1
|
Greco F, Bertagna G, Quercioli L, Pucci A, Rocchiccioli S, Ferrari M, Recchia FA, McDonnell LA. Lipids associated with atherosclerotic plaque instability revealed by mass spectrometry imaging of human carotid arteries. Atherosclerosis 2024; 397:118555. [PMID: 39159550 DOI: 10.1016/j.atherosclerosis.2024.118555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/22/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS Lipids constitute one of the main components of atherosclerosis lesions and are the mediators of many mechanisms involved in plaque progression and stability. Here we tested the hypothesis that lipids known to be involved in plaque development exhibited associations with plaque vulnerability. We used spatial lipidomics to overcome plaque heterogeneity and to compare lipids from specific regions of symptomatic and asymptomatic human carotid atherosclerotic plaques. METHODS Carotid atherosclerotic plaques were collected from symptomatic and asymptomatic patients. Plaque lipids were analyzed with the spatial lipidomics technique matrix-assisted laser desorption/ionization mass spectrometry imaging, and histology and immunofluorescence were used to segment the plaques into histomolecularly distinct regions. RESULTS Macrophage-rich regions from symptomatic lesions were found to be enriched in phosphatidylcholines (synthesized to counteract excess free cholesterol), while the same region from asymptomatic plaques were enriched in polyunsaturated cholesteryl esters and triglycerides, characteristic of functional lipid droplets. Vascular smooth muscle cells (VSMCs) of the fibrous cap of asymptomatic plaques were enriched in lysophosphatidylcholines and cholesteryl esters, know to promote VSMC proliferation and migration, crucial for the buildup of the fibrous cap stabilizing the plaque. CONCLUSIONS The investigation of the region-specific lipid composition of symptomatic and asymptomatic human atherosclerotic plaques revealed specific lipid markers of plaque outcome, which could be linked to known biological characteristics of stable plaques.
Collapse
Affiliation(s)
- Francesco Greco
- Centro Health and BioMedLab, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme (PI), Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giulia Bertagna
- Azienda Ospedaliero Universitaria Pisana, Department of Vascular Surgery, Pisa, Italy
| | - Laura Quercioli
- Azienda Ospedaliero Universitaria Pisana, Department of Vascular Surgery, Pisa, Italy
| | - Angela Pucci
- Department of Histopathology, University Hospital, Pisa, Italy
| | | | - Mauro Ferrari
- Azienda Ospedaliero Universitaria Pisana, Department of Vascular Surgery, Pisa, Italy
| | - Fabio A Recchia
- Institute of Clinical Physiology, National Research Council, Pisa, Italy; Aging & Cardiovascular Discovery Center, Lewis Katz School of Medicine, Philadelphia, USA; Scuola Superiore Sant'Anna, Pisa, Italy
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme (PI), Italy.
| |
Collapse
|
2
|
Cao J, Martin-Lorenzo M, van Kuijk K, Wieland EB, Gijbels MJ, Claes BSR, Heredero A, Aldamiz-Echevarria G, Heeren RMA, Goossens P, Sluimer JC, Balluff B, Alvarez-Llamas G. Spatial Metabolomics Identifies LPC(18:0) and LPA(18:1) in Advanced Atheroma With Translation to Plasma for Cardiovascular Risk Estimation. Arterioscler Thromb Vasc Biol 2024; 44:741-754. [PMID: 38299357 DOI: 10.1161/atvbaha.123.320278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation. METHODS In this observational study, mass spectrometry imaging (MSI) was applied to identify region-specific metabolic differences between atherosclerotic (n=11) and control (n=11) aortas from low-density lipoprotein receptor-deficient mice, via histology-guided virtual microdissection. Early and advanced plaques were compared within the same atherosclerotic animals. Progression metabolites were further analyzed by MSI in 9 human atherosclerotic carotids and by targeted mass spectrometry in human plasma from subjects with elective coronary artery bypass grafting (cardiovascular risk group, n=27) and a control group (n=27). RESULTS MSI identified 362 local metabolic alterations in atherosclerotic mice (log2 fold-change ≥1.5; P≤0.05). The lipid composition of cardiac tissue is altered during atherosclerosis development and presents a generalized accumulation of glycerophospholipids, except for lysolipids. Lysolipids (among other glycerophospholipids) were found at elevated levels in all 3 arterial layers of atherosclerotic aortas. LPC(18:0) (lysophosphatidylcholine; P=0.024) and LPA(18:1) (lysophosphatidic acid; P=0.025) were found to be significantly elevated in advanced plaques as compared with mouse-matched early plaques. Higher levels of both lipid species were also observed in fibrosis-rich areas of advanced- versus early-stage human samples. They were found to be significantly reduced in human plasma from subjects with elective coronary artery bypass grafting (P<0.001 and P=0.031, respectively), with LPC(18:0) showing significant association with cardiovascular risk (odds ratio, 0.479 [95% CI, 0.225-0.883]; P=0.032) and diagnostic potential (area under the curve, 0.778 [95% CI, 0.638-0.917]). CONCLUSIONS An altered phospholipid metabolism occurs in atherosclerosis, affecting both the aorta and the adjacent heart tissue. Plaque-progression lipids LPC(18:0) and LPA(18:1), as identified by MSI on tissue, reflect cardiovascular risk in human plasma.
Collapse
Affiliation(s)
- Jianhua Cao
- Maastricht MultiModal Molecular Imaging institute, M4i, Maastricht University, the Netherlands (J.C., B.S.R.C., R.M.A.H., B.B.)
| | - Marta Martin-Lorenzo
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain (M.M.-L., G.A.-L.)
| | - Kim van Kuijk
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
| | - Elias B Wieland
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
| | - Marion J Gijbels
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, the Netherlands (M.J.G.)
| | - Britt S R Claes
- Maastricht MultiModal Molecular Imaging institute, M4i, Maastricht University, the Netherlands (J.C., B.S.R.C., R.M.A.H., B.B.)
| | - Angeles Heredero
- Cardiac Surgery Service, Fundación Jiménez Díaz University Hospital-UAM, Madrid, Spain (A.H., G.A.-E.)
| | | | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging institute, M4i, Maastricht University, the Netherlands (J.C., B.S.R.C., R.M.A.H., B.B.)
| | - Pieter Goossens
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
| | - Judith C Sluimer
- Department of Pathology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, the Netherlands (K.v.K., E.B.W., M.J.G., P.G., J.C.S.)
- Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (J.C.S.)
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging institute, M4i, Maastricht University, the Netherlands (J.C., B.S.R.C., R.M.A.H., B.B.)
| | - Gloria Alvarez-Llamas
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain (M.M.-L., G.A.-L.)
- RICORS2040, IIS-Fundación Jiménez Díaz, Madrid, Spain (G.A.-L.)
- Biochemistry and Molecular Biology Department, Complutense University, Madrid, Spain (G.A.-L.)
| |
Collapse
|
3
|
Greco F, Quercioli L, Pucci A, Rocchiccioli S, Ferrari M, Recchia FA, McDonnell LA. Mass Spectrometry Imaging as a Tool to Investigate Region Specific Lipid Alterations in Symptomatic Human Carotid Atherosclerotic Plaques. Metabolites 2021; 11:250. [PMID: 33919525 PMCID: PMC8073208 DOI: 10.3390/metabo11040250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/01/2022] Open
Abstract
Atherosclerosis is characterized by fatty plaques in large and medium sized arteries. Their rupture can causes thrombi, occlusions of downstream vessels and adverse clinical events. The investigation of atherosclerotic plaques is made difficult by their highly heterogeneous nature. Here we propose a spatially resolved approach based on matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging to investigate lipids in specific regions of atherosclerotic plaques. The method was applied to a small dataset including symptomatic and asymptomatic human carotid atherosclerosis plaques. Tissue sections of symptomatic and asymptomatic human carotid atherosclerotic plaques were analyzed by MALDI mass spectrometry imaging (MALDI MSI) of lipids, and adjacent sections analyzed by histology and immunofluorescence. These multimodal datasets were used to compare the lipid profiles of specific histopathological regions within the plaque. The lipid profiles of macrophage-rich regions and intimal vascular smooth muscle cells exhibited the largest changes associated with plaque outcome. Macrophage-rich regions from symptomatic lesions were found to be enriched in sphingomyelins, and intimal vascular smooth muscle cells of symptomatic plaques were enriched in cholesterol and cholesteryl esters. The proposed method enabled the MALDI MSI analysis of specific regions of the atherosclerotic lesion, confirming MALDI MSI as a promising tool for the investigation of histologically heterogeneous atherosclerotic plaques.
Collapse
Affiliation(s)
- Francesco Greco
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy; (F.G.); (F.A.R.)
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme (PI), Italy
| | - Laura Quercioli
- Department of Vascular Surgery, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (L.Q.); (M.F.)
| | - Angela Pucci
- Department of Histopathology, University Hospital, 56124 Pisa, Italy;
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Mauro Ferrari
- Department of Vascular Surgery, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy; (L.Q.); (M.F.)
| | - Fabio A. Recchia
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy; (F.G.); (F.A.R.)
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Liam A. McDonnell
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme (PI), Italy
| |
Collapse
|
4
|
Moerman AM, Visscher M, Slijkhuis N, Van Gaalen K, Heijs B, Klein T, Burgers PC, De Rijke YB, Van Beusekom HMM, Luider TM, Verhagen HJM, Van der Steen AFW, Gijsen FJH, Van der Heiden K, Van Soest G. Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging. J Lipid Res 2021; 62:100020. [PMID: 33581415 PMCID: PMC7881220 DOI: 10.1194/jlr.ra120000974] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Carotid atherosclerosis is a risk factor for ischemic stroke, one of the main causes of mortality and disability worldwide. The disease is characterized by plaques, heterogeneous deposits of lipids, and necrotic debris in the vascular wall, which grow gradually and may remain asymptomatic for decades. However, at some point a plaque can evolve to a high-risk plaque phenotype, which may trigger a cerebrovascular event. Lipids play a key role in the development and progression of atherosclerosis, but the nature of their involvement is not fully understood. Using matrix-assisted laser desorption/ionization mass spectrometry imaging, we visualized the distribution of approximately 200 different lipid signals, originating of >90 uniquely assigned species, in 106 tissue sections of 12 human carotid atherosclerotic plaques. We performed unsupervised classification of the mass spectrometry dataset, as well as a histology-directed multivariate analysis. These data allowed us to extract the spatial lipid patterns associated with morphological plaque features in advanced plaques from a symptomatic population, revealing spatial lipid patterns in atherosclerosis and their relation to histological tissue type. The abundances of sphingomyelin and oxidized cholesteryl ester species were elevated specifically in necrotic intima areas, whereas diacylglycerols and triacylglycerols were spatially correlated to areas containing the coagulation protein fibrin. These results demonstrate a clear colocalization between plaque features and specific lipid classes, as well as individual lipid species in high-risk atherosclerotic plaques.
Collapse
Affiliation(s)
- Astrid M Moerman
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirjam Visscher
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nuria Slijkhuis
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kim Van Gaalen
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Theo Klein
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter C Burgers
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yolanda B De Rijke
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Heleen M M Van Beusekom
- Department of Experimental Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hence J M Verhagen
- Department of Vascular and Endovascular Surgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonius F W Van der Steen
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Frank J H Gijsen
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kim Van der Heiden
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gijs Van Soest
- Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Cao J, Goossens P, Martin-Lorenzo M, Dewez F, Claes BSR, Biessen EAL, Heeren RMA, Balluff B. Atheroma-Specific Lipids in ldlr-/- and apoe-/- Mice Using 2D and 3D Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1825-1832. [PMID: 32872786 PMCID: PMC7472746 DOI: 10.1021/jasms.0c00070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Atherosclerosis is the major contributor to cardiovascular diseases. It is a spatially and temporally complex inflammatory disease, in which intravascular accumulation of a plethora of lipids is considered to play a crucial role. To date, both the composition and local distribution of the involved lipids have not been thoroughly mapped yet. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) enables analyzing and visualizing hundreds of lipid molecules within the plaque while preserving each lipid's specific location. In this study, we aim to identify and verify aortic plaque-specific lipids with high-spatial-resolution 2D and 3D MALDI-MSI common to high-fat-diet-fed low-density lipoprotein receptor deficient (ldlr-/-) mice and chow-fed apolipoprotein E deficient (apoe-/-) mice, the two most widely used animal models for atherosclerosis. A total of 11 lipids were found to be significantly and specifically colocalized to the plaques in both mouse models. These were identified and belong to one sphingomyelin (SM), three lysophosphatidic acids (LPA), four lysophosphatidylcholines (LPC), two lysophosphatidylethanolamines (LPE), and one lysophosphatidylinositol (LPI). While these lysolipids and SM 34:0;2 were characteristic of the atherosclerotic aorta plaque itself, LPI 18:0 was mainly localized in the necrotic core of the plaque.
Collapse
Affiliation(s)
- Jianhua Cao
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| | - Pieter Goossens
- Maastricht UMC+, Pathology Department,
Cardiovascular Research Institute Maastricht (CARIM), 6202 AZ
Maastricht, The Netherlands
| | - Marta Martin-Lorenzo
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
- Immunology Department, IIS-Fundacion
Jimenez Diaz-UAM, 28040 Madrid, Spain
| | - Frédéric Dewez
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
- Mass Spectrometry Laboratory (MSLab),
University of Liège, B-4000 Liège,
Belgium
| | - Britt S. R. Claes
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| | - Erik A. L. Biessen
- Maastricht UMC+, Pathology Department,
Cardiovascular Research Institute Maastricht (CARIM), 6202 AZ
Maastricht, The Netherlands
| | - Ron M. A. Heeren
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| | - Benjamin Balluff
- Maastricht Multimodal Molecular Imaging Institute
(M4I), Maastricht University, 6200 MD Maastricht, The
Netherlands
| |
Collapse
|
6
|
Jayathirtha M, Dupree EJ, Manzoor Z, Larose B, Sechrist Z, Neagu AN, Petre BA, Darie CC. Mass Spectrometric (MS) Analysis of Proteins and Peptides. Curr Protein Pept Sci 2020; 22:92-120. [PMID: 32713333 DOI: 10.2174/1389203721666200726223336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
The human genome is sequenced and comprised of ~30,000 genes, making humans just a little bit more complicated than worms or flies. However, complexity of humans is given by proteins that these genes code for because one gene can produce many proteins mostly through alternative splicing and tissue-dependent expression of particular proteins. In addition, post-translational modifications (PTMs) in proteins greatly increase the number of gene products or protein isoforms. Furthermore, stable and transient interactions between proteins, protein isoforms/proteoforms and PTM-ed proteins (protein-protein interactions, PPI) add yet another level of complexity in humans and other organisms. In the past, all of these proteins were analyzed one at the time. Currently, they are analyzed by a less tedious method: mass spectrometry (MS) for two reasons: 1) because of the complexity of proteins, protein PTMs and PPIs and 2) because MS is the only method that can keep up with such a complex array of features. Here, we discuss the applications of mass spectrometry in protein analysis.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Emmalyn J Dupree
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zaen Manzoor
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Brianna Larose
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Zach Sechrist
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| | - Brindusa Alina Petre
- Laboratory of Biochemistry, Department of Chemistry, Al. I. Cuza University of Iasi, Iasi, Romania, Center for Fundamental Research and Experimental Development in Translation Medicine - TRANSCEND, Regional Institute of Oncology, Iasi, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States
| |
Collapse
|
7
|
Mass Spectrometry Imaging of atherosclerosis-affine Gadofluorine following Magnetic Resonance Imaging. Sci Rep 2020; 10:79. [PMID: 31919465 PMCID: PMC6952459 DOI: 10.1038/s41598-019-57075-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022] Open
Abstract
Molecular imaging of atherosclerosis by Magnetic Resonance Imaging (MRI) has been impaired by a lack of validation of the specific substrate responsible for the molecular imaging signal. We therefore aimed to investigate the additive value of mass spectrometry imaging (MSI) of atherosclerosis-affine Gadofluorine P for molecular MRI of atherosclerotic plaques. Atherosclerotic Ldlr−/− mice were investigated by high-field MRI (7 T) at different time points following injection of atherosclerosis-affine Gadofluorine P as well as at different stages of atherosclerosis formation (4, 8, 16 and 20 weeks of HFD). At each imaging time point mice were immediately sacrificed after imaging and aortas were excised for mass spectrometry imaging: Matrix Assisted Laser Desorption Ionization (MALDI) Imaging and Laser Ablation – Inductively Coupled Plasma – Mass Spectrometry (LA-ICP-MS) imaging. Mass spectrometry imaging allowed to visualize the localization and measure the concentration of the MR imaging probe Gadofluorine P in plaque tissue ex vivo with high spatial resolution and thus adds novel and more target specific information to molecular MR imaging of atherosclerosis.
Collapse
|
8
|
O’Rourke MB, Smith CC, De La Monte SM, Sutherland GT, Padula MP. Higher Mass Accuracy MALDI-TOF/TOF Lipid Imaging of Human Brain Tissue in Alzheimer's Disease. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2019; 126:e86. [PMID: 30735313 PMCID: PMC10867813 DOI: 10.1002/cpmb.86] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is a well-established technique for elucidating the location and relative abundance of a range of biomolecules. More recently, research into this technique has shifted from simple discovery and demonstration of utility to application in biomedical research. Here, we describe a protocol utilizing MALDI-IMS for the spatial mapping of lipids in brain tissue from normal human brains and brains from patients with Alzheimer's disease, in the context of Alzheimer's disease. Improved accuracy calibration of the instrument from the tissue surface is emphasized, as this allows for significantly improved mass determination in time of flight (TOF)-based instruments enabling more confident preliminary lipid identification. This improved initial result allows MALDI-IMS data to be complemented with additional instrumentation, such as liquid chromatography mass spectrometry workflows or specialized non-TOF systems such as Fourier transform cyclotron resonance instruments. This method is not limited to human tissue and can be applied to virtually any lipid-rich formalin-fixed tissue. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Matthew B. O’Rourke
- Sydney Mass Spectrometry, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- Proteomics Core Facility, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Caine C. Smith
- Neuropathology Group, Discipline of Pathology, School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Suzanne M. De La Monte
- Department of Pathology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Neurology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Greg T. Sutherland
- Neuropathology Group, Discipline of Pathology, School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Matthew P. Padula
- Proteomics Core Facility, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
9
|
Martínez PJ, Baldán-Martín M, López JA, Martín-Lorenzo M, Santiago-Hernández A, Agudiez M, Cabrera M, Calvo E, Vázquez J, Ruiz-Hurtado G, Vivanco F, Ruilope LM, Barderas MG, Alvarez-Llamas G. Identification of six cardiovascular risk biomarkers in the young population: A promising tool for early prevention. Atherosclerosis 2019; 282:67-74. [PMID: 30690299 DOI: 10.1016/j.atherosclerosis.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS The predictive value of traditional CV risk calculators is limited. Novel indicators of CVD progression are needed particularly in the young population. The main aim of this study was the identification of a molecular profile with added value to classical CV risk estimation. METHODS Eighty-one subjects (30-50 years) were classified in 3 groups according to their CV risk: healthy subjects; individuals with CV risk factors; and those who had suffered a previous CV event. The urine proteome was quantitatively analyzed and significantly altered proteins were identified between patients' groups, either related to CV risk or established organ damage. Target-MS and ELISA were used for confirmation in independent patients' cohorts. Systems Biology Analysis (SBA) was carried out to identify functional categories behind CVD. RESULTS 4309 proteins were identified, 75 of them differentially expressed. ADX, ECP, FETUB, GDF15, GUAD and NOTCH1 compose a fingerprint positively correlating with lifetime risk estimate (LTR QRISK). Best performance ROC curve was obtained when ECP, GDF15 and GUAD were combined (AUC = 0.96). SBA revealed oxidative stress response, dilated cardiomyopathy, signaling by Wnt and proteasome, as main functional processes related to CV risk. CONCLUSIONS A novel urinary protein signature is shown, which correlates with CV risk estimation in young individuals. Pending further confirmation, this six-protein-panel could help in CV risk assessment.
Collapse
Affiliation(s)
- Paula J Martínez
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | | - Juan A López
- Laboratory of Cardiovascular Proteomics CNIC, Madrid, Spain
| | - Marta Martín-Lorenzo
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Aránzazu Santiago-Hernández
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Marta Agudiez
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | | | | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics CNIC, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Instituto de Investigación I+12, Hospital Universitario 12 de Octubre/CIBER-CV, Madrid, Spain
| | - Fernando Vivanco
- Department of Biochemistry and Molecular Biology, I Universidad Complutense, Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Instituto de Investigación I+12, Hospital Universitario 12 de Octubre/CIBER-CV, Madrid, Spain; Hypertension Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; School of Doctoral Studies and Research, Universidad Europea de Madrid, Madrid, Spain.
| | - María G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
| | - Gloria Alvarez-Llamas
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain; REDINREN, Madrid, Spain.
| |
Collapse
|
10
|
Neagu AN. Proteome Imaging: From Classic to Modern Mass Spectrometry-Based Molecular Histology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:55-98. [PMID: 31347042 DOI: 10.1007/978-3-030-15950-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to overcome the limitations of classic imaging in Histology during the actually era of multiomics, the multi-color "molecular microscope" by its emerging "molecular pictures" offers quantitative and spatial information about thousands of molecular profiles without labeling of potential targets. Healthy and diseased human tissues, as well as those of diverse invertebrate and vertebrate animal models, including genetically engineered species and cultured cells, can be easily analyzed by histology-directed MALDI imaging mass spectrometry. The aims of this review are to discuss a range of proteomic information emerging from MALDI mass spectrometry imaging comparative to classic histology, histochemistry and immunohistochemistry, with applications in biology and medicine, concerning the detection and distribution of structural proteins and biological active molecules, such as antimicrobial peptides and proteins, allergens, neurotransmitters and hormones, enzymes, growth factors, toxins and others. The molecular imaging is very well suited for discovery and validation of candidate protein biomarkers in neuroproteomics, oncoproteomics, aging and age-related diseases, parasitoproteomics, forensic, and ecotoxicology. Additionally, in situ proteome imaging may help to elucidate the physiological and pathological mechanisms involved in developmental biology, reproductive research, amyloidogenesis, tumorigenesis, wound healing, neural network regeneration, matrix mineralization, apoptosis and oxidative stress, pain tolerance, cell cycle and transformation under oncogenic stress, tumor heterogeneity, behavior and aggressiveness, drugs bioaccumulation and biotransformation, organism's reaction against environmental penetrating xenobiotics, immune signaling, assessment of integrity and functionality of tissue barriers, behavioral biology, and molecular origins of diseases. MALDI MSI is certainly a valuable tool for personalized medicine and "Eco-Evo-Devo" integrative biology in the current context of global environmental challenges.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania.
| |
Collapse
|
11
|
Vaysse PM, Heeren RMA, Porta T, Balluff B. Mass spectrometry imaging for clinical research - latest developments, applications, and current limitations. Analyst 2018. [PMID: 28642940 DOI: 10.1039/c7an00565b] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry is being used in many clinical research areas ranging from toxicology to personalized medicine. Of all the mass spectrometry techniques, mass spectrometry imaging (MSI), in particular, has continuously grown towards clinical acceptance. Significant technological and methodological improvements have contributed to enhance the performance of MSI recently, pushing the limits of throughput, spatial resolution, and sensitivity. This has stimulated the spread of MSI usage across various biomedical research areas such as oncology, neurological disorders, cardiology, and rheumatology, just to name a few. After highlighting the latest major developments and applications touching all aspects of translational research (i.e. from early pre-clinical to clinical research), we will discuss the present challenges in translational research performed with MSI: data management and analysis, molecular coverage and identification capabilities, and finally, reproducibility across multiple research centers, which is the largest remaining obstacle in moving MSI towards clinical routine.
Collapse
Affiliation(s)
- Pierre-Maxence Vaysse
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Tiffany Porta
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging (M4I) institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
12
|
Santos T, Théron L, Chambon C, Viala D, Centeno D, Esbelin J, Hébraud M. MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms. J Proteomics 2018; 187:152-160. [PMID: 30071319 DOI: 10.1016/j.jprot.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
MALDI-TOF Mass spectrometry Imaging (MSI) is a surface-sampling technology that can determine spatial information and relative abundance of analytes directly from biological samples. Human listeriosis cases are due to the ingestion of contaminated foods with the pathogenic bacteria Listeria monocytogenes. The reduction of water availability in food workshops by decreasing the air relative humidity (RH) is one strategy to improve the control of bacterial contamination. This study aims to develop and implement an MSI approach on L. monocytogenes biofilms and proof of concept using a dehumidified stress condition. MSI allowed examining the distribution of low molecular weight proteins within the biofilms subjected to a dehumidification environment, mimicking the one present in a food workshop (10 °C, 75% RH). Furthermore, a LC-MS/MS approach was made to link the dots between MSI and protein identification. Five identified proteins were assigned to registered MSI m/z, including two cold-shock proteins and a ligase involved in cell wall biogenesis. These data demonstrate how imaging can be used to dissect the proteome of an intact bacterial biofilm giving new insights into protein expression relating to a dehumidification stress adaptation. Data are available via ProteomeXchange with identifier PXD010444. BIOLOGICAL SIGNIFICANCE The ready-to-eat food processing industry has the daily challenge of controlling the contamination of surfaces and machines with spoilage and pathogenic microorganisms. In some cases, it is a lost cause due to these microorganisms' capacity to withstand the cleaning treatments, like desiccation procedures. Such a case is the ubiquitous Gram-positive Bacterium Listeria monocytogenes. Its surface proteins have particular importance for the interaction with its environment, being important factors contributing to adaptation to stress conditions. There are few reproducibly techniques to obtain the surface proteins of Gram-positive cells. Here, we developed a workflow that enables the use of MALDI imaging on Gram-positive bacterium biofilms to study the impact of dehumidification on sessile cells. It will be of the most interest to test this workflow with different environmental conditions and potentially apply it to other biofilm-forming bacteria.
Collapse
Affiliation(s)
- Tiago Santos
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France
| | - Laëtitia Théron
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Christophe Chambon
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Didier Viala
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Delphine Centeno
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Julia Esbelin
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France; INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France.
| |
Collapse
|
13
|
Lamont L, Baumert M, Ogrinc Potočnik N, Allen M, Vreeken R, Heeren RMA, Porta T. Integration of Ion Mobility MS E after Fully Automated, Online, High-Resolution Liquid Extraction Surface Analysis Micro-Liquid Chromatography. Anal Chem 2017; 89:11143-11150. [PMID: 28945354 PMCID: PMC5677252 DOI: 10.1021/acs.analchem.7b03512] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Direct
analysis by mass spectrometry (imaging) has become increasingly
deployed in preclinical and clinical research due to its rapid and
accurate readouts. However, when it comes to biomarker discovery or
histopathological diagnostics, more sensitive and in-depth profiling
from localized areas is required. We developed a comprehensive, fully
automated online platform for high-resolution liquid extraction surface
analysis (HR-LESA) followed by micro–liquid chromatography
(LC) separation and a data-independent acquisition strategy for untargeted
and low abundant analyte identification directly from tissue sections.
Applied to tissue sections of rat pituitary, the platform demonstrated
improved spatial resolution, allowing sample areas as small as 400
μm to be studied, a major advantage over conventional LESA.
The platform integrates an online buffer exchange and washing step
for removal of salts and other endogenous contamination that originates
from local tissue extraction. Our carry over–free platform
showed high reproducibility, with an interextraction variability below
30%. Another strength of the platform is the additional selectivity
provided by a postsampling gas-phase ion mobility separation. This
allowed distinguishing coeluted isobaric compounds without requiring
additional separation time. Furthermore, we identified untargeted
and low-abundance analytes, including neuropeptides deriving from
the pro-opiomelanocortin precursor protein and localized a specific
area of the pituitary gland (i.e., adenohypophysis) known to secrete
neuropeptides and other small metabolites related to development,
growth, and metabolism. This platform can thus be applied for the
in-depth study of small samples of complex tissues with histologic
features of ∼400 μm or more, including potential neuropeptide
markers involved in many diseases such as neurodegenerative diseases,
obesity, bulimia, and anorexia nervosa.
Collapse
Affiliation(s)
- Lieke Lamont
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University , Maastricht, The Netherlands
| | | | - Nina Ogrinc Potočnik
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University , Maastricht, The Netherlands
| | - Mark Allen
- Advion , Harlow CM20 2NQ, United Kingdom
| | - Rob Vreeken
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University , Maastricht, The Netherlands.,Janssen Pharmaceutica , Beerse, Belgium
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University , Maastricht, The Netherlands
| | - Tiffany Porta
- Maastricht Multimodal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University , Maastricht, The Netherlands
| |
Collapse
|
14
|
Mourino-Alvarez L, Baldan-Martin M, Rincon R, Martin-Rojas T, Corbacho-Alonso N, Sastre-Oliva T, Barderas MG. Recent advances and clinical insights into the use of proteomics in the study of atherosclerosis. Expert Rev Proteomics 2017; 14:701-713. [PMID: 28689450 DOI: 10.1080/14789450.2017.1353912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The application of new proteomics methods may help to identify new diagnostic/predictive molecular markers in an attempt to improve the clinical management of atherosclerosis. Areas covered: Technological advances in proteomics have enhanced its sensitivity and multiplexing capacity, as well as the possibility of studying protein interactions and tissue structure. These advances will help us better understand the molecular mechanisms at play in atherosclerosis as a biological system. Moreover, this should help identify new predictive/diagnostic biomarkers and therapeutic targets that may facilitate effective risk stratification and early diagnosis, with the ensuing rapid implementation of treatment. This review provides a comprehensive overview of the novel methods in proteomics, including state-of-the-art techniques, novel biological samples and applications for the study of atherosclerosis. Expert commentary: Collaboration between clinicians and researchers is crucial to further validate and introduce new molecular markers to manage atherosclerosis that are identified using the most up to date proteomic approaches.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | | | - Raul Rincon
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Tatiana Martin-Rojas
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Nerea Corbacho-Alonso
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Tamara Sastre-Oliva
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| | - Maria G Barderas
- a Department of Vascular Physiopathology , Hospital Nacional de Paraplejicos , Toledo , Spain
| |
Collapse
|