phosphate diet (2% Pi) to worsen mineral metabolism defects. Changes in serum potassium, phosphate, BUN, creatinine, PTH, FGF23, and calcium were assessed in response to 28 days of ASARM peptide infusion. Also, changes in bone quality, soft-tissue calcification, and expression of gut Npt2b (Slc34a2) were studied following ASARM peptide treatment. Results Rats that had undergone 56NEPHREX treated with ASARM peptide showed major improvements in hyperphosphatemia, blood urea nitrogen (BUN), and bone quality compared with vehicle controls. Also, ASARM-infused 56NEPHREX rats displayed improved renal, brain, and cardiovascular calcification. Notably, ASARM peptide infusion prevented the genesis of subdermal medial blood vessel calcification and calciphylaxis-like lesions in 56NEPHREX rats compared with vehicle controls. Conclusions ASARM peptide infusion corrects hyperphosphatemia and improves vascular calcification, renal calcification, brain calcification, bone quality, renal function, and skin mineralization abnormalities in 56NEPHREX rats. These findings confirm our hypothesis and support the utility of ASARM peptide treatment in patients with CKD-MBD.
Collapse
Affiliation(s)
- Peter S. Rowe
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ellen M. McCarthy
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan L. Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason R. Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
4
|
Potential Urine Proteomic Biomarkers for Focal Segmental Glomerulosclerosis and Minimal Change Disease. Int J Mol Sci 2022; 23:ijms232012607. [PMID: 36293475 PMCID: PMC9604469 DOI: 10.3390/ijms232012607] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Primary focal segmental glomerulosclerosis (FSGS), along with minimal change disease (MCD), are diseases with primary podocyte damage that are clinically manifested by the nephrotic syndrome. The pathogenesis of these podocytopathies is still unknown, and therefore, the search for biomarkers of these diseases is ongoing. Our aim was to determine of the proteomic profile of urine from patients with FSGS and MCD. Patients with a confirmed diagnosis of FSGS (n = 30) and MCD (n = 9) were recruited for the study. For a comprehensive assessment of the severity of FSGS a special index was introduced, which was calculated as follows: the first score was assigned depending on the level of eGFR, the second score—depending on the proteinuria level, the third score—resistance to steroid therapy. Patients with the sum of these scores of less than 3 were included in group 1, with 3 or more—in group 2. The urinary proteome was analyzed using liquid chromatography/mass spectrometry. The proteome profiles of patients with severe progressive FSGS from group 2, mild FSGS from group 1 and MCD were compared. Results of the label free analysis were validated using targeted LC-MS based on multiple reaction monitoring (MRM) with stable isotope labelled peptide standards (SIS) available for 47 of the 76 proteins identified as differentiating between at least one pair of groups. Quantitative MRM SIS validation measurements for these 47 proteins revealed 22 proteins with significant differences between at least one of the two group pairs and 14 proteins were validated for both comparisons. In addition, all of the 22 proteins validated by MRM SIS analysis showed the same direction of change as at the discovery stage with label-free LC-MS analysis, i.e., up or down regulation in MCD and FSGS1 against FSGS2. Patients from the FSGS group 2 showed a significantly different profile from both FSGS group 1 and MCD. Among the 47 significantly differentiating proteins, the most significant were apolipoprotein A-IV, hemopexin, vitronectin, gelsolin, components of the complement system (C4b, factors B and I), retinol- and vitamin D-binding proteins. Patients with mild form of FSGS and MCD showed lower levels of Cystatin C, gelsolin and complement factor I.
Collapse
|
5
|
Petra E, Siwy J, Vlahou A, Jankowski J. Urine peptidome in combination with transcriptomics analysis highlights MMP7, MMP14 and PCSK5 for further investigation in chronic kidney disease. PLoS One 2022; 17:e0262667. [PMID: 35045102 PMCID: PMC8769332 DOI: 10.1371/journal.pone.0262667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by the loss of kidney function. The molecular mechanisms underlying the development and progression of CKD are still not fully understood. Among others, the urinary peptidome has been extensively studied, with several urinary peptides effectively detecting disease progression. However, their link to proteolytic events has not been made yet. This study aimed to predict the proteases involved in the generation of CKD-associated urinary excreted peptides in a well-matched (for age, sex, lack of heart disease) case-control study. The urinary peptide profiles from CKD (n = 241) and controls (n = 240) were compared and statistically analyzed. The in-silico analysis of the involved proteases was performed using Proteasix and proteases activity was predicted based on the abundance changes of the associated peptides. Predictions were cross-correlated to transcriptomics datasets by using the Nephroseq database. Information on the respective protease inhibitors was also retrieved from the MEROPS database. Totally, 303 urinary peptides were significantly associated with CKD. Among the most frequently observed were fragments of collagen types I, II and III, uromodulin, albumin and beta-2-microglobulin. Proteasix predicted 16 proteases involved in their generation. Through investigating CKD-associated transcriptomics datasets, several proteases are highlighted including members of matrix metalloproteinases (MMP7, MMP14) and serine proteases (PCSK5); laying the foundation for further studies towards elucidating their role in CKD pathophysiology.
Collapse
Affiliation(s)
- Eleni Petra
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Antonia Vlahou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
6
|
Urinary Protein and Peptide Markers in Chronic Kidney Disease. Int J Mol Sci 2021; 22:ijms222212123. [PMID: 34830001 PMCID: PMC8625140 DOI: 10.3390/ijms222212123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic kidney disease (CKD) is a non-specific type of kidney disease that causes a gradual decline in kidney function (from months to years). CKD is a significant risk factor for death, cardiovascular disease, and end-stage renal disease. CKDs of different origins may have the same clinical and laboratory manifestations but different progression rates, which requires early diagnosis to determine. This review focuses on protein/peptide biomarkers of the leading causes of CKD: diabetic nephropathy, IgA nephropathy, lupus nephritis, focal segmental glomerulosclerosis, and membranous nephropathy. Mass spectrometry (MS) approaches provided the most information about urinary peptide and protein contents in different nephropathies. New analytical approaches allow urinary proteomic-peptide profiles to be used as early non-invasive diagnostic tools for specific morphological forms of kidney disease and may become a safe alternative to renal biopsy. MS studies of the key pathogenetic mechanisms of renal disease progression may also contribute to developing new approaches for targeted therapy.
Collapse
|
7
|
Boizard F, Buffin-Meyer B, Aligon J, Teste O, Schanstra JP, Klein J. PRYNT: a tool for prioritization of disease candidates from proteomics data using a combination of shortest-path and random walk algorithms. Sci Rep 2021; 11:5764. [PMID: 33707596 PMCID: PMC7952700 DOI: 10.1038/s41598-021-85135-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/29/2021] [Indexed: 11/14/2022] Open
Abstract
The urinary proteome is a promising pool of biomarkers of kidney disease. However, the protein changes observed in urine only partially reflect the deregulated mechanisms within kidney tissue. In order to improve on the mechanistic insight based on the urinary protein changes, we developed a new prioritization strategy called PRYNT (PRioritization bY protein NeTwork) that employs a combination of two closeness-based algorithms, shortest-path and random walk, and a contextualized protein-protein interaction (PPI) network, mainly based on clique consolidation of STRING network. To assess the performance of our approach, we evaluated both precision and specificity of PRYNT in prioritizing kidney disease candidates. Using four urinary proteome datasets, PRYNT prioritization performed better than other prioritization methods and tools available in the literature. Moreover, PRYNT performed to a similar, but complementary, extent compared to the upstream regulator analysis from the commercial Ingenuity Pathway Analysis software. In conclusion, PRYNT appears to be a valuable freely accessible tool to predict key proteins indirectly from urinary proteome data. In the future, PRYNT approach could be applied to other biofluids, molecular traits and diseases. The source code is freely available on GitHub at: https://github.com/Boizard/PRYNT and has been integrated as an interactive web apps to improved accessibility ( https://github.com/Boizard/PRYNT/tree/master/AppPRYNT ).
Collapse
Affiliation(s)
- Franck Boizard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432, Toulouse, France
- Université Toulouse III Paul-Sabatier, 31330, Toulouse, France
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432, Toulouse, France
- Université Toulouse III Paul-Sabatier, 31330, Toulouse, France
| | - Julien Aligon
- Université de Toulouse, UT1, IRIT, (CNRS/UMR 5505), Toulouse, France
| | - Olivier Teste
- Université de Toulouse, UT2J, IRIT, (CNRS/UMR 5505), Toulouse, France
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432, Toulouse, France
- Université Toulouse III Paul-Sabatier, 31330, Toulouse, France
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432, Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31330, Toulouse, France.
| |
Collapse
|
8
|
Hao Y, Reyes LT, Morris R, Xu Y, Wang Y, Cheng F. Changes of protein levels in human urine reflect the dysregulation of signaling pathways of chronic kidney disease and its complications. Sci Rep 2020; 10:20743. [PMID: 33247215 PMCID: PMC7699629 DOI: 10.1038/s41598-020-77916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The increasing prevalence of chronic kidney disease (CKD) seriously is threatening human health and overall quality of life. The discovery of biomarkers of pathogenesis of CKD and the associated complications are very important for CDK diagnosis and treatment. In this paper, urine protein biomarkers were investigated because urine sample collection is convenient and non-invasive. We analyzed the protein concentrations in the urine of CKD patients and extracted abnormal protein signals comparing with the healthy control groups. The enriched signaling pathways that may characterize CKD pathology were identified from these proteins. We applied surface-enhanced laser desorption and ionization time of flight mass spectrometry technology to detect different protein peaks in urine samples from patients with CKD and healthy controls. We searched the proteins corresponding to protein peaks through the UniProt database and identified the signaling pathways of CKD and its complications by using the NIH DAVID database. 42 low abundance proteins and 46 high abundance proteins in the urine samples from CKD patients were found by comparing with healthy controls. Seven KEGG pathways related to CKD and its complications were identified from the regulated proteins. These pathways included chemokine signaling pathway, cytokine-cytokine receptor interaction, oxidative phosphorylation, cardiac muscle contraction, Alzheimer's disease, Parkinson's disease, and salivary secretion. In CKD stages 2, 3, 4, and 5, five proteins showed significantly differential abundances. The differential protein signals and regulated signaling pathways will provide new insight for the pathogenesis of CKD and its complications. These altered proteins may also be used as novel biomarkers for the noninvasive and convenient diagnosis methods of CKD and its complications through urine testing in the future.
Collapse
Affiliation(s)
- Yiming Hao
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Luis Tanon Reyes
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | - Robert Morris
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | - Yifeng Xu
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiqin Wang
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Feng Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
9
|
Jin J, Gong J, Zhao L, Li Y, Wang Y, He Q. iTRAQ-based comparative proteomics analysis reveals specific urinary biomarkers for various kidney diseases. Biomark Med 2020; 14:839-854. [PMID: 32856461 DOI: 10.2217/bmm-2019-0556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Proteome studies for multiple renal diseases is bare. Methodology & results: Using isobaric tags for relative and absolute quantitation labeling, many differentially expressed proteins (DEPs) were identified in acute kidney injury (AKI), AKI + chronic kidney disease (CKD), diabetic CKD and nondiabetic CKD with or without IgA nephropathy (IgAN). Comparative analysis indicated that 34, 35, 17, 91 and 14 unique DEPs were found in AKI, AKI + CKD, CKD, diabetic CKD and nondiabetic CKD. Compared with nondiabetic CKD with IgAN, 47 unique DEPs were found in that without IgAN. Serum amyloid A1 (SAA1) and hepatocyte growth factor activator were unregulated in AKI and nondiabetic CKD without IgAN, respectively. Regenerating islet-derived protein 3-α (Reg3A) upregulation is associated with AKI and AKI + CKD patients. Conclusion: This research contributes to urinary biomarker discovery from multiple renal diseases.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Jianguang Gong
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Li Zhao
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Yiwen Li
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Yunguang Wang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang 310014, PR China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang 310014, PR China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Zhejiang 310014, PR China
| |
Collapse
|
10
|
Xu C, Su X, Chen Y, Xu Y, Wang Z, Mo X. Proteomics analysis of plasma protein changes in patent ductus arteriosus patients. Ital J Pediatr 2020; 46:64. [PMID: 32430045 PMCID: PMC7236322 DOI: 10.1186/s13052-020-00831-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/11/2020] [Indexed: 11/23/2022] Open
Abstract
Objective Patent ductus arteriosus (PDA) is a congenital heart defect with an unclear etiology that occurs commonly among newborns. Adequately understanding the molecular pathogenesis of PDA can contribute to improved treatment and prevention. Plasma proteins may provide evidence to explore the molecular mechanisms of abnormal cardiac development. Methods Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics technology was used to measure different plasma proteins in PDA patients (n = 4) and controls (n = 4). The candidate protein was validated by ELISA and Western blot (WB) assays in a larger sample. Validation of the location and expression of this protein was performed in mouse heart sections. Results There were three downregulated proteins and eight upregulated proteins identified in the iTRAQ proteomics data. Among these, protein disulfide-isomerase A6 (PDIA6) was further analyzed for validation. The plasma PDIA6 concentrations (3.2 ± 0.7 ng/ml) in PDA patients were significantly lower than those in normal controls (5.8 ± 1.2 ng/ml). In addition, a WB assay also supported these results. PDIA6 was widely expressed in mouse heart outflow tract on embryonic day 14.5. Conclusion Plasma proteomics profiles suggested novel candidate molecular markers for PDA. The findings may allow development of a new strategy to investigate the mechanism and etiology of PDA.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xiaoqi Su
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yong Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yang Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Zhiqi Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
11
|
Dong Y, Qu X, Wu G, Luo X, Tang B, Wu F, Fan L, Dev S, Liang T. Advances in the Detection, Mechanism and Therapy of Chronic Kidney Disease. Curr Pharm Des 2019; 25:4235-4250. [PMID: 31742493 DOI: 10.2174/1381612825666191119094354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023]
Abstract
Chronic Kidney Disease (CKD) is characterized by the gradual loss of renal mass and functions. It has become a global health problem, with hundreds of millions of people being affected. Both its incidence and prevalence are increasing over time. More than $20,000 are spent on each patient per year. The economic burden on the patients, as well as the society, is heavy and their life quality worsen over time. However, there are still limited effective therapeutic strategies for CKD. Patients mainly rely on dialysis and renal transplantation, which cannot prevent all the complications of CKD. Great efforts are needed in understanding the nature of CKD progression as well as developing effective therapeutic methods, including pharmacological agents. This paper reviews three aspects in the research of CKD that may show great interests to those who devote to bioanalysis, biomedicine and drug development, including important endogenous biomarkers quantification, mechanisms underlying CKD progression and current status of CKD therapy.
Collapse
Affiliation(s)
- Yu Dong
- Department of Urology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011, Nanning, China
| | - Xiaosheng Qu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, No. 189, Changgang Road, 530023, Nanning, China
| | - Gang Wu
- Department of Urology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011, Nanning, China
| | - Xiangdong Luo
- Department of Urology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011, Nanning, China
| | - Botao Tang
- Department of Urology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011, Nanning, China
| | - Fangfang Wu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, No. 189, Changgang Road, 530023, Nanning, China
| | - Lanlan Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, 530001, Nanning, China
| | - Sooranna Dev
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369, Fulham Road, London SW10 9NH, United Kingdom
| | - Taisheng Liang
- Department of Urology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011, Nanning, China
| |
Collapse
|
12
|
Methodology for Urine Peptidome Analysis Based on Nano-HPLC Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Methods Mol Biol 2018; 1719:311-318. [PMID: 29476520 DOI: 10.1007/978-1-4939-7537-2_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Urine is a sample of choice for noninvasive biomarkers search because it is easily available in large amounts and its molecular composition provides information on processes in the organism. The high potential of urine peptidomics has been demonstrated for clinical purpose. Several mass spectrometry based approaches have been successfully applied for urine peptidome analysis and potential biomarkers search. Summarizing literature data and our own experience we developed a protocol for comprehensive urine peptidome analysis. The technology includes several stages and consists of urine sample preparation by size exclusion chromatography and identification of featured peptides by nano-HPLC coupled to Fourier transform ion cyclotron resonance mass spectrometry, semiquantitative and statistical data analysis.
Collapse
|
13
|
Moresco RN, De Carvalho JAM. Applying proteomics to diagnosis of diabetic kidney disease. Expert Rev Proteomics 2017; 14:841-843. [PMID: 28893107 DOI: 10.1080/14789450.2017.1378100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rafael Noal Moresco
- a Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis , Federal University of Santa Maria , Santa Maria , RS , Brazil
| | - José Antonio Mainardi De Carvalho
- a Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis , Federal University of Santa Maria , Santa Maria , RS , Brazil
| |
Collapse
|
14
|
Markoska K, Pejchinovski M, Pontillo C, Zürbig P, Jacobs L, Smith A, Masin-Spasovska J, Stojceva-Taneva O, Polenakovic M, Magni F, Mischak H, Spasovski G. Urinary peptide biomarker panel associated with an improvement in estimated glomerular filtration rate in chronic kidney disease patients. Nephrol Dial Transplant 2017; 33:751-759. [DOI: 10.1093/ndt/gfx263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/09/2017] [Indexed: 01/21/2023] Open
Affiliation(s)
| | | | - Claudia Pontillo
- Department of Clinical Proteomics, Mosaiques Diagnostics, Hanover, Germany
| | - Petra Zürbig
- Department of Clinical Proteomics, Mosaiques Diagnostics, Hanover, Germany
| | - Lotte Jacobs
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Andrew Smith
- Unit of Proteomics, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | | | | | - Fulvio Magni
- Unit of Proteomics, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Harald Mischak
- Department of Clinical Proteomics, Mosaiques Diagnostics, Hanover, Germany
| | - Goce Spasovski
- Department of Nephrology, Medical Faculty, University of Skopje, Skopje, Macedonia
| |
Collapse
|
15
|
Kononikhin A, Starodubtseva N, Bugrova A, Shirokova V, Chagovets V, Indeykina M, Popov I, Kostyukevich Y, Vavina O, Muminova K, Khodzhaeva Z, Kan N, Frankevich V, Nikolaev E, Sukhikh G. An untargeted approach for the analysis of the urine peptidome of women with preeclampsia. J Proteomics 2016; 149:38-43. [DOI: 10.1016/j.jprot.2016.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 12/18/2022]
|
16
|
Krochmal M, Fernandes M, Filip S, Pontillo C, Husi H, Zoidakis J, Mischak H, Vlahou A, Jankowski J. PeptiCKDdb-peptide- and protein-centric database for the investigation of genesis and progression of chronic kidney disease. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw128. [PMID: 27589965 PMCID: PMC5009324 DOI: 10.1093/database/baw128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
The peptiCKDdb is a publicly available database platform dedicated to support research in the field of chronic kidney disease (CKD) through identification of novel biomarkers and molecular features of this complex pathology. PeptiCKDdb collects peptidomics and proteomics datasets manually extracted from published studies related to CKD. Datasets from peptidomics or proteomics, human case/control studies on CKD and kidney or urine profiling were included. Data from 114 publications (studies of body fluids and kidney tissue: 26 peptidomics and 76 proteomics manuscripts on human CKD, and 12 focusing on healthy proteome profiling) are currently deposited and the content is quarterly updated. Extracted datasets include information about the experimental setup, clinical study design, discovery-validation sample sizes and list of differentially expressed proteins (P-value < 0.05). A dedicated interactive web interface, equipped with multiparametric search engine, data export and visualization tools, enables easy browsing of the data and comprehensive analysis. In conclusion, this repository might serve as a source of data for integrative analysis or a knowledgebase for scientists seeking confirmation of their findings and as such, is expected to facilitate the modeling of molecular mechanisms underlying CKD and identification of biologically relevant biomarkers. Database URL:www.peptickddb.com
Collapse
Affiliation(s)
- Magdalena Krochmal
- Biomedical Research Foundation Academy of Athens, Center of Basic Research, Athens, Greece University Hospital RWTH Aachen University, Institute for Molecular Cardiovascular Research, Aachen, Germany
| | - Marco Fernandes
- University of Glasgow, BHF Glasgow Cardiovascular Research Centre, Glasgow, United Kingdom
| | - Szymon Filip
- Biomedical Research Foundation Academy of Athens, Center of Basic Research, Athens, Greece Experimental Nephrology and Hypertension, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Pontillo
- Experimental Nephrology and Hypertension, Charité-Universitätsmedizin Berlin, Berlin, Germany Mosaiques Diagnostics GmbH, Hannover, Germany
| | - Holger Husi
- University of Glasgow, BHF Glasgow Cardiovascular Research Centre, Glasgow, United Kingdom
| | - Jerome Zoidakis
- Biomedical Research Foundation Academy of Athens, Center of Basic Research, Athens, Greece
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany University of Glasgow, Institute of Cardiovascular and Medical Sciences, Glasgow, United Kingdom
| | - Antonia Vlahou
- Biomedical Research Foundation Academy of Athens, Center of Basic Research, Athens, Greece
| | - Joachim Jankowski
- University Hospital RWTH Aachen University, Institute for Molecular Cardiovascular Research, Aachen, Germany University of Maastricht, CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands
| |
Collapse
|
17
|
Vrana M, Goodling A, Afkarian M, Prasad B. An Optimized Method for Protein Extraction from OCT-Embedded Human Kidney Tissue for Protein Quantification by LC-MS/MS Proteomics. ACTA ACUST UNITED AC 2016; 44:1692-6. [PMID: 27481856 DOI: 10.1124/dmd.116.071522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/29/2016] [Indexed: 01/04/2023]
Abstract
The existing biobanks of remnant tissue from clinically indicated kidney biopsies are attractive potential reservoirs for quantification of clinically relevant human tissue proteins by quantitative proteomics. However, a significant caveat of this strategy is that the tissues are often preserved in optimal cutting temperature (OCT) medium. Although OCT is an effective method of preserving the morphologic and immunohistological characteristics of tissues for later study, it significantly impacts efforts to quantify protein expression by liquid chromatography-tandem mass spectrometry methods. We report here a simple, reproducible, and cost-effective procedure to extract proteins from OCT-embedded tissue samples. Briefly, the excess frozen OCT medium was scraped before thawing from the tissue specimens stored at -80°C for ∼3 months. The tissue samples were homogenized and diethyl ether/methanol extraction was performed to remove the remaining OCT medium. The recovered protein was denatured, reduced, and alkylated. The second step of protein extraction and desalting was performed by chloroform/methanol/water extraction of denatured proteins. The resultant protein pellet was trypsin-digested and the marker proteins of various kidney cellular compartments were quantified by targeted selective reaction monitoring proteomics. Upon comparison of peptide signals from OCT-embedded tissue and flash-frozen tissue from the same donors, both individual protein quantities, and their interindividual variabilities, were similar. Therefore, the approach reported here can be applied to clinical reservoirs of OCT-preserved kidney tissue to be used for quantitative proteomics studies of clinically relevant proteins expressed in different parts of the kidney (including drug transporters and metabolizing enzymes).
Collapse
Affiliation(s)
- Marc Vrana
- Department of Pharmaceutics (M.V., B.P.) and Kidney Research Institute and Division of Nephrology, Department of Medicine (A.G., M.A.), University of Washington, Seattle, Washington
| | - Anne Goodling
- Department of Pharmaceutics (M.V., B.P.) and Kidney Research Institute and Division of Nephrology, Department of Medicine (A.G., M.A.), University of Washington, Seattle, Washington
| | - Maryam Afkarian
- Department of Pharmaceutics (M.V., B.P.) and Kidney Research Institute and Division of Nephrology, Department of Medicine (A.G., M.A.), University of Washington, Seattle, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutics (M.V., B.P.) and Kidney Research Institute and Division of Nephrology, Department of Medicine (A.G., M.A.), University of Washington, Seattle, Washington
| |
Collapse
|
18
|
Cisek K, Krochmal M, Klein J, Mischak H. The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol Dial Transplant 2015; 31:2003-2011. [DOI: 10.1093/ndt/gfv364] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022] Open
|
19
|
Breit M, Weinberger KM. Metabolic biomarkers for chronic kidney disease. Arch Biochem Biophys 2015; 589:62-80. [PMID: 26235490 DOI: 10.1016/j.abb.2015.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/11/2015] [Accepted: 07/26/2015] [Indexed: 01/28/2023]
Abstract
Chronic kidney disease (CKD) is an increasingly recognized burden for patients and health care systems with high (and growing) global incidence and prevalence, significant mortality, and disproportionately high treatment costs. Yet, the available diagnostic tools are either impractical in clinical routine or have serious shortcomings impeding a well-informed disease management although optimized treatment strategies with proven benefits for the patients have become available. Advances in bioanalytical technologies have facilitated studies that identified genomic, proteomic, and metabolic biomarker candidates, and confirmed some of them in independent cohorts. This review summarizes the CKD-related markers discovered so far, and focuses on compounds and pathways, for which there is quantitative data, substantiating evidence from translational research, and a mechanistic understanding of the processes involved. Also, multiparametric marker panels have been suggested that showed promising diagnostic and prognostic performance in initial analyses although the data basis from prospective trials is very limited. Large-scale studies, however, are underway and will provide the information for validating a set of parameters and discarding others. Finally, the path from clinical research to a routine application is discussed, focusing on potential obstacles such as the use of mass spectrometry, and the feasibility of obtaining regulatory approval for targeted metabolomics assays.
Collapse
Affiliation(s)
- Marc Breit
- Research Group for Clinical Bioinformatics, Institute of Electrical and Biomedical Engineering (IEBE), University for Health Sciences, Medical Informatics and Technology (UMIT), 6060 Hall in Tirol, Austria
| | - Klaus M Weinberger
- Research Group for Clinical Bioinformatics, Institute of Electrical and Biomedical Engineering (IEBE), University for Health Sciences, Medical Informatics and Technology (UMIT), 6060 Hall in Tirol, Austria; sAnalytiCo Ltd., Forsyth House, Cromac Square, Belfast BT2 8LA, United Kingdom.
| |
Collapse
|
20
|
Filip S, Vougas K, Zoidakis J, Latosinska A, Mullen W, Spasovski G, Mischak H, Vlahou A, Jankowski J. Comparison of Depletion Strategies for the Enrichment of Low-Abundance Proteins in Urine. PLoS One 2015. [PMID: 26208298 PMCID: PMC4514849 DOI: 10.1371/journal.pone.0133773] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proteome analysis of complex biological samples for biomarker identification remains challenging, among others due to the extended range of protein concentrations. High-abundance proteins like albumin or IgG of plasma and urine, may interfere with the detection of potential disease biomarkers. Currently, several options are available for the depletion of abundant proteins in plasma. However, the applicability of these methods in urine has not been thoroughly investigated. In this study, we compared different, commercially available immunodepletion and ion-exchange based approaches on urine samples from both healthy subjects and CKD patients, for their reproducibility and efficiency in protein depletion. A starting urine volume of 500 μL was used to simulate conditions of a multi-institutional biomarker discovery study. All depletion approaches showed satisfactory reproducibility (n=5) in protein identification as well as protein abundance. Comparison of the depletion efficiency between the unfractionated and fractionated samples and the different depletion strategies, showed efficient depletion in all cases, with the exception of the ion-exchange kit. The depletion efficiency was found slightly higher in normal than in CKD samples and normal samples yielded more protein identifications than CKD samples when using both initial as well as corresponding depleted fractions. Along these lines, decrease in the amount of albumin and other targets as applicable, following depletion, was observed. Nevertheless, these depletion strategies did not yield a higher number of identifications in neither the urine from normal nor CKD patients. Collectively, when analyzing urine in the context of CKD biomarker identification, no added value of depletion strategies can be observed and analysis of unfractionated starting urine appears to be preferable.
Collapse
Affiliation(s)
- Szymon Filip
- Biomedical Research Foundation Academy of Athens, Biotechnology Division, Athens, Greece
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Konstantinos Vougas
- Biomedical Research Foundation Academy of Athens, Biotechnology Division, Athens, Greece
| | - Jerome Zoidakis
- Biomedical Research Foundation Academy of Athens, Biotechnology Division, Athens, Greece
| | - Agnieszka Latosinska
- Biomedical Research Foundation Academy of Athens, Biotechnology Division, Athens, Greece
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - William Mullen
- University of Glasgow Institute of Cardiovascular and Medical Sciences, Glasgow, United Kingdom
| | - Goce Spasovski
- Ss. Cyril and Methodius University in Skopje, Nephrology Department, Skopje, Former Yugoslav Republic of Macedonia
| | - Harald Mischak
- University of Glasgow Institute of Cardiovascular and Medical Sciences, Glasgow, United Kingdom
- Mosaiques Diagnostics GmbH, Hannover, Germany
| | - Antonia Vlahou
- Biomedical Research Foundation Academy of Athens, Biotechnology Division, Athens, Greece
| | - Joachim Jankowski
- University Hospital RWTH Aachen, Institute for Molecular Cardiovascular Research, Aachen, Germany
- * E-mail:
| |
Collapse
|
21
|
Hepburn S, Cairns DA, Jackson D, Craven RA, Riley B, Hutchinson M, Wood S, Smith MW, Thompson D, Banks RE. An analysis of the impact of pre-analytical factors on the urine proteome: Sample processing time, temperature, and proteolysis. Proteomics Clin Appl 2015; 9:507-21. [PMID: 25400092 PMCID: PMC4964914 DOI: 10.1002/prca.201400079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/20/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022]
Abstract
Purpose We have examined the impact of sample processing time delay, temperature, and the addition of protease inhibitors (PIs) on the urinary proteome and peptidome, an important aspect of biomarker studies. Experimental design Ten urine samples from patients with varying pathologies were each divided and PIs added to one‐half, with aliquots of each then processed and frozen immediately, or after a delay of 6 h at 4°C or room temperature (20–22°C), effectively yielding 60 samples in total. Samples were then analyzed by 2D‐PAGE, SELDI‐TOF‐MS, and immunoassay. Results Interindividual variability in profiles was the dominant feature in all analyses. Minimal changes were observed by 2D‐PAGE as a result of delay in processing, temperature, or PIs and no changes were seen in IgG, albumin, β2‐microglobulin, or α1‐microglobulin measured by immunoassay. Analysis of peptides showed clustering of some samples by presence/absence of PIs but the extent was very patient‐dependent with most samples showing minimal effects. Conclusions and clinical relevance The extent of processing‐induced changes and the benefit of PI addition are patient‐ and sample‐dependent. A consistent processing methodology is essential within a study to avoid any confounding of the results.
Collapse
Affiliation(s)
- Sophie Hepburn
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, UK.,Department of Blood Sciences, The General Infirmary, Leeds, UK
| | - David A Cairns
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, UK
| | | | - Rachel A Craven
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, UK
| | - Beverley Riley
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, UK
| | - Michelle Hutchinson
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, UK
| | - Steven Wood
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, UK
| | - Matthew Welberry Smith
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, UK.,Department of Renal Medicine, St James's University Hospital, Leeds, UK
| | - Douglas Thompson
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, UK.,Department of Blood Sciences, The General Infirmary, Leeds, UK
| | - Rosamonde E Banks
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, UK
| |
Collapse
|
22
|
Papadopoulos T, Belliere J, Bascands JL, Neau E, Klein J, Schanstra JP. miRNAs in urine: a mirror image of kidney disease? Expert Rev Mol Diagn 2015; 15:361-74. [PMID: 25660955 DOI: 10.1586/14737159.2015.1009449] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
miRNAs are short non-coding RNAs that control post-transcriptional regulation of gene expression. They are found ubiquitously in tissue and body fluids and participate in the pathogenesis of many diseases. Due to these characteristics and their stability, miRNAs could serve as biomarkers of different pathologies of the kidney. Urine is a non-invasive reservoir of molecules, especially indicative of the urinary system. In this review, we focus on urinary miRNAs and their potential to serve as biomarkers in kidney disease. Past studies show that urinary miRNAs correlate with renal dysfunctions and with processes involved in the pathophysiology. However, these studies also stress the need for future research focusing on large-scale studies to confirm the usability of urinary miRNAs as diagnostic and/or prognostic markers of different kidney diseases in clinical practice.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, 1 avenue Jean Poulhès, B.P. 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|