1
|
Azeem M, Helal M, Klein-Hessling S, Serfling E, Goebeler M, Muhammad K, Kerstan A. NFATc1 fosters allergic contact dermatitis responses by enhancing the induction of IL-17-producing CD8 cells. J Invest Dermatol 2024:S0022-202X(24)03036-7. [PMID: 39733935 DOI: 10.1016/j.jid.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024]
Abstract
A plethora of data supports a major role of CD4+ and CD8+ T lymphocytes for the initiation, progression and maintenance of allergic contact dermatitis (ACD). However, in-depth understanding of the molecular mechanisms is still limited. NFATc1 plays an essential role in T cell activation. We therefore investigated its impact on contact hypersensitivity (CHS), the mouse model for ACD. The CHS response to 2,4,6-trinitrochlorobenzene (TNCB) was diminished in Nfatc1fl/flxCd4-cre mice (Nfatc1-/-) as compared to wild-type (WT) animals and associated with a lower percentage of interleukin (IL) 17-producing CD8+ T (Tc17) cells in both inflamed skin and draining lymph nodes (dLN). In vitro Tc17 polarization assays revealed that Nfatc1-/- CD8+ T cells have a reduced capacity to polarize into Tc17 cells. Applying single-cell RNA sequencing, we realized that NFATc1 controls the T cell differentiation fate. In the absence of NFATc1, CD8+ T cells favour the development of Interferon (IFN)-γ-secreting CD8+ T (Tc1) lymphocytes while in its presence they turn into Tc17 cells. Finally, the adoptive transfer of TNCB-sensitized WT CD8+ T cells restored the CHS response in naïve Nfatc1-/-mice. Our data demonstrate that NFATc1 contributes to the development of Tc17 cells and might present a promising target to alleviate CD8+ T cell-mediated allergic responses.
Collapse
Affiliation(s)
- Muhammad Azeem
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany; Department of Molecular Pathology, Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - Moutaz Helal
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany
| | - Stefan Klein-Hessling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany; Department of Biology, College of Science, United Arab Emirates University, 15551 Al Ain, UAE.
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
2
|
Shiu SCC, Kinghorn AB, Tanner JA. Topical DNA aptamer therapeutics for the skin. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102299. [PMID: 39257718 PMCID: PMC11386035 DOI: 10.1016/j.omtn.2024.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Affiliation(s)
- Simon C C Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, P.R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, P.R. China
| |
Collapse
|
3
|
Jonczyk A, Gottschalk M, Mangan MS, Majlesain Y, Thiem MW, Burbaum LC, Weighardt H, Latz E, Mayer G, Förster I. Topical application of a CCL22-binding aptamer suppresses contact allergy. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102254. [PMID: 39071952 PMCID: PMC11278340 DOI: 10.1016/j.omtn.2024.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
Allergic contact dermatitis is a prevalent occupational disease with limited therapeutic options. The chemokine CCL22, a ligand of the chemokine receptor CCR4, directs the migration of immune cells. Here, it is shown that genetic deficiency of CCL22 effectively ameliorated allergic reactions in contact hypersensitivity (CHS), a commonly used mouse model of allergic contact dermatitis. For the pharmacological inhibition of CCL22, DNA aptamers specific for murine CCL22 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). Nine CCL22-binding aptamers were initially selected and functionally tested in vitro. The 29-nt DNA aptamer AJ102.29m profoundly inhibited CCL22-dependent T cell migration and did not elicit undesired Toll-like receptor-dependent immune activation. AJ102.29m efficiently ameliorated CHS in vivo after systemic application. Moreover, CHS-associated allergic symptoms were also reduced following topical application of the aptamer on the skin. Microscopic analysis of skin treated with AJ102.29m ex vivo demonstrated that the aptamer could penetrate into the epidermis and dermis. The finding that epicutaneous application of the aptamer AJ102.29m in a cream was as effective in suppressing the allergic reaction as intraperitoneal injection paves the way for therapeutic use of aptamers beyond the current routes of systemic administration.
Collapse
Affiliation(s)
- Anna Jonczyk
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121 Bonn, Germany
| | - Marlene Gottschalk
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | | | - Yasmin Majlesain
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Manja W. Thiem
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lea-Corinna Burbaum
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Günter Mayer
- Centre of Aptamer Research and Development, University of Bonn, 53121 Bonn, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
4
|
Min KY, Kim DK, Jo MG, Choi MY, Lee D, Park JW, Park YJ, Chung Y, Kim YM, Park YM, Kim HS, Choi WS. IL-27-induced PD-L1 highSca-1 + innate lymphoid cells suppress contact hypersensitivity in an IL-10-dependent manner. Exp Mol Med 2024; 56:616-629. [PMID: 38424193 PMCID: PMC10984996 DOI: 10.1038/s12276-024-01187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024] Open
Abstract
Innate lymphoid cells (ILCs) play an important role in maintaining tissue homeostasis and various inflammatory responses. ILCs are typically classified into three subsets, as is the case for T-cells. Recent studies have reported that IL-10-producing type 2 ILCs (ILC210s) have an immunoregulatory function dependent on IL-10. However, the surface markers of ILC210s and the role of ILC210s in contact hypersensitivity (CHS) are largely unknown. Our study revealed that splenic ILC210s are extensively included in PD-L1highSca-1+ ILCs and that IL-27 amplifies the development of PD-L1highSca-1+ ILCs and ILC210s. Adoptive transfer of PD-L1highSca-1+ ILCs suppressed oxazolone-induced CHS in an IL-10-dependent manner Taken together, our results demonstrate that ILC210s are critical for the control of CHS and suggest that ILC210s can be used as target cells for the treatment of CHS.
Collapse
Affiliation(s)
- Keun Young Min
- Department of Immunology, School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Min Geun Jo
- Department of Immunology, School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Min Yeong Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Dajeong Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Jeong Won Park
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Young-Jun Park
- College of Pharmacy, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yeonseok Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Mi Kim
- Department of Preventive Pharmacy, College of Pharmacy, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea.
| | - Wahn Soo Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea.
| |
Collapse
|
5
|
Schwarz A, Philippsen R, Schwarz T. Mouse Models of Allergic Contact Dermatitis: Practical Aspects. J Invest Dermatol 2023; 143:888-892. [PMID: 37211376 DOI: 10.1016/j.jid.2023.03.1668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 05/23/2023]
Abstract
Allergic contact dermatitis is a frequently observed dermatosis, especially in industrialized countries. Regarded as a classical type IV immune reaction (delayed type), the process can be separated into two pathogenetic parts: the induction phase where sensitization takes place and the elicitation phase in which inflammation is induced upon re-exposure to the same antigen. A murine model was established decades ago, which reliably reproduces both phases. Epicutaneously applied low-molecular-weight sensitizers bind to proteins (haptens) and become full antigens, which results in sensitization. Subsequent administration of the same hapten onto ear skin causes a swelling response. This reaction is antigen specific because it cannot be induced in nonsensitized mice or in sensitized mice with a different hapten. This model was used to study the mechanisms involved in allergic contact dermatitis and also was intensively utilized to study immunologic mechanisms, including antigen presentation and development of T effector or regulatory T cells. The model's major merit is its antigen specificity. It is highly reproducible, reliable, and simple to perform. In this paper, the methods of this technique are described to help researchers successfully establish this widely used model in laboratories. Describing the complex pathomechanisms underlying the model is beyond the scope of this article.
Collapse
Affiliation(s)
- Agatha Schwarz
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | - Rebecca Philippsen
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | - Thomas Schwarz
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany.
| |
Collapse
|
6
|
Kurz B, Schreiver I, Siewert K, Haslböck B, Weiß KT, Hannemann J, Berner B, von Eichborn MI, Berneburg M, Bäumler W. Investigation of Adverse Reactions in Tattooed Skin through Histological and Chemical Analysis. Dermatology 2023; 239:782-793. [PMID: 37231944 PMCID: PMC10614264 DOI: 10.1159/000530949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Just as the number of tattooed people has increased in recent years, so has the number of adverse reactions in tattooed skin. Tattoo colourants contain numerous, partly unidentified substances, which have the potential to provoke adverse skin reactions like allergies or granulomatous reactions. Identification of the triggering substances is often difficult or even impossible. METHODS Ten patients with typical adverse reactions in tattooed skin were enrolled in the study. Skin punch biopsies were taken and the paraffin-embedded specimens were analysed by standard haematoxylin and eosin and anti-CD3 stainings. Tattoo colourants provided by patients and punch biopsies of patients were analysed with different chromatography and mass spectrometry methods and X-ray fluorescence. Blood samples of 2 patients were screened for angiotensin-converting enzyme (ACE) and soluble interleukin-2 receptor (sIL-2R). RESULTS Histology showed variable skin reactions such as eosinophilic infiltrate, granulomatous reactions, or pseudolymphoma. CD3+ T lymphocytes dominated the dermal cellular infiltrate. Most patients had adverse skin reactions in red tattoos (n = 7), followed by white tattoos (n = 2). The red tattooed skin areas predominantly contained Pigment Red (P.R.) 170, but also P.R. 266, Pigment Orange (P.O.) 13, P.O. 16, and Pigment Blue (P.B.) 15. The white colourant of 1 patient contained rutile titanium dioxide but also other metals like nickel and chromium and methyl dehydroabietate - known as the main ingredient of colophonium. None of the 2 patients showed increased levels of ACE and sIL-2R related to sarcoidosis. Seven of the study participants showed partial or complete remission after treatment with topical steroids, intralesional steroids, or topical tacrolimus. CONCLUSIONS The combination of the methods presented might be a rational approach to identify the substances that trigger adverse reactions in tattoos. Such an approach might help make tattoo colourants safer in the future if such trigger substances could be omitted.
Collapse
Affiliation(s)
- Bernadett Kurz
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Ines Schreiver
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Birgit Haslböck
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Katharina T. Weiß
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Julia Hannemann
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Bianca Berner
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | | | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Bäumler
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Riedel F, Aparicio-Soto M, Curato C, Münch L, Abbas A, Thierse HJ, Peitsch WK, Luch A, Siewert K. Unique and common TCR repertoire features of Ni 2+ -, Co 2+ -, and Pd 2+ -specific human CD154 + CD4+ T cells. Allergy 2023; 78:270-282. [PMID: 36005389 DOI: 10.1111/all.15494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Apart from Ni2+ , Co2+ , and Pd2+ ions commonly trigger T cell-mediated allergic contact dermatitis. However, in vitro frequencies of metal-specific T cells and the mechanisms of antigen recognition remain unclear. METHODS Here, we utilized a CD154 upregulation assay to quantify Ni2+ -, Co2+ -, and Pd2+ -specific CD4+ T cells in peripheral blood mononuclear cells (PBMC). Involved αβ T cell receptor (TCR) repertoires were analyzed by high-throughput sequencing. RESULTS Peripheral blood mononuclear cells incubation with NiSO4 , CoCl2 , and PdCl2 increased frequencies of CD154 + CD4+ memory T cells that peaked at ~400 μM. Activation was TCR-mediated as shown by the metal-specific restimulation of T cell clones. Most abundant were Pd2+ -specific T cells (mean 3.5%, n = 19), followed by Co2+ - and Ni2+ -specific cells (0.6%, n = 18 and 0.3%, n = 20) in both allergic and non-allergic individuals. A strong overrepresentation of the gene segment TRAV9-2 was unique for Ni2+ -specific TCR (28% of TCR) while Co2+ and Pd2+ -specific TCR favorably expressed TRAV2 (8%) and the TRBV4 gene segment family (21%), respectively. As a second, independent mechanism of metal ion recognition, all analyzed metal-specific TCR showed a common overrepresentation of a histidine in the complementarity determining region 3 (CDR3; 15% of α-chains, 34% of β-chains). The positions of the CDR3 histidine among metal-specific TCR mirrored those in random repertoires and were conserved among cross-reactive clonotypes. CONCLUSIONS Induced CD154 expression allows a fast and comprehensive detection of Ni2+ -, Co2+ -, and Pd2+ -specific CD4+ T cells. Distinct TCR repertoire features underlie the frequent activation and cross-reactivity of human metal-specific T cells.
Collapse
Affiliation(s)
- Franziska Riedel
- Dermatotoxicology Study Centre, German Federal Institute for Risk Assessment, Berlin, Germany.,Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marina Aparicio-Soto
- Dermatotoxicology Study Centre, German Federal Institute for Risk Assessment, Berlin, Germany.,Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Caterina Curato
- Dermatotoxicology Study Centre, German Federal Institute for Risk Assessment, Berlin, Germany.,Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Lucas Münch
- Dermatotoxicology Study Centre, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Amro Abbas
- Dermatotoxicology Study Centre, German Federal Institute for Risk Assessment, Berlin, Germany.,German Rheumatism Research Center (DRFZ), Berlin, Germany
| | - Hermann-Josef Thierse
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Wiebke K Peitsch
- Department of Dermatology and Phlebology, Vivantes Klinikum im Friedrichshain, Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Katherina Siewert
- Dermatotoxicology Study Centre, German Federal Institute for Risk Assessment, Berlin, Germany.,Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
8
|
Systematic Review of Systemic Corticosteroid Effects on Patch Testing. Dermatitis 2022; 33:405-410. [PMID: 36255380 DOI: 10.1097/der.0000000000000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Systemic corticosteroids are commonly used as a short-term management option for inflammatory skin conditions, such as contact dermatitis. The purpose of our systematic review was to compare presence and degree of patch test reactions with or without different doses of systemic corticosteroid therapy. The relationship between 20, 30, and 40 mg daily doses of prednisone and retained, diminished, and negated reactions was not linear, whereas the reaction ratings for all patches placed with or without corticosteroid therapy revealed trends toward lower intensity reactions while receiving prednisone (P < 0.0001, χ2, for all doses of prednisone). Our review provides insight into directions for future studies that examine the effect of corticosteroids on patch testing.
Collapse
|
9
|
Luo Y, Zhu Z, Li B, Bai X, Fang H, Qiao P, Chen J, Zhang C, Zhi D, Dang E, Wang G. Keratin 17 Promotes T Cell Response in Allergic Contact Dermatitis by Upregulating C-C Motif Chemokine Ligand 20. Front Immunol 2022; 13:764793. [PMID: 35178048 PMCID: PMC8845002 DOI: 10.3389/fimmu.2022.764793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity response to skin contact allergens in which keratinocytes are critical in the initiation of early responses. Keratin 17 (K17) is a cytoskeletal protein inducible under stressful conditions and regulates multiple cellular processes, especially in skin inflammatory diseases; however, knowledge regarding its contribution to ACD pathogenesis remains ill defined. In the present study, we clarified the proinflammatory role of K17 in an oxazolone (OXA)-induced contact hypersensitivity (CHS) murine model and identified the underlying molecular mechanisms. Our results showed that K17 was highly expressed in the lesional skin of ACD patients and OXA-induced CHS mice. Mice lacking K17 exhibited alleviated OXA-induced skin inflammation, including milder ear swelling, a reduced frequency of T cell infiltration, and decreased inflammatory cytokine levels. In vitro, K17 stimulated and activated human keratinocytes to produce plenty of proinflammatory mediators, especially the chemokine CCL20, and promoted keratinocyte-mediated T cell trafficking. The neutralization of CCL20 with a CCL20-neutralizing monoclonal antibody significantly alleviated OXA-induced skin inflammation in vivo. Moreover, K17 could translocate into the nucleus of activated keratinocytes through a process dependent on the nuclear-localization signal (NLS) and nuclear-export signal (NES) sequences, thus facilitating the activation and nuclear translocation of signal transducer and activator of transcription 3 (STAT3), further promoting the production of CCL20 and T cell trafficking to the lesional skin. Taken together, these results highlight the novel roles of K17 in driving allergen-induced skin inflammation and suggest targeting K17 as a potential strategy for ACD.
Collapse
Affiliation(s)
- Yixin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaocui Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dalong Zhi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Riedel F, Aparicio-Soto M, Curato C, Thierse HJ, Siewert K, Luch A. Immunological Mechanisms of Metal Allergies and the Nickel-Specific TCR-pMHC Interface. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10867. [PMID: 34682608 PMCID: PMC8535423 DOI: 10.3390/ijerph182010867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Besides having physiological functions and general toxic effects, many metal ions can cause allergic reactions in humans. We here review the immune events involved in the mediation of metal allergies. We focus on nickel (Ni), cobalt (Co) and palladium (Pd), because these allergens are among the most prevalent sensitizers (Ni, Co) and immediate neighbors in the periodic table of the chemical elements. Co-sensitization between Ni and the other two metals is frequent while the knowledge on a possible immunological cross-reactivity using in vivo and in vitro approaches remains limited. At the center of an allergic reaction lies the capability of a metal allergen to form T cell epitopes that are recognized by specific T cell receptors (TCR). Technological advances such as activation-induced marker assays and TCR high-throughput sequencing recently provided new insights into the interaction of Ni2+ with the αβ TCR-peptide-major histocompatibility complex (pMHC) interface. Ni2+ functionally binds to the TCR gene segment TRAV9-2 or a histidine in the complementarity determining region 3 (CDR3), the main antigen binding region. Thus, we overview known, newly identified and hypothesized mechanisms of metal-specific T cell activation and discuss current knowledge on cross-reactivity.
Collapse
Affiliation(s)
- Franziska Riedel
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2, 14195 Berlin, Germany
| | - Marina Aparicio-Soto
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Caterina Curato
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Hermann-Josef Thierse
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Katherina Siewert
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Andreas Luch
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2, 14195 Berlin, Germany
| |
Collapse
|
11
|
Bailey A, Nicholas B, Darley R, Parkinson E, Teo Y, Aleksic M, Maxwell G, Elliott T, Ardern-Jones M, Skipp P. Characterization of the Class I MHC Peptidome Resulting From DNCB Exposure of HaCaT Cells. Toxicol Sci 2021; 180:136-147. [PMID: 33372950 PMCID: PMC7916740 DOI: 10.1093/toxsci/kfaa184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Skin sensitization following the covalent modification of proteins by low molecular weight chemicals (haptenation) is mediated by cytotoxic T lymphocyte (CTL) recognition of human leukocyte antigen (HLA) molecules presented on the surface of almost all nucleated cells. There exist 3 nonmutually exclusive hypotheses for how haptens mediate CTL recognition: direct stimulation by haptenated peptides, hapten modification of HLA leading to an altered HLA-peptide repertoire, or a hapten altered proteome leading to an altered HLA-peptide repertoire. To shed light on the mechanism underpinning skin sensitization, we set out to utilize proteomic analysis of keratinocyte presented antigens following exposure to 2,4-dinitrochlorobenzene (DNCB). We show that the following DNCB exposure, cultured keratinocytes present cysteine haptenated (dinitrophenylated) peptides in multiple HLA molecules. In addition, we find that one of the DNCB modified peptides derives from the active site of cytosolic glutathione-S transferase-ω. These results support the current view that a key mechanism of skin sensitization is stimulation of CTLs by haptenated peptides. Data are available via ProteomeXchange with identifier PXD021373.
Collapse
Affiliation(s)
- Alistair Bailey
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Ben Nicholas
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Rachel Darley
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Erika Parkinson
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Ying Teo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Maja Aleksic
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Gavin Maxwell
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Tim Elliott
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Michael Ardern-Jones
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Paul Skipp
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
12
|
Lefevre MA, Vocanson M, Nosbaum A. Role of tissue-resident memory T cells in the pathophysiology of allergic contact dermatitis. Curr Opin Allergy Clin Immunol 2021; 21:355-360. [PMID: 34155157 DOI: 10.1097/aci.0000000000000763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW We bring updated knowledge on tissue-resident memory T cells (TRM), underlining their major role in the recurrence and the severity of allergic contact dermatitis (ACD). RECENT FINDINGS ACD is a frequently encountered skin disease. It is defined as a delayed-type hypersensitivity reaction initiated by the recruitment of antigen-specific T cells into the skin of sensitized patients. ACD lesions tend to develop on already-exposed areas and worsen over time. That clinical observation has raised questions on the contribution of TRM to ACD recurrence and severity. TRM are memory T cells that persist in peripheral tissues, such as the skin, without recirculating through the blood. These cells provide effective immune memory against pathogens, but they may also participate in the development or exacerbation of numerous inflammatory diseases, including skin allergies. Recent works have demonstrated a major role for TRM in ACD pathophysiology. SUMMARY In ACD, TRM accumulate preferentially at the allergen contact site during the sensitization phase. Thereafter, these cells cause a rapid and intense response to any new allergen exposure. They also play a key role in flare-ups of ACD and the chronicity and severity of the disease. These aspects suggest that TRM may have an interest as therapeutic targets.
Collapse
Affiliation(s)
- Marine-Alexia Lefevre
- CIRI, Centre International de Recherche en Infectiologie (Team Epidermal Immunity and Allergy), INSERM, U1111, Univ Lyon, Université de Lyon 1, Ecole Normale Supérieure de Lyon, CNRS, UMR 5308, Lyon
| | - Marc Vocanson
- CIRI, Centre International de Recherche en Infectiologie (Team Epidermal Immunity and Allergy), INSERM, U1111, Univ Lyon, Université de Lyon 1, Ecole Normale Supérieure de Lyon, CNRS, UMR 5308, Lyon
| | - Audrey Nosbaum
- CIRI, Centre International de Recherche en Infectiologie (Team Epidermal Immunity and Allergy), INSERM, U1111, Univ Lyon, Université de Lyon 1, Ecole Normale Supérieure de Lyon, CNRS, UMR 5308, Lyon
- Université de Lyon, Centre Hospitalier Lyon-Sud, Service d'Allergologie et d'Immunologie Clinique, Pierre-Benite, France
| |
Collapse
|
13
|
Weiß KT, Schreiver I, Siewert K, Luch A, Haslböck B, Berneburg M, Bäumler W. Tattoos – mehr als nur kolorierte Haut? Auf der Suche nach Tattoo‐Allergenen. J Dtsch Dermatol Ges 2021; 19:657-671. [PMID: 33979044 DOI: 10.1111/ddg.14436_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Katharina T Weiß
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg
| | - Ines Schreiver
- Abteilung Chemikalien- und Produktsicherheit, Bundesinstitut für Risikobewertung (BfR), Berlin
| | - Katherina Siewert
- Abteilung Chemikalien- und Produktsicherheit, Bundesinstitut für Risikobewertung (BfR), Berlin
| | - Andreas Luch
- Abteilung Chemikalien- und Produktsicherheit, Bundesinstitut für Risikobewertung (BfR), Berlin
| | - Birgit Haslböck
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg
| | - Mark Berneburg
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg
| | - Wolfgang Bäumler
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg
| |
Collapse
|
14
|
Weiß KT, Schreiver I, Siewert K, Luch A, Haslböck B, Berneburg M, Bäumler W. Tattoos - more than just colored skin? Searching for tattoo allergens. J Dtsch Dermatol Ges 2021; 19:657-669. [PMID: 33955682 DOI: 10.1111/ddg.14436] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
During tattooing, a high amount of ink is injected into the skin. Tattoo inks contain numerous substances such as the coloring pigments, impurities, solvents, emulsifiers, and preservatives. Black amorphous carbon particles (carbon black), white titanium dioxide, azo or polycyclic pigments create all varieties of color shades in the visible spectrum. Some ingredients of tattoo inks might be hazardous and allergenic chemicals of unknown potential. In Germany, about 20 % of the general population is tattooed and related adverse reactions are increasingly reported. Since tattoo needles inevitably harm the skin, microorganisms can enter the wound and may cause infections. Non-allergic inflammatory reactions (for example cutaneous granuloma and pseudolymphoma) as well as allergic reactions may emerge during or after wound healing. Especially with allergies occurring after weeks, months or years, it remains difficult to identify the specific ingredient(s) that trigger the reaction. This review summarizes possible adverse effects related to tattooing with a focus on the development of tattoo-mediated allergies. To date, relevant allergens were only identified in rare cases. Here we present established methods and discuss current experimental approaches to identify culprit allergens in tattoo inks - via testing of the patient and in vitro approaches.
Collapse
Affiliation(s)
- Katharina T Weiß
- Department of Dermatology and Allergology, University of Regensburg, Regensburg, Germany
| | - Ines Schreiver
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Birgit Haslböck
- Department of Dermatology and Allergology, University of Regensburg, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology and Allergology, University of Regensburg, Regensburg, Germany
| | - Wolfgang Bäumler
- Department of Dermatology and Allergology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Azeem M, Kader H, Kerstan A, Hetta HF, Serfling E, Goebeler M, Muhammad K. Intricate Relationship Between Adaptive and Innate Immune System in Allergic Contact Dermatitis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:699-709. [PMID: 33380932 PMCID: PMC7757059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Allergic contact dermatitis (ACD) is a complex immunological allergic disease characterized by the interplay between the innate and adaptive immune system. Initially, the role of the innate immune system was believed to be confined to the initial sensitization phase, while adaptive immune reactions were linked with the advanced elicitation phase. However, recent data predicted a comparatively mixed and interdependent role of both immune systems throughout the disease progression. Therefore, the actual mechanisms of disease progression are more complex and interlinked. The aim of this review is to combine such findings that enhanced our understanding of the pathomechanisms of ACD. Here, we focused on the main cell types from both immune domains, which are involved in ACD, such as CD4+ and CD8+ T cells, B cells, neutrophils, and innate lymphoid cells (ILCs). Such insights can be useful for devising future therapeutic interventions for ACD.
Collapse
Affiliation(s)
- Muhammad Azeem
- Department of Molecular Pathology, Institute of
Pathology, University of Würzburg, Würzburg, Germany
| | - Hidaya Kader
- Department of Biology, College of Science, United Arab
Emirates University, Al Ain, United Arab Emirates
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology,
University Hospital Würzburg, Würzburg, Germany
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology,
Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Internal Medicine, University of
Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of
Pathology, University of Würzburg, Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology,
University Hospital Würzburg, Würzburg, Germany
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab
Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Castillo-González R, Cibrian D, Fernández-Gallego N, Ramírez-Huesca M, Saiz ML, Navarro MN, Fresno M, de la Fuente H, Sánchez-Madrid F. Galectin-1 Expression in CD8 + T Lymphocytes Controls Inflammation in Contact Hypersensitivity. J Invest Dermatol 2020; 141:1522-1532.e3. [PMID: 33181141 DOI: 10.1016/j.jid.2020.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Allergic contact dermatitis, also known as contact hypersensitivity, is a frequent T-cell‒mediated inflammatory skin disease characterized by red, itchy, swollen, and cracked skin. It is caused by the direct contact with an allergen and/or irritant hapten. Galectin-1 (Gal-1) is a β-galactoside‒binding lectin, which is highly expressed in several types of immune cells. The role of endogenous Gal-1 in contact hypersensitivity is not known. We found that Gal-1‒deficient mice display more sustained and prolonged skin inflammation than wild-type mice after oxazolone treatment. Gal-1‒deficient mice have increased CD8+ T cells and neutrophilic infiltration in the skin. After the sensitization phase, Gal-1‒depleted mice showed an increased frequency of central memory CD8+ T cells and IFN-γ secretion by CD8+ T cells. The absence of Gal-1 does not affect the migration of transferred CD4+ and CD8+ T cells from the blood to the lymph nodes or to the skin. The depletion of CD4+ T lymphocytes as well as adoptive transfer experiments demonstrated that endogenous expression of Gal-1 on CD8+ T lymphocytes exerts a major role in the control of contact hypersensitivity model. These data underscore the protective role of endogenous Gal-1 in CD8+ but not CD4+ T cells in the development of allergic contact dermatitis.
Collapse
Affiliation(s)
- Raquel Castillo-González
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Intercellular Communication in the Inflammatory Response, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Danay Cibrian
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Intercellular Communication in the Inflammatory Response, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Nieves Fernández-Gallego
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Intercellular Communication in the Inflammatory Response, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Marta Ramírez-Huesca
- Department of Intercellular Communication in the Inflammatory Response, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - María Laura Saiz
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María N Navarro
- Department of Immune System Development and Function, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Manuel Fresno
- Department of Immune System Development and Function, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Hortensia de la Fuente
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Intercellular Communication in the Inflammatory Response, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Intercellular Communication in the Inflammatory Response, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
17
|
Palmer BC, DeLouise LA. Morphology-dependent titanium dioxide nanoparticle-induced keratinocyte toxicity and exacerbation of allergic contact dermatitis. ACTA ACUST UNITED AC 2020; 4. [PMID: 33163967 DOI: 10.24966/tcr-3735/100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles are commonly found in consumer products, such as sunscreens, and human dermal exposures are relatively high. Research suggests potential differences in the toxicity of anatase and rutile crystalline forms of TiO2. Additionally, transition metal dopants are frequently used to enhance physicochemical properties of TiO2, and the toxicity of these nanoparticles are not extensively studied. Therefore, this work examined the keratinocyte toxicity and in vivo skin allergy responses after treatment with 30 nm anatase, 30 nm rutile, or <100 nm Mn-doped TiO2 nanoparticles. After a 24-hour exposure, there were no differences in keratinocyte cytotoxicity; however, Mn-doped TiO2 nanoparticles induced significant in vitro ROS generation and in vivo skin swelling responses in a model of allergic contact dermatitis.
Collapse
Affiliation(s)
- Brian C Palmer
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Lisa A DeLouise
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA.,Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
18
|
Aparicio‐Soto M, Riedel F, Leddermann M, Bacher P, Scheffold A, Kuhl H, Timmermann B, Chudakov DM, Molin S, Worm M, Heine G, Thierse H, Luch A, Siewert K. TCRs with segment TRAV9-2 or a CDR3 histidine are overrepresented among nickel-specific CD4+ T cells. Allergy 2020; 75:2574-2586. [PMID: 32298488 DOI: 10.1111/all.14322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nickel is the most frequent cause of T cell-mediated allergic contact dermatitis worldwide. In vitro, CD4+ T cells from all donors respond to nickel but the involved αβ T cell receptor (TCR) repertoire has not been comprehensively analyzed. METHODS We introduce CD154 (CD40L) upregulation as a fast, unbiased, and quantitative method to detect nickel-specific CD4+ T cells ex vivo in blood of clinically characterized allergic and non allergic donors. Naïve (CCR7+ CD45RA+) and memory (not naïve) CD154+ CD4+ T cells were analyzed by flow cytometry after 5 hours of stimulation with 200 µmol/L NiSO4 ., TCR α- and β-chains of sorted nickel-specific and control cells were studied by high-throughput sequencing. RESULTS Stimulation of PBMCs with NiSO4 induced CD154 expression on ~0.1% (mean) of naïve and memory CD4+ T cells. In allergic donors with recent positive patch test, memory frequencies further increased ~13-fold and were associated with markers of in vivo activation. CD154 expression was TCR-mediated since single clones could be specifically restimulated. Among nickel-specific CD4+ T cells of allergic and non allergic donors, TCRs expressing the α-chain segment TRAV9-2 or a histidine in their α- or β-chain complementarity determining region 3 (CDR3) were highly overrepresented. CONCLUSIONS Induced CD154 expression represents a reliable method to study nickel-specific CD4+ T cells. TCRs with particular features respond in all donors, while strongly increased blood frequencies indicate nickel allergy for some donors. Our approach may be extended to other contact allergens for the further development of diagnostic and predictive in vitro tests.
Collapse
Affiliation(s)
- Marina Aparicio‐Soto
- Department of Chemical and Product Safety German Federal Institute for Risk Assessment Berlin Germany
| | - Franziska Riedel
- Department of Chemical and Product Safety German Federal Institute for Risk Assessment Berlin Germany
| | - Melanie Leddermann
- Department of Chemical and Product Safety German Federal Institute for Risk Assessment Berlin Germany
| | - Petra Bacher
- Institute of Immunology Christian‐Albrechts Universität zu Kiel and Universitätsklinik Schleswig‐Holstein Kiel Germany
- Institute of Clinical Molecular Biology Christian‐Albrechts Universität zu Kiel Kiel Germany
| | - Alexander Scheffold
- Institute of Immunology Christian‐Albrechts Universität zu Kiel and Universitätsklinik Schleswig‐Holstein Kiel Germany
| | - Heiner Kuhl
- Sequencing Core Facility Max‐Planck‐Institute of Molecular Genetics Berlin Germany
| | - Bernd Timmermann
- Sequencing Core Facility Max‐Planck‐Institute of Molecular Genetics Berlin Germany
| | - Dmitriy M. Chudakov
- Genomics of Adaptive Immunity Department Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Science Moscow Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine Pirogov Russian National Research Medical University Moscow Russia
- Center of Molecular Medicine CEITEC Masaryk University Brno Czech Republic
| | - Sonja Molin
- Division of Dermatology Queen's University Kingston ON Canada
- Department of Dermatology and Allergy Ludwig Maximilian University Munich Germany
| | - Margitta Worm
- Division of Allergy and Immunology Department of Dermatology, Venerology, and Allergy Charité – Universitätsmedizin Berlin Berlin Germany
| | - Guido Heine
- Division of Allergy and Immunology Department of Dermatology, Venerology, and Allergy Charité – Universitätsmedizin Berlin Berlin Germany
- Department of Dermatology and Allergy University Hospital Schleswig‐Holstein Kiel Germany
| | - Hermann‐Josef Thierse
- Department of Chemical and Product Safety German Federal Institute for Risk Assessment Berlin Germany
| | - Andreas Luch
- Department of Chemical and Product Safety German Federal Institute for Risk Assessment Berlin Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety German Federal Institute for Risk Assessment Berlin Germany
| |
Collapse
|
19
|
Li H, Burgueño-Bucio E, Xu S, Das S, Olguin-Alor R, Elmets CA, Athar M, Raman C, Soldevila G, Xu H. CD5 on dendritic cells regulates CD4+ and CD8+ T cell activation and induction of immune responses. PLoS One 2019; 14:e0222301. [PMID: 31491023 PMCID: PMC6730919 DOI: 10.1371/journal.pone.0222301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
The role of CD5 as a regulator of T cell signaling and tolerance is well recognized. Recent data show expression of CD5 on different subtypes of human dendritic cells, however its functional relevance in modulating DC mediated responses remains poorly understood. In this study, we show CD5 is expressed on CD11c+ DC from murine thymus, lymph node, spleen, skin and lung. Although the development of DC subpopulations in CD5-/- mice was normal, CD5-deficient DC produced significantly higher levels of IL-12 than wild type DC in response to LPS. CD5-/- DC, in comparison to CD5+/+ DC, enhanced the activation of CD4+ and CD8+ T cells in vitro and in vivo and induced significantly higher production of IL-2 and IFN-gamma by T cells. Consequently, CD5-/- DC were significantly more potent than wild type DC in the induction of anti-tumor immunity and contact hypersensitivity responses in mice. Restoration of CD5 expression in CD5-/- DC reduced IL-12 production and inhibited their capacity to stimulate T cells. Collectively, these data demonstrate that the specific expression of CD5 on DC inhibits the production of inflammatory cytokines and has a regulatory effect on their activity to stimulate T cells and induce immune responses. This study reveals a previously unrecognized regulatory role for CD5 on DC and provides novel insights into mechanisms for DC biology in immune responses.
Collapse
Affiliation(s)
- Hui Li
- Department of Dermatology, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| | - Erica Burgueño-Bucio
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Shin Xu
- Department of Dermatology, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| | - Shaonli Das
- Department of Dermatology, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| | - Roxana Olguin-Alor
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| | - Chander Raman
- Department of Medicine, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| | - Gloria Soldevila
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hui Xu
- Department of Dermatology, University of Alabama at Birmingham. Birmingham, Alabama, United States of America
| |
Collapse
|
20
|
Bechara R, Pollastro S, Azoury ME, Szely N, Maillère B, de Vries N, Pallardy M. Identification and Characterization of Circulating Naïve CD4+ and CD8+ T Cells Recognizing Nickel. Front Immunol 2019; 10:1331. [PMID: 31249573 PMCID: PMC6582854 DOI: 10.3389/fimmu.2019.01331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
Allergic contact dermatitis caused by contact sensitizers is a T-cell-mediated inflammatory skin disease. The most prevalent contact allergens is nickel. Whereas, memory T cells from nickel-allergic patients are well-characterized, little is known concerning nickel-specific naïve T-cell repertoire. The purpose of this study was to identify and quantify naïve CD4+ and CD8+ T cells recognizing nickel in the general population. Using a T-cell priming in vitro assay based on autologous co-cultures between naïve T cells and dendritic cells loaded with nickel, we were able to detect a naïve CD4+ and CD8+ T-cell repertoire for nickel in 10/11 and 7/8 of the tested donors. We calculated a mean frequency of 0.49 nickel-specific naïve CD4+ T cells and 0.37 nickel-specific naïve CD8+ T cells per million of circulating naïve T cells. The activation of these specific T cells requires MHC molecules and alongside IFN-γ production, some nickel-specific T-cells were able to produce granzyme-B. Interestingly, nickel-specific naïve CD4+ and CD8+ T cells showed a low rate of cross-reactivity with cobalt, another metallic hapten, frequently mixed with nickel in many alloys. Moreover, naïve CD4+ T cells showed a polyclonal TCRβ composition and the presence of highly expanded clones with an enrichment and/or preferentially expansion of some TRBV genes that was donor and T-cell specific. Our results contribute to a better understanding of the mechanism of immunization to nickel and propose the T-cell priming assay as a useful tool to identify antigen-specific naïve T cells.
Collapse
Affiliation(s)
- Rami Bechara
- Inflammation Chimiokines et Immunopathologie, INSERM, Fac. de Pharmacie-Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sabrina Pollastro
- ARC Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Marie Eliane Azoury
- Inflammation Chimiokines et Immunopathologie, INSERM, Fac. de Pharmacie-Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Natacha Szely
- Inflammation Chimiokines et Immunopathologie, INSERM, Fac. de Pharmacie-Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Bernard Maillère
- CEA, Institut de Biologie et de Technologies, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Niek de Vries
- ARC Department of Clinical Immunology and Rheumatology and Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Marc Pallardy
- Inflammation Chimiokines et Immunopathologie, INSERM, Fac. de Pharmacie-Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
21
|
Manresa MC, Smith L, Casals‐Diaz L, Fagundes RR, Brown E, Radhakrishnan P, Murphy SJ, Crifo B, Strowitzki MJ, Halligan DN, van den Bogaard EH, Niehues H, Schneider M, Taylor CT, Steinhoff M. Pharmacologic inhibition of hypoxia-inducible factor (HIF)-hydroxylases ameliorates allergic contact dermatitis. Allergy 2019; 74:753-766. [PMID: 30394557 DOI: 10.1111/all.13655] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND When an immune cell migrates from the bloodstream to a site of chronic inflammation, it experiences a profound decrease in microenvironmental oxygen levels leading to a state of cellular hypoxia. The hypoxia-inducible factor-1α (HIF-1α) promotes an adaptive transcriptional response to hypoxia and as such is a major regulator of immune cell survival and function. HIF hydroxylases are the family of oxygen-sensing enzymes primarily responsible for conferring oxygen dependence upon the HIF pathway. METHODS Using a mouse model of allergic contact dermatitis (ACD), we tested the effects of treatment with the pharmacologic hydroxylase inhibitor DMOG, which mimics hypoxia, on disease development. RESULTS Re-exposure of sensitized mice to 2,4-dinitrofluorobenzene (DNFB) elicited inflammation, edema, chemokine synthesis (including CXCL1 and CCL5) and the recruitment of neutrophils and eosinophils. Intraperitoneal or topical application of the pharmacologic hydroxylase inhibitors dymethyloxalylglycine (DMOG) or JNJ1935 attenuated this inflammatory response. Reduced inflammation was associated with diminished recruitment of neutrophils and eosinophils but not lymphocytes. Finally, hydroxylase inhibition reduced cytokine-induced chemokine production in cultured primary keratinocytes through attenuation of the JNK pathway. CONCLUSION These data demonstrate that hydroxylase inhibition attenuates the recruitment of neutrophils to inflamed skin through reduction of chemokine production and increased neutrophilic apoptosis. Thus, pharmacologic inhibition of HIF hydroxylases may be an effective new therapeutic approach in allergic skin inflammation.
Collapse
Affiliation(s)
- Mario C. Manresa
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| | - Leila Smith
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Laura Casals‐Diaz
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Raphael R. Fagundes
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Eric Brown
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery University of Heidelberg Heidelberg Germany
| | - Stephen J. Murphy
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Bianca Crifo
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Moritz J. Strowitzki
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Doug N. Halligan
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Ellen H. van den Bogaard
- Department of Dermatology Radboud University Medical Center Radboud Institute for Molecular Life Sciences Nijmegen The Netherlands
| | - Hanna Niehues
- Department of Dermatology Radboud University Medical Center Radboud Institute for Molecular Life Sciences Nijmegen The Netherlands
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery University of Heidelberg Heidelberg Germany
| | - Cormac T. Taylor
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Systems Biology Ireland School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Martin Steinhoff
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Department of Dermatology & Venereology Translational Research Institute Hamad Medical Corporation Weill Cornell University‐Qatar and Qatar University Doha Qatar
| |
Collapse
|
22
|
Palmer BC, Jatana S, Phelan-Dickinson SJ, DeLouise LA. Amorphous silicon dioxide nanoparticles modulate immune responses in a model of allergic contact dermatitis. Sci Rep 2019; 9:5085. [PMID: 30911099 PMCID: PMC6434075 DOI: 10.1038/s41598-019-41493-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/26/2019] [Indexed: 01/11/2023] Open
Abstract
Amorphous silicon dioxide nanoparticles (SiNPs) are ubiquitous, and they are currently found in cosmetics, drugs, and foods. Biomedical research is also focused on using these nanoparticles as drug delivery and bio-sensing platforms. Due to the high potential for skin exposure to SiNPs, research into the effect of topical exposure on both healthy and inflammatory skin models is warranted. While we observe only minimal effects of SiNPs on healthy mouse skin, there is an immunomodulatory effect of these NPs in a model of allergic contact dermatitis. The effect appears to be mediated partly by keratinocytes and results in decreases in epidermal hyperplasia, inflammatory cytokine release, immune cell infiltration, and a subsequent reduction in skin swelling. Additional research is required to further our mechanistic understanding and to validate the extent of this immunomodulatory effect in human subjects in order to assess the potential prophylactic use of SiNPs for treating allergic skin conditions.
Collapse
Affiliation(s)
- Brian C. Palmer
- 0000 0004 1936 9166grid.412750.5Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Samreen Jatana
- 0000 0004 1936 9174grid.16416.34Department of Biomedical Engineering, University of Rochester, Rochester, New York USA
| | - Sarah J. Phelan-Dickinson
- 0000 0004 1936 9166grid.412750.5Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Lisa A. DeLouise
- 0000 0004 1936 9166grid.412750.5Department of Environmental Medicine, University of Rochester Medical Center, New York, USA ,0000 0004 1936 9174grid.16416.34Department of Biomedical Engineering, University of Rochester, Rochester, New York USA ,0000 0004 1936 9166grid.412750.5Department of Dermatology, University of Rochester Medical Center, Rochester, New York USA
| |
Collapse
|
23
|
Denisow-Pietrzyk M, Pietrzyk Ł, Denisow B. Asteraceae species as potential environmental factors of allergy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6290-6300. [PMID: 30666578 PMCID: PMC6428906 DOI: 10.1007/s11356-019-04146-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/02/2019] [Indexed: 05/09/2023]
Abstract
The statistics from Europe and the USA have proven a high risk for skin diseases associated with plant contact. Therefore, plant-induced dermatitis is of increasing attention in dermatology. The focus of this paper was to present the current knowledge on aspects of contact allergy related to Asteraceae (Compositae) species. The Asteraceae family is one of the largest in the world with members across all continents. The PubMed/Medline databases have been searched. The Asteraceae representatives consist of diverse secondary metabolites, which exhibit various advantageous effects in humans. In particular, sesquiterpene lactones (SLs) may cause sensitization resulting in skin irritation and inflammation. In this study, we tried to reveal the allergenic potential of several Asteraceae species. The Asteraceae-related allergy symptoms involve eczema, hay fever, asthma, or even anaphylaxis. Furthermore, the evidence of severe cross-reactivity with food and pollen allergens (PFS) in patients sensitive to Asteraceae allergens have been announced. Further identification and characterization of secondary metabolites and possible allergens in Asteraceae are necessary for the better understanding of Asteraceae-related immune response. The Asteraceae allergy screening panel (the SL mix and the Compositae mix of five plant species) is a promising tool to improve allergy diagnostics and therapy.
Collapse
Affiliation(s)
- Marta Denisow-Pietrzyk
- Department of Dermatology, 1st Military Clinical Hospital with the Outpatient Clinic in Lublin, Lublin, Poland
- Department of Didactics and Medical Simulation, Chair of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-094, Lublin, Poland
| | - Łukasz Pietrzyk
- Department of Didactics and Medical Simulation, Chair of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-094, Lublin, Poland.
- Department of General, Oncological and Minimally Invasive Surgery, 1st Military Clinical Hospital with the Outpatient Clinic in Lublin, Lublin, Poland.
| | - Bożena Denisow
- Department of Botany, Subdepartment of Plants Biology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland.
| |
Collapse
|
24
|
Ocana JA, Romer E, Sahu R, Pawelzik SC, FitzGerald GA, Kaplan MH, Travers JB. Platelet-Activating Factor-Induced Reduction in Contact Hypersensitivity Responses Is Mediated by Mast Cells via Cyclooxygenase-2-Dependent Mechanisms. THE JOURNAL OF IMMUNOLOGY 2018; 200:4004-4011. [PMID: 29695417 DOI: 10.4049/jimmunol.1701145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Platelet-activating factor (PAF) stimulates numerous cell types via activation of the G protein-coupled PAF receptor (PAFR). PAFR activation not only induces acute proinflammatory responses, but it also induces delayed systemic immunosuppressive effects by modulating host immunity. Although enzymatic synthesis and degradation of PAF are tightly regulated, oxidative stressors, such as UVB, chemotherapy, and cigarette smoke, can generate PAF and PAF-like molecules in an unregulated fashion via the oxidation of membrane phospholipids. Recent studies have demonstrated the relevance of the mast cell (MC) PAFR in PAFR-induced systemic immunosuppression. The current study was designed to determine the exact mechanisms and mediators involved in MC PAFR-mediated systemic immunosuppression. By using a contact hypersensitivity model, the MC PAFR was not only found to be necessary, but also sufficient to mediate the immunosuppressive effects of systemic PAF. Furthermore, activation of the MC PAFR induces MC-derived histamine and PGE2 release. Importantly, PAFR-mediated systemic immunosuppression was defective in mice that lacked MCs, or in MC-deficient mice transplanted with histidine decarboxylase- or cyclooxygenase-2-deficient MCs. Lastly, it was found that PGs could modulate MC migration to draining lymph nodes. These results support the hypothesis that MC PAFR activation promotes the immunosuppressive effects of PAF in part through histamine- and PGE2-dependent mechanisms.
Collapse
Affiliation(s)
- Jesus A Ocana
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Eric Romer
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Ravi Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Sven-Christian Pawelzik
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Mark H Kaplan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435; .,Department of Dermatology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435; and.,Dayton Veterans Affairs Medical Center, Dayton, OH 45428
| |
Collapse
|
25
|
Histomorphology and Immunophenotype of Eczematous Skin Lesions Revisited—Skin Biopsies Are Not Reliable in Differentiating Allergic Contact Dermatitis, Irritant Contact Dermatitis, and Atopic Dermatitis. Am J Dermatopathol 2018; 40:7-16. [DOI: 10.1097/dad.0000000000000842] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Zhang X, Han Y, Song L, Huo L, Lai X, Zhang Y, Zhang J, Hua Z. A protective role for FADD dominant negative (FADD-DN) mutant in trinitrochlorobenzene (TNCB)-induced murine contact hypersensitivity reactions. Clin Exp Dermatol 2017; 43:380-388. [PMID: 29277981 DOI: 10.1111/ced.13303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Fas-associated protein with death domain (FADD) is a classic adaptor protein in apoptosis. Increasing evidence has shown that FADD is also implicated in T-cell development, activation and proliferation. The role of FADD in inflammatory disorders remains largely unexplored. AIM To assess the role of FADD in inflammatory disorders. METHODS We established an experimental model of contact hypersensitivity (CHS) by using 2,4,6-trinitrochlorobenzene (TNCB) on transgenic mice expressing a dominant negative mutant of FADD (FADD-DN), RESULTS: CHS responses were clearly attenuated in FADD-DN mice compared with control mice. In the retroauricular lymph nodes, the ratio of CD8+ T cells was also decreased. CONCLUSION FADD-DN appears to play a protective role in TNCB-induced CHS reactions.
Collapse
Affiliation(s)
- X Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Changzhou High-Tech Research Institute of Nanjing Universityand Jiangsu TargetPharma Laboratories Inc., Changzhou, China
| | - Y Han
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - L Song
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - L Huo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - X Lai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Y Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - J Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Z Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Changzhou High-Tech Research Institute of Nanjing Universityand Jiangsu TargetPharma Laboratories Inc., Changzhou, China.,Shenzhen Research Institute of Nanjing University, Shenzhen, China
| |
Collapse
|
27
|
Höper T, Mussotter F, Haase A, Luch A, Tralau T. Application of proteomics in the elucidation of chemical-mediated allergic contact dermatitis. Toxicol Res (Camb) 2017; 6:595-610. [PMID: 30090528 PMCID: PMC6062186 DOI: 10.1039/c7tx00058h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022] Open
Abstract
Allergic contact dermatitis (ACD) is a widespread hypersensitivity reaction of the skin. The cellular mechanisms underlying its development are complex and involve close interaction of different cell types of the immune system. It is this very complexity which has long prevented straightforward replacement of the corresponding regulatory in vivo tests. Recent efforts have already resulted in the development of several in vitro testing alternatives that address key steps of ACD. Yet identification of suitable biomarkers is still a subject of intense research. Search strategies for the latter encompass transcriptomics, proteomics as well as metabolomics approaches. The scope of this review shall be the application and use of proteomics in the context of ACD. This includes highlighting relevant aspects of the molecular and cellular mechanisms underlying ACD, the exploitation of these mechanisms for testing and biomarkers (e.g., in the context of the OECD's adverse outcome pathway initiative) as well as an outlook on emerging proteome targets, for example during the allergen-induced activation of dendritic cells (DCs).
Collapse
Affiliation(s)
- Tessa Höper
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Franz Mussotter
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Andrea Haase
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Andreas Luch
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| | - Tewes Tralau
- German Federal Institute for Risk Assessment , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany .
| |
Collapse
|
28
|
Loddé B, Cros P, Roguedas-Contios AM, Pougnet R, Lucas D, Dewitte JD, Misery L. Occupational contact dermatitis from protein in sea products: who is the most affected, the fisherman or the chef? J Occup Med Toxicol 2017; 12:4. [PMID: 28203266 PMCID: PMC5301355 DOI: 10.1186/s12995-017-0150-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein contact dermatitis has frequently been reported in case studies (usually in cases involving contact with seafood products), but there are very few descriptive series. The objectives of this present study were firstly to determine the incidence of protein contact dermatitis among fishermen in France and compare it with data from onshore work involving seafood exposure. Second, to discover what factors could explain any differences. In order to answer these questions we analysed data from the French national occupational disease surveillance and prevention network (RNV3P) and occupational diseases declared to the French National Network for Monitoring and Prevention of Occupational Disease. This retrospective study was done for a 13 year period. CASE PRESENTATION Between 2000 and 2012, we only found eight cases of protein contact dermatitis in the French network. There were no cases of protein contact dermatitis in the seafaring population. The eight cases from the French network are essentially allergies to different fish and chefs are the professionals most affected. Atopy is present in half of these cases. In the seafaring population we found several cases of allergic delayed-time contact dermatitis due to bryozoans and to gloves but no protein contact dermatitis. CONCLUSIONS Chefs who have to cook seafood are more at risk of occupational protein contact dermatitis than fishermen. We think that skin protection (that is to say glove wearing) is better implemented in the fishing sector than in the catering profession on shore in France.
Collapse
Affiliation(s)
- B Loddé
- Université Européenne de Bretagne, Rennes, France.,Université de Brest, EA 4686 - CS 93837 - 29238, Brest Cedex 3, France.,Service de Santé au Travail et Maladies liées à l'environnement, CHRU Morvan, 2 avenue FOCH, Brest Cedex, 29609 France.,Société Française de Médecine Maritime, 22, Avenue Camille Desmoulins, Brest, 29200 France
| | - P Cros
- Service de dermato-vénéréologie CHRU Morvan, 2 avenue FOCH, Brest Cedex, 29609 France
| | - A M Roguedas-Contios
- Service de dermato-vénéréologie CHRU Morvan, 2 avenue FOCH, Brest Cedex, 29609 France
| | - R Pougnet
- Université Européenne de Bretagne, Rennes, France.,Université de Brest, EA 4686 - CS 93837 - 29238, Brest Cedex 3, France.,Service de Santé au Travail et Maladies liées à l'environnement, CHRU Morvan, 2 avenue FOCH, Brest Cedex, 29609 France.,Société Française de Médecine Maritime, 22, Avenue Camille Desmoulins, Brest, 29200 France
| | - D Lucas
- Société Française de Médecine Maritime, 22, Avenue Camille Desmoulins, Brest, 29200 France
| | - J D Dewitte
- Université Européenne de Bretagne, Rennes, France.,Université de Brest, EA 4686 - CS 93837 - 29238, Brest Cedex 3, France.,Service de Santé au Travail et Maladies liées à l'environnement, CHRU Morvan, 2 avenue FOCH, Brest Cedex, 29609 France.,Société Française de Médecine Maritime, 22, Avenue Camille Desmoulins, Brest, 29200 France
| | - L Misery
- Service de dermato-vénéréologie CHRU Morvan, 2 avenue FOCH, Brest Cedex, 29609 France.,Société Française de Médecine Maritime, 22, Avenue Camille Desmoulins, Brest, 29200 France
| |
Collapse
|
29
|
Choi YY, Kim MH, Ahn KS, Um JY, Lee SG, Yang WM. Immunomodulatory effects of Pseudostellaria heterophylla (Miquel) Pax on regulation of Th1/Th2 levels in mice with atopic dermatitis. Mol Med Rep 2016; 15:649-656. [PMID: 28035398 PMCID: PMC5364855 DOI: 10.3892/mmr.2016.6093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Pseudostellaria heterophylla (PH) has various pharmacological effects that include immunologic enhancement and anti-oxidation. However, it remains unclear whether PH exerts beneficial effects in dermatological diseases. The present study examined the effects of PH on a 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) mouse model and elucidated its underlying mechanism of action. PH extract (1 and 100 mg/ml) was applied topically to DNCB-treated dorsal skin of mice every day for 11 days. The immunomodulatory effects of PH were evaluated by measuring skin thickness, mast cell infiltration, serum levels of immunoglobulin E (IgE), and mRNA expression levels of T helper (h)1/Th2 and pro-inflammatory cytokines in dorsal skin. In addition, cluster of differentiation (CD)4+ T cells were detected in dorsal skin by immunohistochemistry. Topical application of PH significantly reduced the thickness of dermis, epidermis and serum IgE production compared with the DNCB group. PH treatment inhibited infiltration of inflammatory cells, including mast cells and CD4+ T cells, and suppressed the mRNA expression levels of cytokines (interferon-γ, interleukin-4, −6, −8 and −1β, and tumor necrosis factor-α) associated with the immune response. Furthermore, PH treatment significantly downregulated the protein expression levels of nuclear factor-κB, phosphorylated inhibitor of κBα and mitogen-activated protein kinases. The results suggested that PH may be a potential therapeutic strategy for the treatment of AD via the modulation of Th1 and Th2 levels.
Collapse
Affiliation(s)
- You Yeon Choi
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Korean Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Young Um
- Department of Korean Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok-Geun Lee
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
30
|
El Beidaq A, Link CWM, Hofmann K, Frehse B, Hartmann K, Bieber K, Martin SF, Ludwig RJ, Manz RA. In Vivo Expansion of Endogenous Regulatory T Cell Populations Induces Long-Term Suppression of Contact Hypersensitivity. THE JOURNAL OF IMMUNOLOGY 2016; 197:1567-76. [PMID: 27439515 DOI: 10.4049/jimmunol.1600508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/19/2016] [Indexed: 12/29/2022]
Abstract
Contact hypersensitivity (CHS) of murine skin serves as a model of allergic contact dermatitis. Hapten-specific CD8 T cells and neutrophils represent the major effector cells driving this inflammatory reaction whereas Foxp3(+) regulatory T cells (Tregs) control the severity of inflammation. However, whether in vivo expansion of endogenous Tregs can downregulate CHS-mediated inflammation remains to be elucidated. In this study, we addressed this issue by using injection of an IL-2/anti-IL-2 mAb JES6-1 complex (IL-2/JES6-1) as a means of Treg induction in 2,4,6-trinitrochlorobenzene-induced CHS. IL-2/JES6-1 injection before or after hapten sensitization led to a considerable reduction of skin inflammation, even when rechallenged up to 3 wk after the last treatment. Conversely, Treg depletion re-established the CHS response in IL-2/JES6-1-treated mice. IL-2/JES6-1 injection resulted in increased frequencies of natural and peripheral Tregs in spleen and draining lymph nodes (LNs), elevated IL-10 and TGF-β production by CD4 T cells, reduced CD86 expression by dendritic cells, and led to lower numbers of hapten-specific IFN-γ-producing CD8 T effector cells in LNs. Neutrophil and CD8 T cell infiltration was reduced in inflamed ear tissue, whereas CTLA-4(+)Foxp3(+) Treg frequencies were augmented. Adoptive transfer of LN cells of sensitized mice into recipients treated with IL-2/JES6-1 showed impaired CHS. Our results show that in vivo Treg expansion results in a prolonged CHS suppression, a sustained reduction of hapten-specific CD8 T cells, and a decrease in effector cell influx in inflamed tissue.
Collapse
Affiliation(s)
- Asmaa El Beidaq
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Christopher W M Link
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Katharina Hofmann
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Britta Frehse
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | - Karin Hartmann
- Department of Dermatology, University of Lübeck, 23538 Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23538 Lübeck, Germany; and
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Medical Center, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf J Ludwig
- Department of Dermatology, University of Lübeck, 23538 Lübeck, Germany; Lübeck Institute of Experimental Dermatology, University of Lübeck, 23538 Lübeck, Germany; and
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany;
| |
Collapse
|
31
|
Ahmed SS, Wang XN, Fielding M, Kerry A, Dickinson I, Munuswamy R, Kimber I, Dickinson AM. An in vitro human skin test for assessing sensitization potential. J Appl Toxicol 2016; 36:669-84. [PMID: 26251951 DOI: 10.1002/jat.3197] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/07/2015] [Accepted: 05/22/2015] [Indexed: 01/08/2023]
Abstract
Sensitization to chemicals resulting in an allergy is an important health issue. The current gold-standard method for identification and characterization of skin-sensitizing chemicals was the mouse local lymph node assay (LLNA). However, for a number of reasons there has been an increasing imperative to develop alternative approaches to hazard identification that do not require the use of animals. Here we describe a human in-vitro skin explant test for identification of sensitization hazards and the assessment of relative skin sensitizing potency. This method measures histological damage in human skin as a readout of the immune response induced by the test material. Using this approach we have measured responses to 44 chemicals including skin sensitizers, pre/pro-haptens, respiratory sensitizers, non-sensitizing chemicals (including skin-irritants) and previously misclassified compounds. Based on comparisons with the LLNA, the skin explant test gave 95% specificity, 95% sensitivity, 95% concordance with a correlation coefficient of 0.9. The same specificity and sensitivity were achieved for comparison of results with published human sensitization data with a correlation coefficient of 0.91. The test also successfully identified nickel sulphate as a human skin sensitizer, which was misclassified as negative in the LLNA. In addition, sensitizers and non-sensitizers identified as positive or negative by the skin explant test have induced high/low T cell proliferation and IFNγ production, respectively. Collectively, the data suggests the human in-vitro skin explant test could provide the basis for a novel approach for characterization of the sensitizing activity as a first step in the risk assessment process.
Collapse
Affiliation(s)
- S S Ahmed
- Alcyomics Ltd, Bulman House, Regent Centre, Gosforth, Newcastle-upon-Tyne, NE3 3LS, UK
| | - X N Wang
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - M Fielding
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - A Kerry
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - I Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - R Munuswamy
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - I Kimber
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - A M Dickinson
- Alcyomics Ltd, Bulman House, Regent Centre, Gosforth, Newcastle-upon-Tyne, NE3 3LS, UK
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| |
Collapse
|
32
|
Savetsky IL, Albano NJ, Cuzzone DA, Gardenier JC, Torrisi JS, García Nores GD, Nitti MD, Hespe GE, Nelson TS, Kataru RP, Dixon JB, Mehrara BJ. Lymphatic Function Regulates Contact Hypersensitivity Dermatitis in Obesity. J Invest Dermatol 2015; 135:2742-2752. [PMID: 26176761 PMCID: PMC4641050 DOI: 10.1038/jid.2015.283] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ira L Savetsky
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nicholas J Albano
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daniel A Cuzzone
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jason C Gardenier
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jeremy S Torrisi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gabriela D García Nores
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew D Nitti
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Geoffrey E Hespe
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tyler S Nelson
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Raghu P Kataru
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - J Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
33
|
Popple A, Williams J, Maxwell G, Gellatly N, Dearman RJ, Kimber I. The lymphocyte transformation test in allergic contact dermatitis: New opportunities. J Immunotoxicol 2015; 13:84-91. [PMID: 25655136 DOI: 10.3109/1547691x.2015.1008656] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Allergic contact dermatitis (ACD) is driven by the activation and proliferation of allergen-specific memory T-lymphocytes and is currently diagnosed by patch testing with a selected panel of chemical allergens. The lymphocyte transformation test (LTT) can be used to monitor ex vivo T-lymphocyte responses to antigens, including contact allergens. The LTT is not viewed as being an alternative to patch testing, but it does seek to reflect experimentally skin sensitization to specific chemicals. The LTT is based on stimulation in vitro of antigen-driven T-lymphocyte proliferation. That is, exposure in culture of primed memory T-lymphocytes to the relevant antigen delivered in an appropriate configuration will provoke a secondary response that reflects the acquisition of skin sensitization. The technical aspects of this test and the utility of the approach for investigation of immune responses to contact allergens in humans are reviewed here, with particular emphasis on further development and refinement of the protocol. An important potential application is that it may provide a basis for characterizing those aspects of T-lymphocyte responses to contact allergens that have the greatest influence on skin sensitizing potency and this will be considered in some detail.
Collapse
Affiliation(s)
- Amy Popple
- a Faculty of Life Sciences , University of Manchester , Manchester , UK
| | - Jason Williams
- b Contact Dermatitis Investigation Unit , Salford Royal NHS Foundation Trust , Salford , Manchester , UK , and
| | - Gavin Maxwell
- c Unilever Safety and Environmental Assurance Centre, Colworth Science Park , Sharnbrook , Bedford , UK
| | - Nichola Gellatly
- c Unilever Safety and Environmental Assurance Centre, Colworth Science Park , Sharnbrook , Bedford , UK
| | - Rebecca J Dearman
- a Faculty of Life Sciences , University of Manchester , Manchester , UK
| | - Ian Kimber
- a Faculty of Life Sciences , University of Manchester , Manchester , UK
| |
Collapse
|
34
|
|
35
|
Choi JK, Oh HM, Lee S, Park JW, Khang D, Lee SW, Lee WS, Rho MC, Kim SH. Oleanolic acid acetate inhibits atopic dermatitis and allergic contact dermatitis in a murine model. Toxicol Appl Pharmacol 2013; 269:72-80. [DOI: 10.1016/j.taap.2013.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 12/20/2022]
|
36
|
Choi JK, Kim SH. Rutin suppresses atopic dermatitis and allergic contact dermatitis. Exp Biol Med (Maywood) 2013; 238:410-7. [DOI: 10.1177/1535370213477975] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Atopic dermatitis (AD) and allergic contact dermatitis (ACD) is a common allergic inflammatory skin disease caused by a combination of eczematous, scratching, pruritus and cutaneous sensitization with allergens. The aim of our study was to examine whether rutin, a predominant flavonoid having anti-inflammatory and antioxidative potential, modulates AD and ACD symptoms. We established an atopic dermatitis model in BALB/c mice by repeated local exposure of house dust mite ( Dermatophagoides farinae) extract (DFE) and 2,4-dinitrochlorobenzene (DNCB) to the ears. In addition, 2,4-dinitroflourobenzene-sensitized a local lymph node assay was used for the ACD model. Repeated alternative treatment of DFE/DNCB caused AD symptoms. Topical application of rutin reduced AD based on ear thickness and histopathological analysis, in addition to serum IgE levels. Rutin inhibited mast cell infiltration into the ear and serum histamine level. Rutin suppressed DFE/DNCB-induced expression of interleukin (IL)-4, IL-5, IL-13, IL-31, IL-32 and interferon (INF)- γ in the tissue. In addition, rutin suppressed ACD based on ear thickness and lymphocyte proliferation, serum IgG2a levels, and expression of INF- γ, IL-4, IL-5, IL-10, IL-17 and tumour necrosis factor- α in ACD ears. This study demonstrates that rutin inhibits AD and ACD, suggesting that rutin might be a candidate for the treatment of allergic skin diseases.
Collapse
|
37
|
Bouchez C, Gervais F, Fleurance R, Palate B, Legrand JJ, Descotes J. Development of a Delayed-Type Hypersensitivity (DTH) Model in the Cynomolgus Monkey. J Toxicol Pathol 2012; 25:183-8. [PMID: 22907986 DOI: 10.1293/tox.25.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/20/2012] [Indexed: 11/19/2022] Open
Abstract
Although a T-dependent antibody response (TDAR) assay is generally recommended as the first-line immune function assay in nonclinical immunotoxicity evaluation, second-line assays such as delayed-type hypersensitivity (DTH) to measure cell-mediated responses can provide helpful additional information. In this study, male Cynomolgus monkeys were injected intramuscularly either once or twice with 1 mg Keyhole Limpet Hemocyanin (KLH) or twice with a commercially available tetanus vaccine (40 IU tetanus toxoid + 0.06 mg aluminum hydroxide). All animals were subsequently challenged by intradermal injections of the same antigen or aluminum hydroxide after 4, 6 and 8 weeks. Clinical reactions at the injection sites were scored 24, 48 and 72 h post challenge. Skin biopsies were taken on completion of the observation period after each challenge for standard histological examination and immunolabeling using CD3 (T lymphocytes), CD19 (B lymphocytes) and CD68 (macrophages) antibodies. Tetanus toxoid induced stronger clinical reactions than KLH, whereas aluminum hydroxide induced no clinical reaction. Perivascular mononuclear cell infiltrates, a histopathological finding consistent with a DTH reaction, were seen after all challenges with tetanus toxoid or KLH, but not with aluminum hydroxide. Immunohistochemistry evidenced the presence of T lymphocytes and macrophages within these infiltrates. These results suggest that tetanus toxoid adjuvanted with aluminum hydroxide can induce a consistent DTH response for use as a model of cell-mediated response in Cynomolgus monkeys.
Collapse
|
38
|
Tang Q, Zou P, Jin H, Fu J, Yang J, Shang L, Wei X. Grape-seed proanthocyanidins ameliorate contact hypersensitivity induced by 2,4-dinitrofluorobenzene (DNFB) and inhibit T cell proliferation in vitro. Toxicol Lett 2012; 210:1-8. [DOI: 10.1016/j.toxlet.2012.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/07/2012] [Accepted: 01/10/2012] [Indexed: 11/25/2022]
|
39
|
Kaplan DH, Igyártó BZ, Gaspari AA. Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol 2012; 12:114-24. [PMID: 22240625 DOI: 10.1038/nri3150] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The skin is a barrier site that is exposed to a wide variety of potential pathogens. As in other organs, pathogens that invade the skin are recognized by pattern-recognition receptors (PRRs). Recently, it has been recognized that PRRs are also engaged by chemical contact allergens and, in susceptible individuals, this elicits an inappropriate immune response that results in allergic contact dermatitis. In this Review, we focus on how contact allergens promote inflammation by activating the innate immune system. We also examine how innate immune cells in the skin, including mast cells and dendritic cells, cooperate with each other and with T cells and keratinocytes to initiate and drive early responses to contact allergens.
Collapse
Affiliation(s)
- Daniel H Kaplan
- Department of Dermatology, Center for Immunology, University of Minnesota, MBB 3-146, 2101 6th St. SE, Minneapolis, Minnesota 55414, USA.
| | | | | |
Collapse
|
40
|
Abstract
Background Contact allergy is a prevalent disorder. It is estimated that about 20% of the general population are allergic to one or more of the chemicals that constitute the European baseline patch test panel. While many studies have investigated associations between type I allergic disorders and cancer, few have looked into the association between cancer and contact allergy, a type IV allergy. By linking two clinical databases, the authors investigate the possible association between contact allergy and cancer. Methods Record linkage of two different registers was performed: (1) a tertiary hospital register of dermatitis patients patch tested for contact allergy and (2) a nationwide cancer register (the Danish Cancer Register). After linking the two registers, only cancer subtypes with 40 or more patients registered were included in the analysis. The final associations were evaluated by logistic regression analysis. Results An inverse association between contact allergy and non-melanoma skin- and breast cancer, respectively, was identified in both sexes, and an inverse trend for brain cancer was found in women with contact allergy. Additionally, a positive association between contact allergy and bladder cancer was found. Conclusion The inverse associations support the immunosurveillance hypothesis (ie, individuals with an allergy are less likely to get cancer due to a triggered immune system), while the positive association with bladder cancer could be due to accumulations of chemical metabolites in the bladder. The authors' findings add to the limited knowledge about contact allergy and the risk of cancer.
Collapse
Affiliation(s)
- Kaare Engkilde
- National Allergy Research Centre, Department of Dermato-Allergology, Copenhagen University Hospital Gentofte, University of Copenhagen, Hellerup, Denmark
| | | | | | | |
Collapse
|
41
|
Abstract
Contact hypersensitivity (CHS) is a delayed-type hypersensitivity that can be induced by haptens, such as 2,4-dinitrofluorobenzene (DNFB). Innate and adaptive immunities are both important for the development of CHS. To treat CHS-related diseases, such as allergic contact dermatitis, a disease prevalent in industrialized countries, ways of interfering with improper immune function during CHS responses need to be identified. Transforming growth factor-β-activated kinase-1 (TAK1), a member of mitogen-activated protein kinase kinase kinase family, is important for both innate and adaptive immunities. We thus hypothesized that the CHS response could be inhibited by interfering with TAK1 activity. Using a mouse model in which TAK1 deletion can be locally induced, we observed that TAK deficiency led to an impaired CHS response and was associated with defective T-cell expansion, activation and interferon (IFN)-γ production. In addition, we investigated the effect of deleting TAK1 specifically in dendritic cells (DC) on the CHS response. We found that when TAK1 is deficient in DC, the CHS response was abolished and hapten-elicited T-cell responses were defective. Collectively, this study demonstrates an essential role of TAK1 in the induction of CHS and suggests that targeting TAK1 could be a viable approach to treat CHS.
Collapse
|
42
|
Nosbaum A, Nicolas JF, Vocanson M, Rozieres A, Berard F. Dermatite de contact allergique et irritative. Physiopathologie et diagnostic immunologique. ARCH MAL PROF ENVIRO 2010. [DOI: 10.1016/j.admp.2010.03.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
43
|
He D, Wu L, Kim HK, Li H, Elmets CA, Xu H. IL-17 and IFN-gamma mediate the elicitation of contact hypersensitivity responses by different mechanisms and both are required for optimal responses. THE JOURNAL OF IMMUNOLOGY 2009; 183:1463-70. [PMID: 19553527 DOI: 10.4049/jimmunol.0804108] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hapten-induced contact hypersensitivity (CHS) in the skin is a delayed type cellular immune response that can be mediated by CD8(+) T cells that produce IFN-gamma or IL-17. However, mechanisms for these cytokines in the elicitation of CHS remain to be fully elucidated. In this study, we show that adoptive transfer of CHS with hapten-primed wild-type (WT) CD8(+) T cells is reduced in IFN-gammaR(-/-) or IL-17R(-/-) mice compared with WT controls. The infiltration of granulocytes and macrophages in the hapten challenged skin of IL-17R(-/-) recipients is significantly reduced whereas it is less affected in IFN-gammaR(-/-) recipients although CD8(+) T cell infiltration is inhibited in both recipients. In contrast, the activity of reactive oxidative species is significantly inhibited in IFN-gammaR(-/-) but is less affected in IL-17R(-/-) recipients. Further analysis reveals that the expression of chemokines and cytokines is differentially regulated in the hapten-challenged skin of IFN-gammaR(-/-) or IL-17R(-/-) recipients compared with WT controls. Interestingly, injection of rIL-17 in the skin induces inflammation with a high level of leukocyte infiltration whereas injection of IFN-gamma induces inflammation with a high level of reactive oxidative species. Moreover, neutralization of IL-17 in IFN-gammaR(-/-) or IFN-gamma in IL-17R(-/-) mice further suppresses the adoptive transfer of CHS by hapten-primed WT CD8(+) T cells. The study demonstrates that IFN-gamma and IL-17 mediate the elicitation of CHS by different mechanisms and that both cytokines are required for optimal responses. This outcome improves understanding of pathogenesis and provides new insights into therapeutic strategies for CHS.
Collapse
Affiliation(s)
- Donggou He
- Department of Dermatology, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Engkilde K, Menné T, Johansen JD. Inflammatory bowel disease in relation to contact allergy: a patient-based study. Scand J Gastroenterol 2007; 42:572-6. [PMID: 17454877 DOI: 10.1080/00365520600999334] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Inflammatory bowel disease (IBD) has previously been investigated with relation to allergic conditions; however, diverging results were found and there are only a few small studies focusing on delayed hypersensitivity. The aim of this study was to investigate whether there was an association between contact allergy (CA), which is a type IV hypersensitivity reaction of the skin, and IBD. MATERIAL AND METHODS A database consisting of a cohort of 13,315 patients, patch tested between 1985 and 2003, was linked with the Danish National Patient Registry using a unique personal identifier number. The patients were patch tested at a dermatology department with a long history of research in CA. By record linking with the Danish National Patient Registry, patients were identified who had either an International Classification of Disease (ICD) code for Crohn's disease (CD) or an ICD code for ulcerative colitis (UC) diagnosis. Using logistic regression, with the result of the patch test as the dependent variable, we calculated the odds ratios for IBD, CD and UC, adjusted for gender and age. RESULTS An inverse association between CA and IBD was found, odds ratio adjusted for age and gender 0.71 (CI 95% 0.53-0.94), which is mainly the result of an inverse association between CA and CD, odds ratio adjusted for age and gender 0.42 (CI 95% 0.23-0.76). CONCLUSIONS The association found between CA and IBD might be related to shared genetic factors or common environmental determinates. It may also be that having either disease result in skewness of the immune system might lead to an inverse disease association.
Collapse
Affiliation(s)
- Kåre Engkilde
- National Allergy Research Centre, Department of Dermatology, Gentofte Hospital, University of Copenhagen, Denmark.
| | | | | |
Collapse
|