1
|
Mueller C, Gambarotti M, Benini S, Picci P, Righi A, Stevanin M, Hombach-Klonisch S, Henderson D, Liotta L, Espina V. Unlocking bone for proteomic analysis and FISH. J Transl Med 2019; 99:708-721. [PMID: 30659273 PMCID: PMC10752433 DOI: 10.1038/s41374-018-0168-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 09/04/2018] [Accepted: 09/14/2018] [Indexed: 11/08/2022] Open
Abstract
Bone tissue is critically lagging behind soft tissues and biofluids in our effort to advance precision medicine. The main challenges have been accessibility and the requirement for deleterious decalcification processes that impact the fidelity of diagnostic histomorphology and hinder downstream analyses such as fluorescence in-situ hybridization (FISH). We have developed an alternative fixation chemistry that simultaneously fixes and decalcifies bone tissue. We compared tissue morphology, immunohistochemistry (IHC), cell signal phosphoprotein analysis, and FISH in 50 patient matched primary bone cancer cases that were either formalin fixed and decalcified, or theralin fixed with and without decalcification. Use of theralin improved tissue histomorphology, whereas overall IHC was comparable to formalin fixed, decalcified samples. Theralin-fixed samples showed a significant increase in protein and DNA extractability, supporting technologies such as laser-capture microdissection and reverse phase protein microarrays. Formalin-fixed bone samples suffered from a fixation artifact where protein quantification of β-actin directly correlated with fixation time. Theralin-fixed samples were not affected by this artifact. Moreover, theralin fixation enabled standard FISH staining in bone cancer samples, whereas no FISH staining was observed in formalin-fixed samples. We conclude that the use of theralin fixation unlocks the molecular archive within bone tissue allowing bone to enter the standard tissue analysis pipeline. This will have significant implications for bone cancer patients, in whom personalized medicine has yet to be implemented.
Collapse
Affiliation(s)
- Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Marco Gambarotti
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefania Benini
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Piero Picci
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Monica Stevanin
- Department of Pathology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, Canada
| | - Dana Henderson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Winnipeg, Canada
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA.
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
2
|
Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone malignancies. Oncotarget 2016. [PMID: 26203049 PMCID: PMC4599286 DOI: 10.18632/oncotarget.4140] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer proteomics provide a powerful approach to identify biomarkers for personalized medicine. Particularly, biomarkers for early detection, prognosis and therapeutic intervention of bone cancers, especially osteosarcomas, are missing. Initially, we compared two-dimensional gel electrophoresis (2-DE)-based protein expression pattern between cell lines of fetal osteoblasts, osteosarcoma and pulmonary metastasis derived from osteosarcoma. Two independent statistical analyses by means of PDQuest® and SameSpot® software revealed a common set of 34 differentially expressed protein spots (p < 0.05). 17 Proteins were identified by mass spectrometry and subjected to Ingenuity Pathway Analysis resulting in one high-ranked network associated with Gene Expression, Cell Death and Cell-To-Cell Signaling and Interaction. Ran/TC4-binding protein (RANBP1) and Cathepsin D (CTSD) were further validated by Western Blot in cell lines while the latter one showed higher expression differences also in cytospins and in clinical samples using tissue microarrays comprising osteosarcomas, metastases, other bone malignancies, and control tissues. The results show that protein expression patterns distinguish fetal osteoblasts from osteosarcomas, pulmonary metastases, and other bone diseases with relevant sensitivities between 55.56% and 100% at ≥87.50% specificity. Particularly, CTSD was validated in clinical material and could thus serve as a new biomarker for bone malignancies and potentially guide individualized treatment regimes.
Collapse
|
3
|
Washam CL, Byrum SD, Leitzel K, Ali SM, Tackett AJ, Gaddy D, Sundermann SE, Lipton A, Suva LJ. Identification of PTHrP(12-48) as a plasma biomarker associated with breast cancer bone metastasis. Cancer Epidemiol Biomarkers Prev 2013; 22:972-83. [PMID: 23462923 DOI: 10.1158/1055-9965.epi-12-1318-t] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Breast cancer bone metastasis is a complication that significantly compromises patient survival due, in part, to the lack of disease-specific biomarkers that allow early and accurate diagnosis. METHODS Using mass spectrometry protein profiling, plasma samples were screened from three independent breast cancer patient cohorts with and without clinical evidence of bone metastasis. RESULTS The results identified 13 biomarkers that classified all 110 patients with a sensitivity of 91% and specificity of 93% [receiver operating characteristics area under the curve (AUC = 1.00)]. The most discriminatory protein was subsequently identified as a unique 12-48aa peptide fragment of parathyroid hormone-related protein (PTHrP). PTHrP(12-48) was significantly increased in plasma of patients with bone metastasis compared with patients without bone metastasis (P < 0.0001). Logistic regression models were used to evaluate the diagnostic potential of PTHrP(12-48) as a single biomarker or in combination with the measurement of the clinical marker N-telopeptide of type I collagen (NTx). The PTHrP(12-48) and NTx logistic regression models were not significantly different and classified the patient groups with high accuracy (AUC = 0.85 and 0.95), respectively. Interestingly, in combination with serum NTx, the plasma concentration of PTHrP(12-48) increased diagnostic specificity and accuracy (AUC = 0.99). CONCLUSIONS These data show that PTHrP(12-48) circulates in plasma of patient with breast cancer and is a novel and predictive biomarker of breast cancer bone metastasis. Importantly, the clinical measurement of PTHrP(12-48) in combination with NTx improves the detection of breast cancer bone metastasis. IMPACT In summary, we present the first validated, plasma biomarker signature for diagnosis of breast cancer bone metastasis that may improve the early diagnosis of high-risk individuals.
Collapse
Affiliation(s)
- Charity L Washam
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Dumont B, Castronovo V, Peulen O, Blétard N, Clézardin P, Delvenne P, De Pauw EA, Turtoi A, Bellahcène A. Differential proteomic analysis of a human breast tumor and its matched bone metastasis identifies cell membrane and extracellular proteins associated with bone metastasis. J Proteome Res 2012; 11:2247-60. [PMID: 22356681 DOI: 10.1021/pr201022n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The classical fate of metastasizing breast cancer cells is to seed and form secondary colonies in bones. The molecules closely associated with these processes are predominantly present at the cell surface and in the extracellular space, establishing the first contacts with the target tissue. In this study, we had the rare opportunity to analyze a bone metastatic lesion and its corresponding breast primary tumor obtained simultaneously from the same patient. Using mass spectrometry, we undertook a proteomic study on cell surface and extracellular protein-enriched material. We provide a repertoire of significantly modulated proteins, some with yet unknown roles in the bone metastatic process as well as proteins notably involved in cancer cell invasiveness and in bone metabolism. The comparison of these clinical data with those previously obtained using a human osteotropic breast cancer cell line highlighted an overlapping group of proteins. Certain differentially expressed proteins are validated in the present study using immunohistochemistry on a retrospective collection of breast tumors and matched bone metastases. Our exclusive set of selected proteins supports the setup of further investigations on both clinical samples and experimental bone metastasis models that will help to reveal the finely coordinated expression of proteins that favor the development of metastases in the bone microenvironment.
Collapse
Affiliation(s)
- Bruno Dumont
- Metastasis Research Laboratory, Department of Pathology, University of Liège, Bat. B23, CHU Sart Tilman Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wood SL, Brown JE. Skeletal metastasis in renal cell carcinoma: current and future management options. Cancer Treat Rev 2011; 38:284-91. [PMID: 21802857 DOI: 10.1016/j.ctrv.2011.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 06/25/2011] [Accepted: 06/29/2011] [Indexed: 01/06/2023]
Abstract
Metastasis to the skeleton is common in advanced renal cancer and leads to debilitating skeletal complications including severe pain, increased fracture rate and spinal cord compression. The incidence of renal cell carcinoma is increasing by around 2% per year and recent advances in targeted anti-angiogenic therapy for advanced disease are expected to lead to longer survival times. The clinical management of metastatic bone disease in renal cell carcinoma therefore merits greater focus than hitherto. Bone metastases arising from renal cancer are highly osteolytic and particularly destructive. Fortunately, the continuing development of anti-resorptive drugs is revolutionising the medical management of metastatic bone disease across many tumour types and making a major impact on quality of life. The bisphosphonate zoledronic acid is now licensed for use in advanced renal cell carcinoma and appears to yield a greater benefit in terms of reduction in skeletal related events than in bone metastases arising from other tumour types. Drugs which are directed at specific targets in the bone metastasis pathway are in development, including denosumab, a fully human monoclonal antibody against receptor activator of nuclear factor kappa B ligand, which has recently been licensed in the United States for use in renal cell carcinoma, with European licensing expected soon. This review examines the increasing options for treatment of metastatic bone disease in renal cell carcinoma, with a focus on drug-based advances and progress in the development of existing and new biomarkers to support clinical management.
Collapse
Affiliation(s)
- Steven L Wood
- Cancer Research UK Clinical Centre at Leeds, University of Leeds, St. James's Hospital, UK.
| | | |
Collapse
|
6
|
Hua Y, Jia X, Sun M, Zheng L, Yin L, Zhang L, Cai Z. Plasma membrane proteomic analysis of human osteosarcoma and osteoblastic cells: revealing NDRG1 as a marker for osteosarcoma. Tumour Biol 2011; 32:1013-21. [PMID: 21706236 DOI: 10.1007/s13277-011-0203-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/10/2011] [Indexed: 01/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. To identify new biomarkers for early diagnosis of OS and novel therapeutic candidates, we carried out a plasma membrane proteomic study based on two-dimensional electrophoresis (2DE). The OS cell line MG-63 and the human osteoblastic cell line hFOB1.19 were adopted as the comparison model. We extracted plasma membrane by aqueous two-phase partition extraction. The proteins were separated through 2DE. We analyzed the differentially expressed proteins by Imagemaster software and then identified them by liquid chromatography-tandem mass spectrometry, and the location and function of differential proteins were searched through the Gene Ontology database. In total, 220 protein spots were separated by 2DE. Seven proteins with more than 2.0-folds of difference were successfully identified from 13 gel spots, with 6 up-regulated and 1 down-regulated. Gene Ontology analysis of the differentially expressed proteins indicated that these proteins were involved in seven kinds of functions including binding, structural, cell motility, receptor activity, electron carrier activity, NADH dehydrogenase (ubiquinone) activity, and transcription repressor activity. The up-regulation of NDRG1 was verified in osteosarcoma through Western blotting and by immunohistochemistry in paraffin-embedded tissues. The plasma membrane proteins identified in this study may provide new insights into osteosarcoma cancer biology and potential diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Yingqi Hua
- Musculoskeletal Oncology Center, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Evolving role of bone biomarkers in castration-resistant prostate cancer. Neoplasia 2011; 12:685-96. [PMID: 20824045 DOI: 10.1593/neo.10610] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/15/2010] [Accepted: 06/15/2010] [Indexed: 12/18/2022] Open
Abstract
The preferential metastasis of prostate cancer cells to bone disrupts the process of bone remodeling and results in lesions that cause significant pain and patient morbidity. Although prostate-specific antigen (PSA) is an established biomarker in prostate cancer, it provides only limited information relating to bone metastases and the treatment of metastatic bone disease with bisphosphonates or novel noncytotoxic targeted or biological agents that may provide clinical benefits without affecting PSA levels. As bone metastases develop, factors derived from bone metabolism are released into blood and urine, including N- and C-terminal peptide fragments of type 1 collagen and bone-specific alkaline phosphatase, which represent potentially useful biomarkers for monitoring metastatic bone disease. A number of clinical trials have investigated these bone biomarkers with respect to their diagnostic, prognostic, and predictive values. Results suggest that higher levels of bone biomarkers are associated with an increased risk of skeletal-related events and/or death. As a result of these findings, bone biomarkers are now being increasingly used as study end points, particularly in studies investigating novel agents with putative bone effects. Data from prospective clinical trials are needed to validate the use of bone biomarkers and to confirm that marker levels provide additional information beyond traditional methods of response evaluation for patients with metastatic prostate cancer.
Collapse
|
8
|
|
9
|
Zhang Z, Zhang L, Hua Y, Jia X, Li J, Hu S, Peng X, Yang P, Sun M, Ma F, Cai Z. Comparative proteomic analysis of plasma membrane proteins between human osteosarcoma and normal osteoblastic cell lines. BMC Cancer 2010; 10:206. [PMID: 20470422 PMCID: PMC2880991 DOI: 10.1186/1471-2407-10-206] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 05/14/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and adolescents. However, the knowledge in diagnostic modalities has progressed less. To identify new biomarkers for the early diagnosis of OS as well as for potential novel therapeutic candidates, we performed a sub-cellular comparative proteomic research. METHODS An osteosarcoma cell line (MG-63) and human osteoblastic cells (hFOB1.19) were used as our comparative model. Plasma membrane (PM) was obtained by aqueous two-phase partition. Proteins were analyzed through iTRAQ-based quantitative differential LC/MS/MS. The location and function of differential proteins were analyzed through GO database. Protein-protein interaction was examined through String software. One of differentially expressed proteins was verified by immunohistochemistry. RESULTS 342 non-redundant proteins were identified, 68 of which were differentially expressed with 1.5-fold difference, with 25 up-regulated and 43 down-regulated. Among those differential proteins, 69% ware plasma membrane, which are related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc., and interaction with each other. One protein--CD151 located in net nodes was verified to be over-expressed in osteosarcoma tissue by immunohistochemistry. CONCLUSION It is the first time to use plasma membrane proteomics for studying the OS membrane proteins according to our knowledge. We generated preliminary but comprehensive data about membrane protein of osteosarcoma. Among these, CD151 was further validated in patient samples, and this small molecule membrane might be a new target for OS research. The plasma membrane proteins identified in this study may provide new insight into osteosarcoma biology and potential diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Department of Orthopaedics, The 4th Affiliated Hospital, China MedicalUniversity, Shenyang, 110032, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Mass spectrometric analysis of the low-molecular-weight (LMW) range of the serum/plasma proteome is revealing the existence of large numbers of previously unknown peptides and protein fragments, predicted to be derived from circulating low-abundance proteins. While genomics and proteomics are the primary discovery research tool, recent innovations in high-throughput proteomics are now standard practice for biomarker and target discovery. Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry (MS) is the current mainstay for serum or plasma analysis, although other methods are emerging as alternative high-throughput approaches. From a proteomics perspective, the bone cancers, such as myeloma, breast and prostate cancer bony metastases, and osteosarcoma, are likely among the least studied. As recent advances in proteomic technology have thrust the bone cancer field into the era of proteomics, a review of the current status of the proteome as it relates to the skeletal consequences of malignancy seems reasonable.
Collapse
Affiliation(s)
- Stephanie Byrum
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | |
Collapse
|
11
|
Li Y, Liang Q, Wen YQ, Chen LL, Wang LT, Liu YL, Luo CQ, Liang HZ, Li MT, Li Z. Comparative proteomics analysis of human osteosarcomas and benign tumor of bone. ACTA ACUST UNITED AC 2010; 198:97-106. [PMID: 20362224 DOI: 10.1016/j.cancergencyto.2010.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 01/02/2010] [Accepted: 01/03/2010] [Indexed: 12/14/2022]
Abstract
We conducted comparative proteomic analysis of osteosarcoma, with hopes of identifying the specific protein markers of osteosarcoma and improve the understanding of tumorigenesis and progression of osteosarcoma. Proteins extracted from osteosarcoma tissue and benign bone tumors, including osteoblastoma, chondroblastoma, and giant cell tumor of bone, were examined using two-dimensional gel electrophoresis followed by mass spectrometry analysis and database searches. We also validated the expression levels of interesting proteins by Western blotting assay and immunohistochemical staining. Intensity alterations of 30 spots were detected in osteosarcoma, and 18 of these spots were finally identified, including 12 up-regulated proteins and 6 down-regulated ones. The up-regulated proteins include VIM, TUBA1C, ZNF133, EZR, ACTG1, TF, and so on. The six down-regulated proteins include ADCY1, ATP5B, TUBB, RCN3, ACTB, and YWHAZ. Subsequent immunohistochemical staining and Western blotting assay for TUBA1C and ZNF133 in osteosarcoma samples confirmed the observation obtained by proteomic analysis. Our results suggest that these identified proteins may be potential biomarkers for osteosarcoma tumorigenesis and therapeutics. Aberrant expression of cytoskeletal- and microtubule-associated proteins in osteosarcoma may provide an advantage for tumor invasion and metastasis by affecting the stability of microtubule, which consequently influences the prognosis of patients.
Collapse
Affiliation(s)
- Y Li
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Cancer development is a multi-step process driven by genetic alterations that elicit the progressive transformation of normal human cells into highly malignant derivatives. The altered cell proliferation phenotype of cancer involves a poorly characterized sequence of molecular events, which often result in the development of distant metastasis. In the case of breast cancer, the skeleton is among the most common of metastatic sites. In spite of its clinical importance, the underlying cellular and molecular mechanisms driving bone metastasis remain elusive. Despite advances in our understanding of the phenotype of cancer cells, the increased focus on the contribution of the tumor microenvironment and the recent revival of interest in the role of tumor-propagating cells (so called cancer stem cells) that may originate or be related to normal stem cells produced in the bone marrow, many important questions remain unanswered. As such, a more complete understanding of the influences of both the microenvironment and the tumor phenotype, which impact the entire multi-step metastatic cascade, is required. In this review, the importance of tumor heterogeneity, tumor-propagating cells, the microenvironment of breast cancer metastasis to bone as well as many current endocrine therapies for the prevention and treatment of metastatic breast cancer is discussed.
Collapse
Affiliation(s)
- Larry J Suva
- Department of Orthopaedic Surgery, Barton Research Institute, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | |
Collapse
|
13
|
Heins JK, Heins A. An unusual cause of knee pain discovered at a nurse practitioner clinic. JOURNAL OF THE AMERICAN ACADEMY OF NURSE PRACTITIONERS 2008; 20:563-566. [PMID: 19128340 DOI: 10.1111/j.1745-7599.2008.00355.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
PURPOSE To describe an interesting and instructive case of knee pain from nurse practitioner (NP) practice and discuss the epidemiology, pathophysiology, clinical evaluation, and treatment of osteosarcoma. DATA SOURCES Findings from the history, physical examination, diagnostic testing, and follow-up of the case of an 18-year-old male who first presented with nontraumatic, diffuse left knee pain of 2.5-month duration. CONCLUSIONS At follow-up, after a trial of conservative treatment, a lesion suspicious for osteosarcoma was seen in the proximal tibia. Osteosarcoma is a rare but dangerous cause of chronic extremity pain, especially in children and adolescents. IMPLICATIONS FOR PRACTICE NPs must consider malignant bone tumors in the differential diagnosis of traumatic and nontraumatic extremity pain of extended duration, especially in children and adolescents. Thorough, persistent follow-up on recommended tests and referrals is necessary to ensure that important findings are not missed. The care of uninsured patients requires particular attention to cost concerns and access issues.
Collapse
|