1
|
Zhang Y, Zhu Y, Ye M, Mao Y, Zhan Y. Telomere length and its association with systemic lupus erythematosus in an Asian population: A Mendelian randomization study. Lupus 2023; 32:1222-1226. [PMID: 37596879 DOI: 10.1177/09612033231195953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
OBJECTIVES To investigate whether shorter telomere length is a causal risk factor for systemic lupus erythematosus (SLE) in the Asian population. METHODS We applied the two-sample Mendelian randomization (MR) method to the pooled statistics from a genome-wide association study (GWAS) of 6,707 SLE cases and 16,047 controls. We selected nine single-nucleotide polymorphisms (SNPs) with genome-wide significance as instrumental variables for telomere length. The main analysis was carried out by the random-effects inverse-variance weighted (IVW) method. Horizontal pleiotropy was evaluated by the intercept of MR-Egger regression. RESULTS A potentially causal relationship between longer genetically predicted telomere length and increased risk of systemic lupus erythematosus (OR = 1.72, 95%CI: 1.21, 2.46, p = 0.01) was observed. The MR-Egger regression demonstrated an intercept proximal to zero (intercept = 0.017, p = 0.69), which does not provide evidence of the presence of horizontal pleiotropy. CONCLUSIONS Our findings provided evidence supporting a potential causal relationship between longer telomere length and increased risk of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yasi Zhang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yanan Zhu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Meijie Ye
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yong Mao
- Department of Epidemiology, School of Public Health, Kunming Medical University, Kunming, China
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
2
|
Wei D, Jiang Y, Cheng J, Wang H, Sha K, Zhao J. Assessing the association of leukocyte telomere length with ankylosing spondylitis and rheumatoid arthritis: A bidirectional Mendelian randomization study. Front Immunol 2023; 14:1023991. [PMID: 37033949 PMCID: PMC10080099 DOI: 10.3389/fimmu.2023.1023991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Background Telomere length shortening can cause senescence and apoptosis in various immune cells, resulting in immune destabilization and ageing of the organism. In this study, we aimed to systematically assess the causal relationship of leukocyte telomere length (LTL) with ankylosing spondylitis (AS) and rheumatoid arthritis (RA) using a Mendelian randomization study. Methods LTL (n=472174) was obtained from the UK Biobank genome-wide association study pooled data. AS (n=229640), RA (n=212472) were obtained from FinnGen database. MR-Egger, inverse variance weighting, and weighted median methods were used to estimate the effects of causes. Cochran's Q test, MR Egger intercept test, MR-PRESSO, leave-one-out analysis, and funnel plots were used to look at sensitivity, heterogeneity, and multiple effects. Forward MR analysis considered LTL as the exposure and AS, RA as the outcome. Reverse MR analysis considered AS, RA as the exposure and LTL as the outcome. Results In the forward MR analysis, inverse variance-weighted and weighted median analysis results indicated that longer LTL might be associated with increased risk of AS (IVW: OR = 1.55, 95% CI: 1.14-2.11, p = 0.006). MR Egger regression analysis showed no pleiotropy between instrumental variables (IVs) (Egger intercept= 0.008, p = 0.294). The leave-one-out analysis showed that each single nucleotide polymorphism (SNP) of AS was robust to each outcome. No significant causal effects were found between AS, RA and LTL in the reverse MR analysis. Conclusion Longer LTL may be related with an increased risk of developing AS, and these findings provide a foundation for future clinical research on the causal association between LTL and AS.
Collapse
Affiliation(s)
- Donglei Wei
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yage Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianwen Cheng
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Wang
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ke Sha
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Jinmin Zhao,
| |
Collapse
|
3
|
Beranek M, Borsky P, Fiala Z, Andrys C, Hamakova K, Chmelarova M, Kovarikova H, Karas A, Kremlacek J, Palicka V, Borska L. Telomere length, oxidative and epigenetic changes in blood DNA of patients with exacerbated psoriasis vulgaris. An Bras Dermatol 2023; 98:68-74. [PMID: 36319514 PMCID: PMC9837651 DOI: 10.1016/j.abd.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The pathogenesis of psoriasis vulgaris involves changes in DNA molecules, genomic instability, telomere attrition, and epigenetic alterations among them. These changes are also considered important mechanisms of aging in cells and tissues. OBJECTIVE This study dealt with oxidation damage, telomere length and methylation status in DNA originating from peripheral blood of 41 psoriatic patients and 30 healthy controls. METHODS Oxidative damage of serum DNA/RNA was determined immunochemically. Real-time PCR was used for the analysis of the telomere length. ELISA technique determined levels of 5-methylcytosine in blood cells' DNA. RESULTS Oxidative damage of serum DNA/RNA was higher in patients than in controls (median, 3758 vs. 2286pg/mL, p<0.001). A higher length of telomeres per chromosome was found in patients whole-cell DNA than in controls (3.57 vs. 3.04 kilobases, p=0.011). A negative correlation of the length of telomeres with an age of the control subjects was revealed (Spearman's rho=-0.420, p=0.028). Insignificantly different levels of 5-methylcytosine in patients and controls were observed (33.20 vs. 23.35%, p=0.234). No influences of sex, smoking, BMI, PASI score, and metabolic syndrome on the methylation status were found. STUDY LIMITATIONS i) A relatively small number of the participants, particularly for reliable subgroup analyses, ii) the Caucasian origin of the participants possibly influencing the results of the parameters determined, and iii) Telomerase activity was not directly measured in serum or blood cells. CONCLUSION The study demonstrated increased levels of oxidized DNA/RNA molecules in the serum of patients with exacerbated psoriasis vulgaris. The results were minimally influenced by sex, the presence of metabolic syndrome, or cigarette smoking. In the psoriatic blood cells' DNA, the authors observed longer telomeres compared to healthy controls, particularly in females. Insignificantly higher global DNA methylation in psoriasis cases compared to the controls indicated marginal clinical importance of this epigenetic test performed in the blood cells' DNA.
Collapse
Affiliation(s)
- Martin Beranek
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic,Department of Biochemical Sciences, Faculty of Pharmacy, Hradec Kralove, Charles University, Czech Republic,Corresponding author.
| | - Pavel Borsky
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Kvetoslava Hamakova
- Clinic of Dermatology and Venereology, University Hospital Hradec Kralove, Czech Republic
| | - Marcela Chmelarova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Helena Kovarikova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Adam Karas
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Jan Kremlacek
- Department of Medical Biophysics, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine, Hradec Kralove, Charles University, Czech Republic
| | - Lenka Borska
- Institute of Preventive Medicine, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Chen C, Wang P, Zhang RD, Fang Y, Jiang LQ, Fang X, Zhao Y, Wang DG, Ni J, Pan HF. Mendelian randomization as a tool to gain insights into the mosaic causes of autoimmune diseases. Clin Exp Rheumatol 2022; 21:103210. [PMID: 36273526 DOI: 10.1016/j.autrev.2022.103210] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Autoimmune diseases (ADs) are a broad range of disorders which are characterized by long-term inflammation and tissue damage arising from an immune response against one's own tissues. It is now widely accepted that the causes of ADs include environmental factors, genetic susceptibility and immune dysregulation. However, the exact etiology of ADs has not been fully elucidated to date. Because observational studies are plagued by confounding factors and reverse causality, no firm conclusions can be drawn about the etiology of ADs. Over the years, Mendelian randomization (MR) analysis has come into focus, offering unique perspectives and insights into the etiology of ADs and promising the discovery of potential therapeutic interventions. In MR analysis, genetic variation (alleles are randomly dispensed during meiosis, usually irrespective of environmental or lifestyle factors) is used instead of modifiable exposure to explore the link between exposure factors and disease or other outcomes. Therefore, MR analysis can provide a valuable method for exploring the causal relationship between different risk factors and ADs when its inherent assumptions and limitations are fully considered. This review summarized the recent findings of MR in major ADs, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), and type 1 diabetes mellitus (T1DM), focused on the effects of different risk factors on ADs risks. In addition, we also discussed the opportunities and challenges of MR methods in ADs research.
Collapse
Affiliation(s)
- Cong Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Peng Wang
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China; Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ruo-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Yang Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Ling-Qiong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Xi Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - Yan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China
| | - De-Guang Wang
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China; Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, China.
| |
Collapse
|
5
|
Vara EL, Langefeld CD, Wolf BJ, Howard TD, Hawkins GA, Quet Q, Moultrie LH, Quinnette King L, Molano ID, Bray SL, Ueberroth LA, Lim SS, Williams EM, Kamen DL, Ramos PS. Social Factors, Epigenomics and Lupus in African American Women (SELA) Study: protocol for an observational mechanistic study examining the interplay of multiple individual and social factors on lupus outcomes in a health disparity population. Lupus Sci Med 2022; 9:9/1/e000698. [PMID: 35768168 PMCID: PMC9244713 DOI: 10.1136/lupus-2022-000698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Introduction Despite the disproportional impact of SLE on historically marginalised communities, the individual and sociocultural factors underlying these health disparities remain elusive. We report the design and methods for a study aimed at identifying epigenetic biomarkers associated with racism and resiliency that affect gene function and thereby influence SLE in a health disparity population. Methods and analysis The Social Factors, Epigenomics and Lupus in African American Women (SELA) Study is a cross-sectional, case–control study. A total of 600 self-reported African American women will be invited to participate. All participants will respond to questionnaires that capture detailed sociodemographic and medical history, validated measures of racial discrimination, social support, as well as disease activity and damage for cases. Participants who wish will receive their genetic ancestry estimates and be involved in research. Blood samples are required to provide peripheral blood mononuclear cell counts, DNA and RNA. The primary goals of SELA are to identify variation in DNA methylation (DNAm) associated with self-reported exposure to racial discrimination and social support, to evaluate whether social DNAm sites affect gene expression, to identify the synergistic effects of social factors on DNAm changes on SLE and to develop a social factors-DNAm predictive model for disease outcomes. This study is conducted in cooperation with the Sea Island Families Project Citizen Advisory Committee. Discussion and dissemination SELA will respond to the pressing need to clarify the interplay and regulatory mechanism by which various positive and negative social exposures influence SLE. Results will be published and shared with patients and the community. Knowledge of the biological impact of social exposures on SLE, as informed by the results of this study, can be leveraged by advocacy efforts to develop psychosocial interventions that prevent or mitigate risk exposures, and services or interventions that promote positive exposures. Implementation of such interventions is paramount to the closure of the health disparities gap.
Collapse
Affiliation(s)
- Emily L Vara
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Bethany J Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Timothy D Howard
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gregory A Hawkins
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Queen Quet
- Gullah/Geechee Nation, St Helena Island, South Carolina, USA
| | - Lee H Moultrie
- Lee H Moultrie & Associates, North Charleston, South Carolina, USA
| | - L Quinnette King
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ivan D Molano
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Stephanie L Bray
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lori Ann Ueberroth
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - S Sam Lim
- Department of Medicine, Emory University, Atlanta, Georgia, USA.,Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Edith M Williams
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Diane L Kamen
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Paula S Ramos
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA .,Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
6
|
Shen CY, Lu CH, Wu CH, Li KJ, Kuo YM, Hsieh SC, Yu CL. Molecular Basis of Accelerated Aging with Immune Dysfunction-Mediated Inflammation (Inflamm-Aging) in Patients with Systemic Sclerosis. Cells 2021; 10:cells10123402. [PMID: 34943909 PMCID: PMC8699891 DOI: 10.3390/cells10123402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic connective tissue disorder characterized by immune dysregulation, chronic inflammation, vascular endothelial cell dysfunction, and progressive tissue fibrosis of the skin and internal organs. Moreover, increased cancer incidence and accelerated aging are also found. The increased cancer incidence is believed to be a result of chromosome instability. Accelerated cellular senescence has been confirmed by the shortening of telomere length due to increased DNA breakage, abnormal DNA repair response, and telomerase deficiency mediated by enhanced oxidative/nitrative stresses. The immune dysfunctions of SSc patients are manifested by excessive production of proinflammatory cytokines IL-1, IL-6, IL-17, IFN-α, and TNF-α, which can elicit potent tissue inflammation followed by tissue fibrosis. Furthermore, a number of autoantibodies including anti-topoisomerase 1 (anti-TOPO-1), anti-centromere (ACA or anti-CENP-B), anti-RNA polymerase enzyme (anti-RNAP III), anti-ribonuclear proteins (anti-U1, U2, and U11/U12 RNP), anti-nucleolar antigens (anti-Th/T0, anti-NOR90, anti-Ku, anti-RuvBL1/2, and anti-PM/Scl), and anti-telomere-associated proteins were also found. Based on these data, inflamm-aging caused by immune dysfunction-mediated inflammation exists in patients with SSc. Hence, increased cellular senescence is elicited by the interactions among excessive oxidative stress, pro-inflammatory cytokines, and autoantibodies. In the present review, we will discuss in detail the molecular basis of chromosome instability, increased oxidative stress, and functional adaptation by deranged immunome, which are related to inflamm-aging in patients with SSc.
Collapse
Affiliation(s)
- Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
- Correspondence: (S.-C.H.); (C.-L.Y.); Tel.: +886-2-23123456 (S.-C.H. & C.-L.Y.)
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (K.-J.L.); (Y.-M.K.)
- Correspondence: (S.-C.H.); (C.-L.Y.); Tel.: +886-2-23123456 (S.-C.H. & C.-L.Y.)
| |
Collapse
|
7
|
Telomeres: New players in immune-mediated inflammatory diseases? J Autoimmun 2021; 123:102699. [PMID: 34265700 DOI: 10.1016/j.jaut.2021.102699] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Telomeres are repetitive DNA sequences located at the ends of linear chromosomes that preserve the integrity and stability of the genome. Telomere dysfunctions due to short telomeres or altered telomere structures can ultimately lead to replicative cellular senescence and chromosomal instability, both mechanisms being hallmarks of ageing. Chronic inflammation, oxidative stress and finally telomere length (TL) dynamics have been shown to be involved in various age-related non-communicable diseases (NCDs). Immune-mediated inflammatory diseases (IMIDs), including affections such as inflammatory bowel disease, psoriasis, rheumatoid arthritis, spondyloarthritis and uveitis belong to this group of age-related NCDs. Although in recent years, we have witnessed the emergence of studies in the literature linking these IMIDs to TL dynamics, the causality between these diseases and telomere attrition is still unclear and controversial. In this review, we provide an overview of available studies on telomere dynamics and discuss the utility of TL measurements in immune-mediated inflammatory diseases.
Collapse
|
8
|
Zeng Z, Zhang W, Qian Y, Huang H, Wu DJH, He Z, Ye D, Mao Y, Wen C. Association of telomere length with risk of rheumatoid arthritis: a meta-analysis and Mendelian randomization. Rheumatology (Oxford) 2020; 59:940-947. [PMID: 31697380 DOI: 10.1093/rheumatology/kez524] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/30/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To evaluate the telomere length (TL) in patients with RA relative to that in controls and to test whether TL is causally associated with risk of RA. METHODS Systematic review and meta-analysis of relevant literature was conducted to evaluate the association between TL and RA. Standardized mean differences with 95% CIs of TL in RA patients relative to controls were pooled using fixed or random-effects models. TL-related single-nucleotide polymorphisms were selected from a genome-wide association study of 37 684 individuals, and summary statistics of RA were obtained from a genome-wide association study meta-analysis including 14 361 RA patients and 43 923 controls. Mendelian randomization was performed using the inverse-variance weighted, weighted-median and likelihood-based methods. Sensitivity analyses were performed to test the robustness of the association. RESULTS In the meta-analysis of 911 RA patients and 2498 controls, we found that patients with RA had a significantly shorter TL compared with controls (standardized mean differences = -0.50; 95% CI -0.88, -0.11; P = 0.012). In the Mendelian randomization analysis, we found that genetically predicted longer TL was associated with a reduced risk of RA [odds ratio = 0.68; 95% CI 0.54, 0.86; P = 0.002 using the inverse-variance weighted method]. Sensitivity analyses using alternative Mendelian randomization approaches yielded similar findings, suggesting the robustness of the causal association. CONCLUSION Our study provides evidence for a negative causal association of TL with risk of RA. Further studies are warranted to elucidate the underlying mechanism for the role of telomeres in the development of RA.
Collapse
Affiliation(s)
- Zhen Zeng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wanting Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu Qian
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huijun Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - David J H Wu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Zhixing He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ding Ye
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yingying Mao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chengping Wen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Gamal RM, Hammam N, Zakary MM, Abdelaziz MM, Razek MRA, Mohamed MSE, Emad Y, Elnaggar MG, Furst DE. Telomere dysfunction-related serological markers and oxidative stress markers in rheumatoid arthritis patients: correlation with diseases activity. Clin Rheumatol 2018; 37:3239-3246. [PMID: 30328024 DOI: 10.1007/s10067-018-4318-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune polyarthritis with progressive destruction of the synovial joints associated with systemic manifestations. RA is characterized by infiltration of the synovial joints with inflammatory immune cells with premature immunosenescence. Shorter telomere length in the peripheral blood cells and increase in the oxidative stress have been detected in patients with RA. The aim of the present study was to study the association of markers of telomere shortening and oxidative stress with RA disease activity. Sixty-one RA patients and 15 healthy controls were enrolled in the study. Demographic data, clinical examination, and disease activity status were evaluated for the RA patients. Serum levels of chitinase and NAG (telomere markers) were determined by biochemical reactions using colloidal chitin and NAG as substrates, respectively. Nitric oxide and superoxide dismutase (oxidative stress markers) were determined colometrically and spectrophotometrically, respectively, in the sera of RA patients and controls. Results were correlated with disease activity. Indices of telomere shortening and oxidative markers were significantly higher in RA patients compared to controls. These indices were correlated with signs of disease activity (including number of swollen and tender joints, DAS-28, and inflammatory markers). Rheumatoid arthritis is a disease in which markers of telomere shortening and elevated oxidant stress correlate with disease activity.
Collapse
Affiliation(s)
- Rania M Gamal
- Rheumatology and Rehabilitation Department, Assiut University Hospitals, Faculty of Medicine, Assiut, Egypt.
| | - Nevin Hammam
- Rheumatology and Rehabilitation Department, Assiut University Hospitals, Faculty of Medicine, Assiut, Egypt.,Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Madeha M Zakary
- Department of Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa Mahmoud Abdelaziz
- Rheumatology and Rehabilitation Department, Assiut University Hospitals, Faculty of Medicine, Assiut, Egypt
| | - Mohamed Raouf Abdel Razek
- Rheumatology and Rehabilitation Department, Assiut University Hospitals, Faculty of Medicine, Assiut, Egypt
| | | | - Yaser Emad
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University Hospital, Cairo, Egypt
| | | | - Daniel E Furst
- Department of Medicine, Division of Rheumatology, University of California in Los Angeles (emeritus), Los Angeles, CA, USA.,Department of Rheumatology, Division of Rheumatology, University of Washington, Seattle, WA, USA.,Division of Rheumatology and Experimental Medicine, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Abstract
Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.
Collapse
|
11
|
Abstract
Purpose Birdshot Uveitis (BU) is an archetypical chronic inflammatory eye disease, with poor visual prognosis, that provides an excellent model for studying chronic inflammation. BU typically affects patients in the fifth decade of life. This suggests that it may represent an age-related chronic inflammatory disease, which has been linked to increased erosion of telomere length of leukocytes. Methods To study this in detail, we exploited a sensitive standardized quantitative real-time polymerase chain reaction to determine the peripheral blood leukocyte telomere length (LTL) in 91 genotyped Dutch BU patients and 150 unaffected Dutch controls. Results Although LTL erosion rates were very similar between BU patients and healthy controls, we observed that BU patients displayed longer LTL, with a median of log (LTL) = 4.87 (= 74131 base pair) compared to 4.31 (= 20417 base pair) in unaffected controls (P<0.0001). The cause underpinning the difference in LTL could not be explained by clinical parameters, immune cell-subtype distribution, nor genetic predisposition based upon the computed weighted genetic risk score of genotyped validated variants in TERC, TERT, NAF1, OBFC1 and RTEL1. Conclusions These findings suggest that BU is accompanied by significantly longer LTL.
Collapse
|
12
|
Lee YH, Bae SC. Association between shortened telomere length and rheumatoid arthritis. Z Rheumatol 2016; 77:160-167. [DOI: 10.1007/s00393-016-0209-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
The Telomere/Telomerase System in Chronic Inflammatory Diseases. Cause or Effect? Genes (Basel) 2016; 7:genes7090060. [PMID: 27598205 PMCID: PMC5042391 DOI: 10.3390/genes7090060] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/26/2016] [Accepted: 08/29/2016] [Indexed: 12/23/2022] Open
Abstract
Telomeres are specialized nucleoprotein structures located at the end of linear chromosomes and telomerase is the enzyme responsible for telomere elongation. Telomerase activity is a key component of many cancer cells responsible for rapid cell division but it has also been found by many laboratories around the world that telomere/telomerase biology is dysfunctional in many other chronic conditions as well. These conditions are characterized by chronic inflammation, a situation mostly overlooked by physicians regarding patient treatment. Among others, these conditions include diabetes, renal failure, chronic obstructive pulmonary disease, etc. Since researchers have in many cases identified the association between telomerase and inflammation but there are still many missing links regarding this correlation, the latest findings about this phenomenon will be discussed by reviewing the literature. Our focus will be describing telomere/telomerase status in chronic diseases under the prism of inflammation, reporting molecular findings where available and proposing possible future approaches.
Collapse
|
14
|
Lee YH, Jung JH, Seo YH, Kim JH, Choi SJ, Ji JD, Song GG. Association between shortened telomere length and systemic lupus erythematosus: a meta-analysis. Lupus 2016; 26:282-288. [PMID: 27510600 DOI: 10.1177/0961203316662721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective We aimed to evaluate the relationship between telomere length and systemic lupus erythematosus (SLE). Methods PUBMED and EMBASE databases were searched; meta-analyses were performed comparing telomere length in SLE patients and healthy controls, and on SLE patients in subgroups based on ethnicity, sample type, assay method and data type. Results Eight studies including 472 SLE patients and 365 controls were ultimately selected which showed that telomere length was significantly shorter in the SLE group than in the control group (standardized mean difference (SMD) = -0.835, 95% confidence interval (CI) = -1.291 to -0.380, p = 3.3 × 10-4). Stratification by ethnicity showed significantly shortened telomere length in the SLE group in Caucasian, Asian and mixed populations (SMD = -0.455, 95% CI = -0.763 to -0.147, p = 0.004; SMD = -0.887, 95% CI = -1.261 to -0.513, p = 3.4 × 10-4; SMD = -0.535, 95% CI = -0.923 to -0.147, p = 0.007; respectively). Furthermore, telomere length was significantly shorter in the SLE group than in the control group in whole blood and peripheral blood mononuclear cell groups (SMD = -0.361, 95% CI = -0.553 to -0.169, p = 2.3 × 10-4; SMD = -1.546, 95% CI = -2.583 to -0.510, p = 0.003; respectively); a similar trend was observed in leukocyte groups (SMD = -0.699, 95% CI = -1.511 to -0.114, p = 0.092). Meta-analyses based on assay method or data type revealed similar associations. Conclusions Our meta-analysis demonstrated that telomere length was significantly shorter in patients with SLE, regardless of ethnicity, sample type or assay method evaluated.
Collapse
Affiliation(s)
- Y H Lee
- Division of Rheumatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - J H Jung
- Division of Rheumatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Y H Seo
- Division of Rheumatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - J-H Kim
- Division of Rheumatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - S J Choi
- Division of Rheumatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - J D Ji
- Division of Rheumatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - G G Song
- Division of Rheumatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Révész D, Milaneschi Y, Terpstra EM, Penninx BWJH. Baseline biopsychosocial determinants of telomere length and 6-year attrition rate. Psychoneuroendocrinology 2016; 67:153-62. [PMID: 26897704 DOI: 10.1016/j.psyneuen.2016.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Short leukocyte telomere length (TL) and accelerated telomere attrition have been associated with various deleterious health outcomes, although their determinants have not been explored collectively in a large-scale study. MATERIAL AND METHODS Leukocyte TL was measured (baseline N=2936; 6-year follow-up N=1860) in participants (18-65 years) from the NESDA study. Baseline determinants of TL included sociodemographics, lifestyle, chronic diseases, psychosocial stressors, and metabolic and physiological stress markers. Multivariate linear regression models were used to examine the associations between these determinants and (1) baseline TL, and (2) 6-year TL change. Multinomial logistic regression analyses were used to examine the predictors of telomere attrition and lengthening, as compared to stable TL. RESULTS Short baseline TL was associated with older age, male sex, non-European ethnicity, cigarette smoking, recent life events, and higher triglycerides, glucose and pre-ejection period (R(2)=11.3%). The 6-year telomere attrition was inversely associated with baseline TL (R(2)=51.6%); also older age, long sleep, not having a partner, high childhood trauma index, and gastrointestinal disease were associated with 6-year TL attrition (additional R(2)=3.7%). Telomere attrition seemed to have slightly more predictors than lengthening. CONCLUSIONS Sociodemographic, lifestyle, psychosocial stress and metabolic and physiological stress factors are cross-sectionally linked with TL. Telomere attrition over six years was strongly associated with baseline TL, suggesting an internal homeostatic influence. Modulation of the identified determinants may become target of future studies to promote telomere maintenance and healthy aging.
Collapse
Affiliation(s)
- Dóra Révész
- Department of Psychiatry, EMGO Institute for Health and Care Institute, VU University Medical Center, Amsterdam, the Netherlands.
| | - Yuri Milaneschi
- Department of Psychiatry, EMGO Institute for Health and Care Institute, VU University Medical Center, Amsterdam, the Netherlands.
| | - Erik M Terpstra
- Department of Psychiatry, EMGO Institute for Health and Care Institute, VU University Medical Center, Amsterdam, the Netherlands.
| | - Brenda W J H Penninx
- Department of Psychiatry, EMGO Institute for Health and Care Institute, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Piera-Velazquez S, Jimenez SA. Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis. Curr Rheumatol Rep 2015; 17:473. [PMID: 25475596 DOI: 10.1007/s11926-014-0473-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Scleroderma Center, Thomas Jefferson University, 233 South 10th Street, Suite 509 BLSB, Philadelphia, PA, 19107, USA
| | | |
Collapse
|