1
|
Liao H, Zheng J, Lu J, Shen HL. NF-κB Signaling Pathway in Rheumatoid Arthritis: Mechanisms and Therapeutic Potential. Mol Neurobiol 2024:10.1007/s12035-024-04634-2. [PMID: 39560902 DOI: 10.1007/s12035-024-04634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that imposes a heavy economic burden on patients and society. Bone and cartilage destruction is considered an important factor leading to RA, and inflammation, oxidative stress, and mitochondrial dysfunction are closely related to bone erosion and cartilage destruction in RA. Currently, there are limitations in the clinical treatment methods for RA, which urgently necessitates finding new effective treatments for patients. Nuclear transcription factor-κB (NF-κB) is a signaling transcription factor that is widely present in various cells. It plays an important role as a stress source in the cellular environment and regulates gene expression in processes such as immunity, inflammation, cell proliferation, and apoptosis. NF-κB has long been recognized as a pathogenic factor of RA, and its activation can exacerbate RA by promoting inflammation, oxidative stress, mitochondrial dysfunction, and bone destruction. Conversely, inhibiting the activity of the NF-κB pathway effectively inhibits these pathological processes, thereby alleviating RA. Therefore, NF-κB may be a potential therapeutic target for RA. This article describes the physiological structure of NF-κB and its important role in RA through the regulation of oxidative stress, inflammatory response, mitochondrial function, and bone destruction. Meanwhile, we also summarized the impact of NF-κB crosstalk with other signaling pathways on RA and the effect of related drugs or inhibitors targeting NF-κB on RA. The purpose of this article is to provide evidence for the role of NF-κB in RA and to emphasize its significant role in RA by elucidating the mechanisms, so as to provide a theoretical basis for targeting the NF-κB pathway as a treatment for RA.
Collapse
Affiliation(s)
- Haiyang Liao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jianxiong Zheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jinyue Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Hai-Li Shen
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
2
|
Yang YQ, Liu YJ, Qiao WX, Jin W, Zhu SW, Yan YX, Luo Q, Xu Q. Iguratimod suppresses plasma cell differentiation and ameliorates experimental Sjögren's syndrome in mice by promoting TEC kinase degradation. Acta Pharmacol Sin 2024; 45:1926-1936. [PMID: 38744938 PMCID: PMC11336088 DOI: 10.1038/s41401-024-01288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune disease with an unclear pathogenesis, and there is currently no approved drug for the treatment of this disease. Iguratimod, as a novel clinical anti-rheumatic drug in China and Japan, has shown remarkable efficacy in improving the symptoms of patients with pSS in clinical studies. In this study we investigated the mechanisms underlying the therapeutic effect of iguratimod in the treatment of pSS. Experimental Sjögren's syndrome (ESS) model was established in female mice by immunizing with salivary gland protein. After immunization, ESS mice were orally treated with iguratimod (10, 30, 100 mg·kg-1·d-1) or hydroxychloroquine (50 mg·kg-1·d-1) for 70 days. We showed that iguratimod administration dose-dependently increased saliva secretion, and ameliorated ESS development by predominantly inhibiting B cells activation and plasma cell differentiation. Iguratimod (30 and 100 mg·kg-1·d-1) was more effective than hydroxychloroquine (50 mg·kg-1·d-1). When the potential target of iguratimod was searched, we found that iguratimod bound to TEC kinase and promoted its degradation through the autophagy-lysosome pathway in BAFF-activated B cells, thereby directly inhibiting TEC-regulated B cells function, suggesting that the action mode of iguratimod on TEC was different from that of conventional kinase inhibitors. In addition, we found a crucial role of TEC overexpression in plasma cells of patients with pSS. Together, we demonstrate that iguratimod effectively ameliorates ESS via its unique suppression of TEC function, which will be helpful for its clinical application. Targeting TEC kinase, a new regulatory factor for B cells, may be a promising therapeutic option.
Collapse
Affiliation(s)
- Ya-Qi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yi-Jun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wen-Xuan Qiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wei Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shun-Wei Zhu
- Jiangsu Simcere Pharmaceutical Co., Ltd, Nanjing, 210042, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210042, China
| | - Yu-Xi Yan
- Jiangsu Simcere Pharmaceutical Co., Ltd, Nanjing, 210042, China
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210042, China
| | - Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Peng JP, Yang XY, Luo F, Yuan XM, Xiong H, Ma WK, Yao XM. Hydroxychloroquine-induced hyperpigmentation of the skin and bull's-eye maculopathy in rheumatic patients: a case report and literature review. Front Immunol 2024; 15:1383343. [PMID: 38660312 PMCID: PMC11039820 DOI: 10.3389/fimmu.2024.1383343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Hydroxychloroquine (HCQ) is used as a traditional disease-modifying antirheumatic drugs (DMARDs), for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). However, it can cause serious adverse reactions, including hyperpigmentation of the skin and bull's-eye macular lesions. Here, we present a case of HCQ-induced hyperpigmentation of the skin and bull's-eye macular lesions in a patient who received HCQ for RA. A 65-year-old female patient developed blurred vision and hyperpigmentation of multiple areas of skin over the body for one month after 3 years of HCQ treatment for RA. Based on clinical presentation, ophthalmological examination and dermatopathological biopsy, a diagnosis of drug-induced cutaneous hyperpigmentation and bullous maculopathy of the right eye was made. After discontinuation of HCQ and treatment with iguratimod tablets, the hyperpigmentation of the patient 's skin was gradually reduced, and the symptoms of blurred vision were not significantly improved. We also reviewed the available literature on HCQ-induced cutaneous hyperpigmentation and bull's-eye macular lesions and described the clinical features of HCQ-induced cutaneous hyperpigmentation and bull's-eye macular lesions. In conclusion, clinicians should be aware of early cutaneous symptoms and HCQ-associated ophthalmotoxicity in patients with rheumatic diseases on HCQ sulphate and should actively monitor patients, have them undergo regular ophthalmological examinations and give appropriate treatment to prevent exacerbation of symptoms.
Collapse
Affiliation(s)
- Ji-peng Peng
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiao-yu Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Feng Luo
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xue-mei Yuan
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hong Xiong
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wu-kai Ma
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xue-ming Yao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Cai X, Gui RY, Wu J, Wang CC, Zhu XL, Fu HX, Zhang XH. Decreased Expression of IL-35 and Its Receptor Contributes to Impaired Megakaryopoiesis in the Pathogenesis of Immune Thrombocytopenia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305798. [PMID: 38225757 DOI: 10.1002/advs.202305798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/15/2023] [Indexed: 01/17/2024]
Abstract
Recent findings have shown that the level of interleukin-35 (IL-35) is abnormal in several autoimmune diseases. Nonetheless, whether IL-35 participates in the pathogenesis of immune thrombocytopenia (ITP) remains unclear. The current study investigates whether IL-35 modulates megakaryopoiesis. The results show that IL-35 receptors are progressively expressed on bone marrow megakaryocytes during the in vitro differentiation of CD34+ progenitors. IL-35 increases the number of megakaryocyte colony-forming units through the Akt pathway. The level of bone marrow IL-35 is reduced in ITP patients, and the decreased level of IL-35 may inhibit megakaryopoiesis. Then, the potential causes of decreased IL-35 in ITP patients are explored. The primary type of cell that secretes IL-35, known as IL-35-producing regulatory T cells (iTr35), is reduced in ITP patients. Bone marrow mesenchymal stem cells (MSCs) from ITP patients exhibit an impaired capability of inducing iTr35 due to enhanced apoptosis, which may contribute to the reduced level of bone marrow IL-35 in ITP patients. Iguratimod promotes megakaryocyte development and differentiation by elevating the expression of IL-35 receptors on megakaryocytes. Iguratimod improves response rates and reduces bleeding symptoms in corticosteroid-resistant ITP patients.
Collapse
Affiliation(s)
- Xuan Cai
- Peking University People's Hospital, Beijing, 100044, China
- Peking University Institute of Hematology, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Ruo-Yun Gui
- Peking University People's Hospital, Beijing, 100044, China
- Peking University Institute of Hematology, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Jin Wu
- Peking University People's Hospital, Beijing, 100044, China
- Peking University Institute of Hematology, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Chen-Cong Wang
- Peking University People's Hospital, Beijing, 100044, China
- Peking University Institute of Hematology, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Xiao-Lu Zhu
- Peking University People's Hospital, Beijing, 100044, China
- Peking University Institute of Hematology, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Hai-Xia Fu
- Peking University People's Hospital, Beijing, 100044, China
- Peking University Institute of Hematology, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Beijing, 100044, China
- Peking University Institute of Hematology, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| |
Collapse
|
5
|
Zhou Y, Ma B, Liu Q, Duan H, Huo Y, Zhao L, Chen J, Han W, Qi H. Transmembrane Protein CMTM6 Alleviates Ocular Inflammatory Response and Improves Corneal Epithelial Barrier Function in Experimental Dry Eye. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38165704 PMCID: PMC10768713 DOI: 10.1167/iovs.65.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/04/2023] [Indexed: 01/04/2024] Open
Abstract
Purpose To investigate the impact of transmembrane protein CMTM6 on the pathogenesis of dry eye disease (DED) and elucidate its potential mechanisms. Methods CMTM6 expression was confirmed by database analysis, real-time polymerase chain reaction (RT-PCR), western blot, and immunohistochemistry. Tear secretion was measured using the phenol red thread test. Immune cell infiltration was assessed through flow cytometry. Barrier function was evaluated by fluorescein sodium staining, immunofluorescence staining of zonula occludens 1 (ZO-1), and electric cell-substrate impedance sensing (ECIS) assessment. For silencing CMTM6 expression, siRNA and shRNA were employed, along with lentiviral vector-mediated overexpression of CMTM6. Proinflammatory cytokine levels were analyzed by RT-PCR and cytometric bead array (CBA) analysis. Results CMTM6 showed high expression in healthy human and mouse corneal and conjunctival epithelium but was notably reduced in DED. Notably, this downregulation was correlated with disease severity. Cmtm6-/- dry eye (DE) mice displayed reduced tear secretion, severe corneal epithelial defects, decreased conjunctival goblet cell density, and upregulated inflammatory response. Additionally, Cmtm6-/- DE mice and CMTM6 knockdown human corneal epithelial cell-transformed (HCE-T) cells showed more severe barrier disruption and reduced expression of ZO-1. Knockdown of CMTM6 in HCE-T cells increased inflammatory responses induced by hyperosmotic stress, which was significantly mitigated by CMTM6 overexpression. Moreover, the level of phospho-p65 in hyperosmolarity-stimulated HCE-T cells increased after silencing CMTM6. Nuclear factor kappa B (NF-κB) p65 inhibition (JSH-23) reversed the excessive inflammatory responses caused by hyperosmolarity in CMTM6 knockdown HCE-T cells. Conclusions The reduction in CMTM6 expression on the ocular surface contributes to the pathogenesis of DED. The CMTM6-NF-κB p65 signaling pathway may serve as a promising therapeutic target for DED.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Baikai Ma
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Qiyao Liu
- Department of Immunology, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Hongyu Duan
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yangbo Huo
- Department of Immunology, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Lu Zhao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jiawei Chen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Wenling Han
- Department of Immunology, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Hong Qi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Chen J, Che Q, Kou Y, Rong X, Zhang X, Li M, Shu Q. A novel drug combination of Tofacitinib and Iguratimod alleviates rheumatoid arthritis and secondary osteoporosis. Int Immunopharmacol 2023; 124:110913. [PMID: 37717316 DOI: 10.1016/j.intimp.2023.110913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND The inadequate response of some patients with rheumatoid arthritis (RA) to current therapies is an issue that needs to be addressed. Patients with refractory RA (RRA) are often accompanied by high Tumor necrosis factor (TNF) expression. We evaluated the synergistic therapeutic effects of the combination of Iguratimod (IGU) and Tofacitinib (TOF) on RRA and secondary osteoporosis. METHODS Pathological changes in the ankle joints of collagen-induced arthritis (CIA) + TNF model rats were assessed using hematoxylin and eosin (HE) staining. Immunohistochemistry (IHC) and immunofluorescence (IF) were used to evaluate pyroptosis-related protein levels in the synovial tissues. Moreover, the knee joint was investigated by performing HE staining, IHC, and micro-computed tomography. Furthermore, in vitro, western blotting and enzyme-linked immunosorbent assay (ELISA) were performed to detect the effects of TOF and IGU on TNF-α-induced pyroptosis in fibroblast-like synoviocytes of RA. RESULTS After treatment with TOF and/or IGU, the arthritis scores, inflammatory cell infiltration in synovial tissues, and levels of interleukin (IL)-18, IL-1β, and IL-6 in the plasma were remarkably increased in the CIA + TNF model and dramatically decreased in the combination group. The expression of pyroptosis-related proteins was significantly lower in the combination group than in the CIA + TNF group, and a consistent trend was observed in vitro. Bone destruction was significantly alleviated, and the bone turnover rate was remarkably increased in the combination group compared to that in the CIA + TNF model. CONCLUSION TOF + IGU alleviated the severity of RRA in the CIA + TNF rat model, relieving joint inflammation, reducing bone erosion, and suppressing pyroptosis. The combined application of TOF and IGU may have a superimposed therapeutic effect on RRA and secondary osteoporotic bone remodeling.
Collapse
Affiliation(s)
- Jie Chen
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Department of Rheumatology, Jinan, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Rheumatology, Qilu Hospital, Jinan, China
| | - Qincheng Che
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Department of Rheumatology, Jinan, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Rheumatology, Qilu Hospital, Jinan, China
| | - Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Xing Rong
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Xiaojie Zhang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Department of Rheumatology, Jinan, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Rheumatology, Qilu Hospital, Jinan, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Qiang Shu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Department of Rheumatology, Jinan, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Department of Rheumatology, Qilu Hospital, Jinan, China.
| |
Collapse
|
7
|
Assefi M, Lewandrowski KU, Lorio M, Fiorelli RKA, Landgraeber S, Sharafshah A. Network-Based In Silico Analysis of New Combinations of Modern Drug Targets with Methotrexate for Response-Based Treatment of Rheumatoid Arthritis. J Pers Med 2023; 13:1550. [PMID: 38003865 PMCID: PMC10672378 DOI: 10.3390/jpm13111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Methotrexate (MTX), sulfonamides, hydroxychloroquine, and leflunomide have consistently resulted in remission with relatively mild to moderate adverse effects in patients with rheumatoid arthritis (RA). Modern medications outperform traditional treatments in that they target the pathological processes that underlie the development of RA. METHODS Following PRISMA guidelines, the authors accomplished a systematic review of the clinical efficacy of RA drugs, including the biologics such as Tumor Necrosis Factor-alpha inhibitors (TNF-α i) like Etanercept, Infliximab, Golimumab, and Adalimumab, kinase inhibitors (JAK inhibitors including Baricitinib and Tofacitanib), SyK inhibitors like Fos-tamatinib, MAPK inhibitors such as Talmapimod, T-cell inhibitors (Abatacept), IL6 blockers (Tocilizumab), and B cells depleters (Rituximab). These drugs have been found to increase remission rates when combined with MTX. A bioinformatics-based network was designed applying STRING-MODEL and the DrugBank database for the aforementioned drugs and MTX and, finally, employed for this systematic review. RESULTS Current research demonstrates that non-TNF-α inhibitor biologicals are particularly helpful in treating patients who did not respond well to conventional medications and TNF-α inhibitors. Despite being effective, these innovative drugs have a higher chance of producing hazardous side effects. The in silico investigations suggested an uncovered molecular interaction in combining MTX with other biological drugs. The STRING-MODEL showed that DHFR, TYMS, and ATIC, as the receptors of MTX, interact with each other but are not connected to the major interacted receptors. CONCLUSIONS New game-changing drugs including Mavrilimumab, Iguratimod, Upadacitinib, Fenebrutinib, and nanoparticles may be crucial in controlling symptoms in poorly managed RA patients. Emerging therapeutic targets like Toll-like 4 receptors, NLRP3 inflammasome complexes, and mesenchymal stem cells can further transform RA therapy.
Collapse
Affiliation(s)
- Marjan Assefi
- Marie Curie Science Research Center, Greensboro, NC 27407, USA;
| | - Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona, 4787 E Camp Lowell Drive, Tucson, AZ 85712, USA;
- Department of Orthopaedics, Fundación Universitaria Sanitas, Bogotá 111321, Colombia
- Department of Orthopedics, Hospital Universitário Gaffre e Guinle, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Morgan Lorio
- Advanced Orthopaedics, 499 E. Central Pkwy, Ste. 130, Altamonte Springs, FL 32701, USA;
| | - Rossano Kepler Alvim Fiorelli
- Department of General and Specialized Surgery, Gaffrée e Guinle University Hospital, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, RJ, Brazil;
| | - Stefan Landgraeber
- Klinik für Orthopädie und Orthopädische Chirurgie Gebäude 37, EG, Zimmer 56, 66421 Homburg, Germany;
| | - Alireza Sharafshah
- Marie Curie Science Research Center, Greensboro, NC 27407, USA;
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht P.O. Box 4144654839, Iran
| |
Collapse
|
8
|
Long Z, Zeng L, He Q, Yang K, Xiang W, Ren X, Deng Y, Chen H. Research progress on the clinical application and mechanism of iguratimod in the treatment of autoimmune diseases and rheumatic diseases. Front Immunol 2023; 14:1150661. [PMID: 37809072 PMCID: PMC10552782 DOI: 10.3389/fimmu.2023.1150661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023] Open
Abstract
Autoimmune diseases are affected by complex pathophysiology involving multiple cell types, cytokines, antibodies and mimicking factors. Different drugs are used to improve these autoimmune responses, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, antibodies, and small molecule drugs (DMARDs), which are prevalent clinically in the treatment of rheumatoid arthritis (RA), etc. However, low cost-effectiveness, reduced efficacy, adverse effects, and patient non-response are unattractive factors driving the development of new drugs such as iguratimod. As a new disease-modifying antirheumatic drug, iguratimod has pharmacological activities such as regulating autoimmune disorders, inflammatory cytokines, regulating immune cell activation, differentiation and proliferation, improving bone metabolism, and inhibiting fibrosis. In recent years, clinical studies have found that iguratimod is effective in the treatment of RA, SLE, IGG4-RD, Sjogren 's syndrome, ankylosing spondylitis, interstitial lung disease, and other autoimmune diseases and rheumatic diseases. The amount of basic and clinical research on other autoimmune diseases is also increasing. Therefore, this review systematically reviews the latest relevant literature in recent years, reviews the research results in recent years, and summarizes the research progress of iguratimod in the treatment of related diseases. This review highlights the role of iguratimod in the protection of autoimmune and rheumatic bone and related immune diseases. It is believed that iguratimod's unique mode of action and its favorable patient response compared to other DMARDs make it a suitable antirheumatic and bone protective agent in the future.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Xiang Ren
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Hua Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
9
|
Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8:68. [PMID: 36797236 PMCID: PMC9935929 DOI: 10.1038/s41392-023-01331-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
Collapse
|
10
|
Ritter J, Chen Y, Stefanski AL, Dörner T. Current and future treatment in primary Sjögren's syndrome - A still challenging development. Joint Bone Spine 2022; 89:105406. [PMID: 35537697 DOI: 10.1016/j.jbspin.2022.105406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease characterized by sicca symptoms, systemic manifestations and constitutional symptoms substantially diminishing patient's quality of life. In this review, we summarize recent recommendations for management of pSS patients and current clinical studies in pSS addressing unmet medical needs. Expanding knowledge about disease pathogenesis and the introduction of validated outcome measures, such as capturing disease activity (ESSDAI) and patient-reported outcomes (ESSPRI) have shaped recent developments. In contrast, lack of evidence for current treatment options remarkably limits the management of pSS patients as reflected by the 2019 updated EULAR recommendations for management of Sjögren's syndrome. In this context, symptomatic treatment is usually appropriate for sicca symptoms, whereas systemic treatment is reserved for moderate to severe organ manifestations including care by a multidisciplinary team in centers of expertise. Most promising targets for new treatment modalities are based on immunopathological insights and include direct B cell targeting strategies, targeting co-stimulation by CD40/CD40L blocking, inhibition of key cytokine activity (BLyS/BAFF, type I interferon) and intracellular signaling pathways.
Collapse
Affiliation(s)
- Jacob Ritter
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Yidan Chen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Ana-Luisa Stefanski
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany.
| |
Collapse
|
11
|
Ma Z, Zhou Y, Wang Y, Xu Y, Liu Y, Liu Y, Jiang M, Zhang X, Cao X. RNA-binding protein hnRNP UL1 binds κB sites to attenuate NF-κB-mediated inflammation. J Autoimmun 2022; 129:102828. [DOI: 10.1016/j.jaut.2022.102828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/29/2022]
|
12
|
Clinical Efficacy of Methotrexate Combined with Iguratimod on Patients with Rheumatoid Arthritis and Its Influence on the Expression Levels of HOTAIR in Serum. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2486617. [PMID: 34805398 PMCID: PMC8604587 DOI: 10.1155/2021/2486617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/04/2022]
Abstract
Objective This study was designed to explore the clinical efficacy of methotrexate combined with iguratimod on patients with rheumatoid arthritis (RA) and its influence on the expression levels of HOTAIR in serum. Methods A total of 268 RA patients were selected as research objects, 145 patients received methotrexate alone were used as a control group (CG), 123 patients received methotrexate combined with iguratimod were taken as a research group (RG), and serum of 60 healthy people undergoing physical examination was selected as a healthy control group (HCG). The therapeutic value of two therapeutic methods for RA was compared, and the HOTAIR expression in serum was detected by qRT-PCR. Results Compared with methotrexate used alone, the joint use of methotrexate and iguratimod could provide better clinical efficacy for RA patients and would not increase the incidence of adverse events. HOTAIR was highly expressed in the serum of RA patients, and its expression decreased after treatment. Conclusion Combination therapy of methotrexate and iguratimod is a safe and effective way to treat RA patients, which can be popularized clinically.
Collapse
|
13
|
Cong S, Meng Y, Wang L, Sun J, Shi Nu Er Xia Ti TB, Luo L. T-614 attenuates knee osteoarthritis via regulating Wnt/β-catenin signaling pathway. J Orthop Surg Res 2021; 16:403. [PMID: 34158084 PMCID: PMC8220752 DOI: 10.1186/s13018-021-02530-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Background The aim of this study was to investigate the effect of Iguratimod (T-614) on rat knee osteoarthritis (KOA) and further to explore its underlying mechanism. Methods In this study, papain-induced KOA model was constructed. Hematoxylin and eosin (H&E) staining was conducted to observe the pathological changes of cartilage tissue and Mankin scoring principle was used for quantitative scoring. Transmission electron microscopy (TEM) was applied to observe the ultrastructure of cartilage tissue. ELISA was used to measure the levels of matrix metalloproteinase 13 (MMP-13) and inflammatory factors (interleukin (IL)-6 and tumor necrosis factor a (TNF-a)) in serum. RT-qPCR and immunohistochemistry were conducted to detect mRNA expression and protein expression of key genes in Wnt/β-catenin pathway. Results H&E, Mankin scoring, and TEM data confirmed that compared with model group, T-614 significantly improved the degeneration of articular cartilage. Besides, we observed that low, middle, and high doses of T-614 could decrease the levels of MMP13, TNF-α, and IL-6 in serum to different degrees. Mechanically, T-614 downregulated the mRNA and protein expression of β-catenin and MMP13 in cartilage tissue via a dose-dependent manner, and on the contrary upregulated the mRNA and protein expression of glucogen synthase kinase-3 beta (GSK-3β). Conclusion Our results suggested that T-614 can reduce the level of its downstream target gene MMP-13 and downregulate the expression of inflammatory cytokines TNF-α and IL-6 by regulating the Wnt/β-catenin signaling pathway, thereby inhibiting joint inflammation and controlling KOA degeneration of articular cartilage.
Collapse
Affiliation(s)
- Shan Cong
- Department of Rheumatism and Immunology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830017, P.R. China
| | - Yan Meng
- Department of Rheumatism and Immunology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830017, P.R. China
| | - Lingrui Wang
- Department of Rheumatism and Immunology, Xinjiang Medical University, Xinjiang, 830017, P.R. China
| | - Jiao Sun
- Department of Rheumatism and Immunology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830017, P.R. China
| | - Ta Bu Shi Nu Er Xia Ti
- Department of Rheumatism and Immunology, The Second Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830017, P.R. China
| | - Li Luo
- Department of Rheumatism and Immunology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 830017, P.R. China.
| |
Collapse
|
14
|
Shrestha S, Zhao J, Yang C, Zhang J. Iguratimod combination therapy compared with methotrexate monotherapy for the treatment of rheumatoid arthritis: a systematic review and meta-analysis. Clin Rheumatol 2021; 40:4007-4017. [PMID: 33914203 DOI: 10.1007/s10067-021-05746-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We estimated the relative efficacy and safety of iguratimod combination therapy compared with methotrexate monotherapy for the treatment of rheumatoid arthritis. METHOD We identified parallel randomized controlled trials from the Cochrane Central Register of Controlled Trials in The Cochrane Library (CENTRAL), MEDLINE, Embase, and other databases and trial registries for January April 2020. Independent assessment of the risk of bias and grading of the certainty of evidence was performed for the selected trials. We operated RevMan 5 software to compute the meta-analysis. We applied the random-effects model. The statistical methods applied were the Mantel-Haenszel method and the inverse-variance method for dichotomous and continuous outcomes, respectively. RESULTS We included 12 trials involving 1095 participants. Based on our result, patients on iguratimod combination are likely to have 3.53 (95% CI 2.22 to 5.60, moderate-certainty), 3.24, and 2.73 times higher odds for attaining American College of Rheumatology criteria (ACR) 20, 50, and 70, respectively, than methotrexate monotherapy. Disease state measured using DAS28 score (MD -0.71 score, 95% CI -1.03 to -0.39, very low certainty) and functional ability indicated by HAQ (Health Assessment Questionnaire) (MD -0.23, 95% CI -0.34 to -0.11, very low certainty) may also be better. The combination therapy also produced better results for C-reactive protein, erythrocyte sedimentation rate, pain intensity, and patient's and physician's global assessment of disease state. Incidence of adverse events were similar between the groups (OR 1.30, 95% CI 0.92 to 1.83, moderate-certainty). CONCLUSION Iguratimod combined with methotrexate may be considered a promising alternative for treating RA. Key Points • Iguratimod combination therapy produced better results in all the efficacy outcomes than methotrexate monotherapy. • Iguratimod combination therapy may be as safe as methotrexate monotherapy. • We recommend future clinical trials of iguratimod combination therapy in RA with iguratimod combined with DMARDs other than methotrexate and conducted in diverse population.
Collapse
Affiliation(s)
- Sajan Shrestha
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Jiangning, Nanjing, 211198, China
| | - Jing Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Jiangning, Nanjing, 211198, China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Jiangning, Nanjing, 211198, China.
| | - Jinping Zhang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
15
|
Han Q, Zheng Z, Liang Q, Fu X, Yang F, Xie R, Ding J, Zhang K, Zhu P. Iguratimod reduces B-cell secretion of immunoglobulin to play a protective role in interstitial lung disease. Int Immunopharmacol 2021; 97:107596. [PMID: 33892300 DOI: 10.1016/j.intimp.2021.107596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Our study aimed to investigate the effect of Iguratimod (IGU) on bleomycin (BLM)-induced interstitial lung disease (ILD). METHODS The pulmonary fibrosis model group mice were developed by intratracheal injection of BLM. Mice were divided into two groups at random: (1) Control group (BLM group) - endotracheal BLM (BLM, 3.5 mg/kg, Kayaku, Japan) plus an intraperitoneal injection of normal saline, and (2) BLM + IGU group - intratracheal BLM (same as the control group) + IGU intraperitoneal injection (50 mg/kg/d). The alveolar lavage fluid, histopathology/immunohistochemistry, imaging, and other tests were performed on days 7, 14, 21, and 28 after injection. RESULTS Lung function, including Compliance (Crs),Tissue damping (G), Static compliance (Cst), Inspiratory capacity (IC), Elastance (Ers), Tissue elastance (H) and Respiratory system resistance (Rrs) in mice, was improved by IGU. IGU reduced BLM-induced changes in pulmonary fibrosis and pulmonary inflammation, as shown in histological examination.Collagen production and inflammatory damage in the lungs caused by BLM were also reduced by IGU. IGU reduced the expression of immunoglobulin IgG and type I collagen in BLM-induced pulmonary fibrosis mice by inhibiting the production of B cells and immunoglobulin, and also delayed the deterioration of imaging changes. CONCLUSION IGU inhibits immunoglobulin secretion by B cells to relieve pulmonary inflammation and fibrosis. IGU also plays a protective role in the lung in ILD.
Collapse
Affiliation(s)
- Qing Han
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Zhaohui Zheng
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Qiang Liang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Xianghui Fu
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Fengfan Yang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Ronghua Xie
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Jin Ding
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Kui Zhang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China
| | - Ping Zhu
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, China; National Translational Science Center for Molecular Medicine, Xi'an, China.
| |
Collapse
|
16
|
Liu S, Song LP, Li RB, Feng LH, Zhu H. Iguratimod promotes transformation of mononuclear macrophages in elderly patients with rheumatoid arthritis by nuclear factor-κB pathway. World J Clin Cases 2021; 9:2181-2191. [PMID: 33869594 PMCID: PMC8026846 DOI: 10.12998/wjcc.v9.i10.2181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The role of macrophages in rheumatoid arthritis (RA) and its mechanism have attracted much attention in RA pathogenesis. Macrophages accumulate in the synoviums of RA, and the proportion of M1 type pro-inflammatory macrophages is higher than that of M2 type anti-inflammatory macrophages, leading to the secretion of inflammatory molecules and the aggravation of inflammatory reaction, which has made macrophages a potential target of RA drugs. Iguratimod is a kind of cyclo-oxygenase-2 inhibitor that affects macrophage polarity. It is speculated that its anti-inflammatory and anti-rheumatic effects may be related to the regulation of macrophage M1/M2 ratio.
AIM To investigate the effects of Iguratimod on the polarity of mononuclear macrophages in elderly patients with RA.
METHODS Elderly patients with RA and joint effusion were selected, including 10 men and 25 women, with an average age of 66.37 ± 4.42 years. Patients were treated with oral administration of 25 mg Iguratimod (Iremod, State Food and Drug Administration Approval No. H20110084) twice daily for 12 wk. Disease Activity Score 28 and Health Assessment Questionnaire score were collected according to the disease severity before and after treatment. Venous blood and joint effusion fluid were collected, mononuclear macrophages were extracted and expression of cell surface markers CD86, CD64, CD163, and CD206 was analyzed by flow cytometry. The concentration of inflammatory factors interleukin (IL)-6, IL-1β, transforming growth factor-β, and IL-4 in the joint effusion fluid was analyzed by enzyme-linked immunosorbent assay. Expression of mononuclear cells inhibitor of nuclear factor-κB (IκB) and phosphorylated IκB in peripheral blood was analyzed by western blotting.
RESULTS Disease Activity Score 28 score and Health Assessment Questionnaire score of patients treated with Iguratimod decreased significantly. The percentage of cell surface markers CD86 and CD64 decreased significantly, and the percentage of CD163 and CD206 increased significantly (P < 0.05). The inflammatory factors IL-6 and IL-1β decreased significantly, and transforming growth factor-β and IL-4 increased significantly. Western blot analysis showed that mononuclear cell inhibitor of nuclear factor-κB in peripheral blood was significantly increased after treatment, and its phosphorylation level was significantly decreased (P < 0.05).
CONCLUSION Iguratimod can promote the transformation of mononuclear macrophages from M1 to M2 in elderly patients with RA by inhibiting the nuclear factor-κB pathway, thus improving symptoms of RA.
Collapse
Affiliation(s)
- Sha Liu
- Department of Rheumatism, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital of Southern Medical University, Qiqihar 161005, Heilongjiang Province, China
| | - Li-Ping Song
- Department of Rheumatism, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital of Southern Medical University, Qiqihar 161005, Heilongjiang Province, China
| | - Rong-Bin Li
- Department of Rheumatism, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital of Southern Medical University, Qiqihar 161005, Heilongjiang Province, China
| | - Le-Heng Feng
- Department of Rheumatism, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital of Southern Medical University, Qiqihar 161005, Heilongjiang Province, China
| | - Hui Zhu
- Department of Rheumatism, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital of Southern Medical University, Qiqihar 161005, Heilongjiang Province, China
| |
Collapse
|
17
|
Xia Y, Fang X, Dai X, Li M, Jin L, Tao J, Li X, Wang Y, Li X. Iguratimod ameliorates nephritis by modulating the Th17/Treg paradigm in pristane-induced lupus. Int Immunopharmacol 2021; 96:107563. [PMID: 33812258 DOI: 10.1016/j.intimp.2021.107563] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Iguratimod, an anti-rheumatic drug, has been widely used in the treatment of rheumatoid arthritis, but is still at an investigative stage for treatment of systemic lupus erythematosus (SLE). We examined the therapeutic effects of iguratimod and the mechanism underlying the efficacy in murine lupus model. METHODS Pristane-induced lupus model of BALB/c mice (PI mice) were treated with iguratimod and mycophenolate mofetil. Proteinuria, anti-dsDNA antibodies and immunoglobulins production were measured. Renal pathology was evaluated. The percentage of Th17 and Treg cells in spleen and the expression of cytokines and mRNAs related to Th17 and Treg cells was analyzed. RESULTS Iguratimod attenuated the severity of nephritis in PI mice in a dose-dependent manner. Proteinuria was continuously decreased and pathology of glomerulonephritis and tubulonephritis was significantly reduced along with reduction of glomerular immune complex deposition. Also, serum anti-dsDNA and total IgG and IgM levels were reduced by iguratimod in mice. It is worth mentioning that the efficacy of the 30 mg/kg/d iguratimod dose is comparable to, or even better than, 100 mg kg/d of mycophenolate mofetil. Furthermore, the percentage of Th17 cells was found decreased and the percentage of Treg cells increased. ROR-γt mRNA and serum cytokines (IL-17A and IL-22) of Th17 cells decreased accordingly. By contrast, Foxp3 mRNA and cytokines (TGF-β and IL-10) of Treg cells increased. CONCLUSION Iguratimod ameliorates nephritis of SLE and modulates the Th17/Treg ratio in murine nephritis of SLE, suggesting that Iguratimod could be an effective drug in treatment of SLE.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuan Fang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaojuan Dai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Manyun Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Li Jin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaomei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yiping Wang
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Xiangpei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
18
|
Li CH, Ma ZZ, Jian LL, Wang XY, Sun L, Liu XY, Yao ZQ, Zhao JX. Iguratimod inhibits osteoclastogenesis by modulating the RANKL and TNF-α signaling pathways. Int Immunopharmacol 2021; 90:107219. [PMID: 33307512 DOI: 10.1016/j.intimp.2020.107219] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Iguratimod, a small molecular drug, has been proven to have effective bone protection for treatment of patients with bone loss-related diseases, such as rheumatoid arthritis (RA). However, the exact bone protective mechanism of iguratimod remains to be determined. The purpose of this study was to better explore the underlying mechanism of bone protection of iguratimod. METHODS Bone marrow monocytes from C57/BL6 mice were stimulated with either RANKL or TNF-α plus M-CSF. The effects of iguratimod on morphology and function of osteoclasts were confirmed by TRAP staining and bone resorption assay, respectively. The expression of osteoclast related genes was detected by RT-PCR and the activation of signal pathway was detected by Western blotting. We used rodent models of osteoporosis (ovariectomy) and of arthritis (modified TNF-α-induced osteoclastogenesis) to evaluate the osteoprotective effect of iguratimod in vivo. RESULTS Iguratimod potently inhibited osteoclast formation in a dose-dependent manner at the early stage of RANKL-induced osteoclastogenesis, whereas iguratimod had no effect on M-CSF-induced proliferation and RANK expression in bone marrow monocytes. Bone resorption was significantly reduced by both early and late addition of iguratimod. Administration of iguratimod prevented bone loss in ovariectomized mice. The blockage of osteoclastogenesis elicited by iguratimod results from abrogation of the p38、ERK and NF-κB pathways induced by RANKL. Importantly, Iguratimod also dampened TNF-α-induced osteoclastogenesis in vitro and attenuated osteoclasts generation in vivo through disrupting NF-κB late nuclear translocation without interfering with IκBα degradation. CONCLUSIONS Iguratimod not only suppresses osteoclastogenesis by interfering with RANKL and TNF-α signals, but also inhibits the bone resorption of mature osteoclasts. These results provided promising evidence for the therapeutic application of iguratimod as a unique treatment option against RA and especially in prevention of bone loss.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cell Differentiation/drug effects
- Cells, Cultured
- Chromones/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Humans
- Mice, Inbred C57BL
- NF-kappa B/metabolism
- Osteoclasts/drug effects
- Osteoclasts/metabolism
- Osteoclasts/pathology
- Osteogenesis/drug effects
- Osteoporosis, Postmenopausal/metabolism
- Osteoporosis, Postmenopausal/pathology
- Osteoporosis, Postmenopausal/prevention & control
- Ovariectomy
- RANK Ligand/pharmacology
- Rats, Wistar
- Signal Transduction
- Sulfonamides/pharmacology
- Tumor Necrosis Factor-alpha/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
- Mice
- Rats
Collapse
Affiliation(s)
- Chang-Hong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China; Osteoporosis and Bone Metabolic Diseases Center, Peking University Third Hospital, Beijing 100191, PR China
| | - Zhen-Zhen Ma
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Lei-Lei Jian
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Xin-Yu Wang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Xiang-Yuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China
| | - Zhong-Qiang Yao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China.
| | - Jin-Xia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, PR China; Osteoporosis and Bone Metabolic Diseases Center, Peking University Third Hospital, Beijing 100191, PR China.
| |
Collapse
|
19
|
Blaess J, Walther J, Petitdemange A, Gottenberg JE, Sibilia J, Arnaud L, Felten R. Immunosuppressive agents for rheumatoid arthritis: a systematic review of clinical trials and their current development stage. Ther Adv Musculoskelet Dis 2020; 12:1759720X20959971. [PMID: 33403019 PMCID: PMC7747097 DOI: 10.1177/1759720x20959971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022] Open
Abstract
Aims With the arrival of conventional synthetic (csDMARDs), biological (bDMARDS) and then targeted synthetic (tsDMARDs) disease-modifying anti-rheumatic drugs, the therapeutic arsenal against rheumatoid arthritis (RA) has recently expanded. However, there are still some unmet needs for patients who do not achieve remission and continue to worsen despite treatments. Of note, most randomized controlled trials show that, for methotrexate-inadequate responders, only 20% of patients are ACR70 responders. With our better understanding of RA pathogenesis, finding new treatments is a necessary challenge. The objective of our study was to analyse the whole pipeline of immunosuppressive and immunomodulating drugs evaluated in RA and describe their mechanisms of action and stage of clinical development. Methods We conducted a systematic review of all drugs in clinical development in RA, in 17 online registries of clinical trials. Results The search yielded 4652 trials, from which we identified 243 molecules. Those molecules belong to csDMARDs (n = 22), bDMARDs (n = 118), tsDMARDs (n = 103). Twenty-four molecules are already marketed in RA in at least one country: eight csDMARDs, 10 bDMARDs and six tsDMARDs. Molecules under current development are mainly bDMARDs (n = 34) and tsDMARDs (n = 33). Seven of those have reached phase III. A large number of molecules (150/243, 61.7%) have been withdrawn. Conclusion Despite the availability of 24 marketed molecules, the development of new targeted molecules is ongoing with a total of 243 molecules in RA. With seven molecules currently reaching phase III, we can expect an increase in the armamentarium in the years to come.
Collapse
Affiliation(s)
- Julien Blaess
- Department of Rheumatology, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, France
| | - Julia Walther
- Department of Pharmacy, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Arthur Petitdemange
- Department of Rheumatology, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, France
| | - Jacques-Eric Gottenberg
- Department of Rheumatology, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, France
| | - Jean Sibilia
- Department of Rheumatology, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, France
| | - Laurent Arnaud
- Department of Rheumatology, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des maladies auto-immunes et systémiques rares Est/Sud-Ouest (RESO), Strasbourg, France
| | - Renaud Felten
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des Maladies Autoimmunes et Systémiques Rares, Hôpital de Hautepierre, 1 Avenue Molière BP 83049, Strasbourg, Cedex, 67098, France
| |
Collapse
|
20
|
Murugesh N, Karvembu R, Vedachalam S. A Convenient Synthesis of Iguratimod‐Amine Precursor via NHC‐Catalyzed Aldehyde‐Nitrile Cross Coupling Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202003553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Nithya Murugesh
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Seenuvasan Vedachalam
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| |
Collapse
|
21
|
Anti-fibrotic effect of iguratimod on pulmonary fibrosis by inhibiting the fibroblast-to-myofibroblast transition. Adv Med Sci 2020; 65:338-347. [PMID: 32590154 DOI: 10.1016/j.advms.2020.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Pulmonary fibrosis (PF) is a severe lung disease causing significant morbidity and mortality. PF pathogenesis is attributed to the fibroblast-to-myofibroblast transition (FMT) driven by the most potent pro-fibrogenic factor TGF-β1 activating the Smad3-dependent TGF-β1 canonical pathway. Iguratimod (IGU) is a novel anti-rheumatic drug that suppresses the secretion of inflammatory factors, but is also able to modulate the differentiation of multiple cells. Therefore, the aim of this work was to investigate the effect of IGU on FMT. MATERIALS/METHODS PF mouse model was induced in C57BL/6 male mice by bleomycin. The effect of IGU was assessed through the evaluation of lung morphology by H&E and through the collagen accumulation in the lung by Masson staining. Primary human lung fibroblasts (pHLFs) were also used to evaluate the effect of IGU in vitro on TGF-β1-stimulated cells, and proliferation, migration and invasion were measured, together with genes and proteins involved in FMT. RESULTS IGU attenuated bleomycin-induced PF in mice and improved the pathological changes in their lungs. In addition, IGU significantly inhibited proliferation, migration and invasion in TGF-β1-stimulated pHLFs without causing apoptosis. Moreover, IGU significantly reduced TGF-β1-induced increase of collagen I and III mRNA expression, thus reducing lung function impairment, and α-SMA, Smad2 and Smad3 phosphorylation, fibronectin expression and F-actin microfilament formation, thus attenuating FMT through the inhibition of the Smad3 pathway. CONCLUSIONS Our results collectively revealed the beneficial effect of IGU on the inhibition of FMT, thus suggesting that it might act as an effective anti-fibrotic agent in preventing the progression of PF.
Collapse
|
22
|
Xie S, Li S, Tian J, Li F. Iguratimod as a New Drug for Rheumatoid Arthritis: Current Landscape. Front Pharmacol 2020; 11:73. [PMID: 32174824 PMCID: PMC7054862 DOI: 10.3389/fphar.2020.00073] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Iguratimod (IGU) is a novel synthetic small molecule disease modified anti-rheumatic drug approved only in Japan and China up to date. IGU plays an important immunomodulatory role in the synovial tissue of rheumatoid arthritis by inhibiting the production of immunoglobulins and cytokines and regulating T lymphocyte subsets. IGU also regulates bone metabolism by stimulating bone formation while inhibiting osteoclast differentiation, migration, and bone resorption. In clinical trials, IGU was shown to be superior to placebo and not inferior to salazosulfapyridine. Combined therapy of IGU with other disease-modifying anti-rheumatic drugs showed significant improvements for disease activity. IGU has good efficacy and tolerance as an additional treatment for rheumatoid arthritis patients with inadequate response to methotrexate and biological disease-modifying anti-rheumatic drugs. In this review, we summarize current landscape on the mechanism of action of IGU and its clinical effectiveness and safety. It is expected that further translational studies on IGU will pave the road for wider application of IGU in the treatment of autoimmune diseases other than rheumatoid arthritis.
Collapse
Affiliation(s)
- Sisi Xie
- Department of Internal Medicine, The 2nd Xiangya Hospital of Central South University, Changsha, China
| | - Shu Li
- Department of Internal Medicine, The 2nd Xiangya Hospital of Central South University, Changsha, China
| | - Jing Tian
- Department of Internal Medicine, The 2nd Xiangya Hospital of Central South University, Changsha, China
| | - Fen Li
- Department of Internal Medicine, The 2nd Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Shrestha S, Zhao J, Yang C, Zhang J. Relative efficacy and safety of iguratimod monotherapy for the treatment of patients with rheumatoid arthritis: a systematic review and meta-analysis. Clin Rheumatol 2020; 39:2139-2150. [PMID: 32076916 DOI: 10.1007/s10067-020-04986-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aims to compare the efficacy and the safety of the iguratimod with placebo and other disease-modifying antirheumatic drugs (DMARDs) in adults with rheumatoid arthritis. METHODS Two authors independently searched and selected randomized controlled trials from Cochrane library, Medline (through Pubmed), and Chinese databases, and then assessed the risk of bias (using ROB 2 tool), and graded the certainty of evidence (using the GRADEpro GDT software). We applied the RevMan 5 software for performing meta-analyses of the final consensus data. RESULTS We identified 12 trials involving 1938 participants. Ten trials had an overall high risk of bias. Although iguratimod had superior efficacy than placebo, the incidence of adverse events was also higher. Inferring to non-inferiority analysis with other DMARD therapy (primarily comprising methotrexate), iguratimod is likely to result in similar treatment response (20% (OR 1.04, 95% CI 0.79 to 1.36), 50% and 70% improvement in American College of Rheumatology criteria) and functional ability at 24 weeks. Although the disease state was slightly better with iguratimod (MD - 0.55, 95% CI - 0.85 to - 0.25), a clinically important improvement was not achieved. Iguratimod may have lower C-reactive protein and erythrocyte sedimentation rate values. Swollen joint count, tender joint count, pain intensity, and patient's and physician's global assessment of disease state may be comparable between the therapies. Both the therapies are likely to have similar odds (OR 0.91, 95% CI 0.67 to 1.26) of adverse events. CONCLUSION Our evidence suggests that iguratimod may be considered a potential alternative to methotrexate to treat rheumatoid arthritis.Key Points• The Asia Pacific League of Association for Rheumatology (APLAR) has recommended that iguratimod may be used a first-line drug for rheumatoid arthritis in specific cases.• Patients on iguratimod may have similar treatment response, functional ability, disease state, and adverse event profile at 24 weeks compared with those on methotrexate.• Iguratimod may be considered a better alternative to methotrexate in RA patients having high CRP and ESR values.• Future clinical trials in diverse population comparing the efficacy and safety of iguratimod in monotherapy or combination therapy with DMARDs (other than methotrexate) are warranted.
Collapse
Affiliation(s)
- Sajan Shrestha
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Jiangning, Nanjing, 211198, China
| | - Jing Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Jiangning, Nanjing, 211198, China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Jiangning, Nanjing, 211198, China.
| | - Jinping Zhang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
24
|
Jiang H, Gao H, Wang Q, Wang M, Wu B. Molecular mechanisms and clinical application of Iguratimod: A review. Biomed Pharmacother 2019; 122:109704. [PMID: 31918275 DOI: 10.1016/j.biopha.2019.109704] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/12/2019] [Accepted: 11/24/2019] [Indexed: 01/05/2023] Open
Abstract
Iguratimod (IGU) is a novel small-molecule anti-rheumatic drug with remarkable effectiveness and good safety for the treatment of active rheumatoid arthritis. Its mechanism of action is related to its ability to act simultaneously on T and B lymphocytes. IGU can effectively inhibit expression of various inflammatory factors, inhibit B cells from producing immunoglobulins and autoantibodies, downregulate T-cell-mediated cellular immunity, accelerate bone formation, and exert some activity against anti-pulmonary fibrosis. In recent years, IGU has been gradually applied to the treatment of a variety of rheumatic diseases, such as Sjögren's syndrome, ankylosing spondylitis and systemic lupus erythematosus. This article reviews the mechanism of action and clinical research status of IGU, and provides reference for future research on its mechanism of action and clinical application.
Collapse
Affiliation(s)
- Huihui Jiang
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, 400021, PR China; Hunan University of Traditional Chinese Medicine, Changsha, 410007, PR China
| | - Hongyan Gao
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, 400021, PR China
| | - Qin Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, 400021, PR China
| | - Miao Wang
- Department of Rheumatology, ChongqingHospital of Traditional Chinese Medicine, Chongqing, 400021, PR China
| | - Bin Wu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, 400021, PR China; Department of Rheumatology, ChongqingHospital of Traditional Chinese Medicine, Chongqing, 400021, PR China.
| |
Collapse
|
25
|
Liu Y, Zhang Y, Bian W, Fu J, Sun X, Chen D, Chen J, Zhao X, Li Y, Zhang W, Li Z. Efficacy and safety of iguratimod on patients with relapsed or refractory IgG4-related disease. Clin Rheumatol 2019; 39:491-497. [PMID: 31848912 DOI: 10.1007/s10067-019-04880-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the therapeutic efficacy and safety of iguratimod on patients with relapsed or refractory IgG4-related disease (IgG4-RD). METHODS We conducted a retrospective single-center study in 17 IgG4-RD patients admitted to Peking University People's Hospital. Patients were given iguratimod, 25 mg, twice daily and clinical data were collected at 0, 12, and 24 weeks. The baseline treatments include prednisone, cyclophosphamide, leflunomide, mycophenolate mofetil, and methotrexate. Clinical manifestation, IgG4-RD responder index (IgG-RD RI), serological indexes, gland ultrasound findings, and adverse drug effect were recorded. IgG4-RD RI scores < 3 and declining ≥ 2 were recognized as complete response (CR); IgG4-RD RI scores declining ≥ 2 but remaining ≥ 3 were recognized as partial response (PR). If a patient's IgG4-RD RI score was 3 at the beginning, PR was considered as a 1-point decrease after the therapy. RESULTS Serum IgG4 decreased significantly from 708 (321-902) mg/dl at baseline to 446 (138-396) mg/dl at 24 weeks (P = 0.0016). IgG4-RD RI decreased significantly from 9.79 ± 3.07 at baseline to 3.57 ± 1.09 at 24 weeks (P < 0.0001). Overall, 2 (14.3%) patients achieved CR, 11 (78.6%) patients achieved PR, and 1 (7.14%) patient had no response to treatment at week 24. Serum IgG level and salivary glands major diameter also decreased significantly at week 12 and 24 after treatment. CONCLUSION Iguratimod can be a therapeutic strategy to achieve remission in relapsed or refractory IgG4-RD patients inadequately responding to corticosteroid treatment with or without other immunosuppressant treatment. Key messages • Iguratimod was effective for relapsed or refractory IgG4-RD patients. • Iguratimod can improve the clinical symptoms of patients, reduce the serum IgG and IgG4 levels, and can also reduce the volume of involved glands.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Yuxin Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Wenjie Bian
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Jiangnan Fu
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Xing Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Da Chen
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Jiali Chen
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Xiaozhen Zhao
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Yingni Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Wen Zhang
- Department of Rheumatology and Immunology, Peking Union Medical College Hospital, Beijing, 100005, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
26
|
Hou C, Zhu X, Shi C, Peng Y, Huang D, Li Q, Miao Y. Iguratimod (T-614) attenuates severe acute pancreatitis by inhibiting the NLRP3 inflammasome and NF-κB pathway. Biomed Pharmacother 2019; 119:109455. [PMID: 31541854 DOI: 10.1016/j.biopha.2019.109455] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Severe acute pancreatitis (SAP) is an acute abdominal disease that can develop locally to the multiple organs. It is characterized by pancreatic tissue self-digestion, and the rapid release of inflammatory cytokines, which play a dominant role in local or even systemic inflammation. In this study, we investigate the protective effect of T-614 against SAP induced by cerulein plus LPS in mice. Biochemical markers associated with pancreatitis in serum such as inflammatory cytokines, amylase and lipase activities were measured. Related proteins of NLRP3 inflammasome and NF-κB signaling pathway were evaluated by western blotting. Hematoxylin-eosin staining (HE) and immunohistochemistry (IHC) were used to evaluate changes of inflammation in pancreatic tissue. T-614 significantly alleviated the elevation markers of pancreatitis and suppresses the pancreatic tissue damage, including histopathological and molecular manifestations. In conclusion, T-614 plays a protective role in experimental SAP mice model via anti-inflammatory effects.
Collapse
Affiliation(s)
- Chaoqun Hou
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaole Zhu
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chenyuan Shi
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yunpeng Peng
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dongya Huang
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiang Li
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yi Miao
- Pancreas Centre, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, Province, China; Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
27
|
Skarlis C, Marketos N, Mavragani CP. Biologics in Sjögren's syndrome. Pharmacol Res 2019; 147:104389. [DOI: 10.1016/j.phrs.2019.104389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
|
28
|
Zhang P, Gong Y, Liu Z, Liu Y, Lin W, Li J, Wang M, Liu X, Fei Y, Chen H, Peng L, Li J, Zhou J, Shi Q, Zhang X, Shen M, Zeng X, Zhang F, Li Y, Zhao Y, Zhang W. Efficacy and safety of iguratimod plus corticosteroid as bridge therapy in treating mild IgG4-related diseases: A prospective clinical trial. Int J Rheum Dis 2019; 22:1479-1488. [PMID: 31245907 PMCID: PMC6772123 DOI: 10.1111/1756-185x.13633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/26/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Aim The purpose of this study is to evaluate the therapeutic efficacy and safety of iguratimod plus corticosteroid as bridge therapy in the treatment of mild immunoglobulin G4‐related disease (IgG4‐RD). Methods Newly diagnosed IgG4‐RD patients, without internal organ involvement were enrolled. Patients were given one dose of diprospan, intramuscular injection, and iguratimod, 25 mg, twice daily, for 24 weeks and were followed up at 0, 12 and 24 weeks. Follow‐up indexes included IgG4‐RD responder index (IgG4‐RD RI), serology and imaging, plasma cytokines and adverse drug effect. Flow cytometry was performed for T, B cell subsets and plasma was collected for liquid chromatography mass spectrometry (LC‐MS)‐based metabolomic profiling and data processing. Results Thirty patients were enrolled. At week 24, 9 (30.0%) patients achieved complete response, 17 (56.7%) patients with partial response, and 4 (13.3%) patients had no response to treatment. IgG4‐RD RI, serum IgG and IgG4 levels decreased significantly at weeks 12 and 24 after treatment, as well as CD3+ CD8+ T cells, plasmablast/plasma cells and memory B cells. The LC‐MS based plasma metabolomic profiles revealed significant changes between untreated patients and healthy donors, which became much similar to normal states after treatment. Conclusion Iguratimod plus corticosteroid as bridge therapy is effective for the treatment of mild IgG4‐RD, it can improve the clinical symptoms, reduce serum IgG and IgG4 levels, especially plasmablasts/plasma cells and memory B cells. In addition, the metabolite profiling became similar to normal controls after treatment.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yiyi Gong
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zheng Liu
- Department of Rheumatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanying Liu
- Department of Rheumatology, Peking University People's Hospital, Beijing, China
| | - Wei Lin
- Department of Rheumatology, Hebei General Hospital, Hebei, China
| | - Jieqiong Li
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mu Wang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaowei Liu
- Department of ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yunyun Fei
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Hua Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Linyi Peng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jing Li
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qun Shi
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Min Shen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
29
|
Ye Y, Liu M, Tang L, Du F, Liu Y, Hao P, Fu Q, Guo Q, Yan Q, Zhang X, Bao C. Iguratimod represses B cell terminal differentiation linked with the inhibition of PKC/EGR1 axis. Arthritis Res Ther 2019; 21:92. [PMID: 30971291 PMCID: PMC6458835 DOI: 10.1186/s13075-019-1874-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 02/04/2023] Open
Abstract
Background This study aimed to explore the molecular mechanism and clinical relevance of iguratimod in the regulation of human B cell terminal differentiation. Methods An in vitro human antibody-secreting cell (ASC) differentiation system was established to test the effect of iguratimod. B cell phenotype and key transcription factors (TFs) relevant to ASC differentiation were analyzed through flow cytometry and qPCR. The COX-2 activity was measured by enzyme immunoassay (EIA). RNA sequencing was used to identify potential targets of iguratimod. We enrolled six treatment-naive rheumatoid arthritis (RA) patients whose blood samples were collected for phenotypic and molecular studies along with 12-week iguratimod monotherapy. Results Iguratimod inhibited human ASC generation without affecting B cell activation and proliferation. Iguratimod showed only weak COX-2 activity. Gene set enrichment analysis (GSEA) identified that protein kinase C (PKC) pathway was targeted by iguratimod which was confirmed by PKC activity detection. Furthermore, early growth response 1 (EGR1), a target of PKC and a non-redundant TF for ASC differentiation, was found to be the most downregulated gene in iguratimod-treated B cells. Lastly, iguratimod monotherapy decreased peripheral ASCs and was associated with improved disease activity. The expression of major ASC-related TFs, including EGR1, was similarly downregulated in patient blood samples. Conclusions Iguratimod inhibits ASC differentiation both in vitro and in RA patients. Our study suggests that PKC/EGR1 axis, rather than COX-2, is critically involved in the inhibitory effect by iguratimod on human ASC differentiation. Iguratimod could have a broader application to treat B cell-related autoimmune diseases in clinics. Electronic supplementary material The online version of this article (10.1186/s13075-019-1874-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Ye
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Shandong C Rd, Shanghai, 200001, China.,Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China
| | - Mei Liu
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China
| | | | - Fang Du
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China
| | - Yuanhua Liu
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China
| | - Pei Hao
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China
| | - Qiong Fu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Shandong C Rd, Shanghai, 200001, China
| | - Qiang Guo
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Shandong C Rd, Shanghai, 200001, China
| | - Qingran Yan
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Shandong C Rd, Shanghai, 200001, China.
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China.
| | - Chunde Bao
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Shandong C Rd, Shanghai, 200001, China.
| |
Collapse
|
30
|
Role of MIF and D-DT in immune-inflammatory, autoimmune, and chronic respiratory diseases: from pathogenic factors to therapeutic targets. Drug Discov Today 2018; 24:428-439. [PMID: 30439447 DOI: 10.1016/j.drudis.2018.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/04/2018] [Accepted: 11/06/2018] [Indexed: 01/03/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a protein that acts as a cytokine-, enzyme-, endocrine- and chaperon-like molecule. It binds to the cell-surface receptor CD74 in association with CD44, which activates the downstream signal transduction pathway. In addition, MIF acts also as a noncognate ligand for C-X-C chemokine receptor type 2 (CXCR2), type 4 (CXCR4), and type 7 (CXCR7). Recently, D-dopachrome tautomerase (D-DT), a second member of the MIF superfamily, was identified. From a pharmacological and clinical point of view, the nonredundant biological properties of MIF and D-DT anticipate potential synergisms from their simultaneous inhibition. Here, we focus on the role of MIF and D-DT in human immune-inflammatory, autoimmune, and chronic respiratory diseases, providing an update on the progress made in the identification of specific small-molecule inhibitors of these proteins.
Collapse
|
31
|
Hagihara M, Mese T, Ohara S, Hua J, Ide S, Inoue M. Methotrexate-associated Intravascular Large B-cell Lymphoma in a Patient with Rheumatoid Arthritis: A Very Rare Case. Intern Med 2018; 57:3001-3005. [PMID: 29780139 PMCID: PMC6232033 DOI: 10.2169/internalmedicine.0875-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We herein report a rare case of methotrexate (MTX)-associated intravascular large B-cell lymphoma (IVLBCL) in a man with rheumatoid arthritis. Two episodes of a fever of unknown origin accompanied by elevated levels of serum lactate dehydrogenase and the soluble interleukin-2 receptor occurred within a year, so the patient was suspected of having an MTX-associated lymphoproliferative disorder. His clinical symptoms resolved after the cessation of MTX. However, after treatment with iguratimod, another disease-modified anti-rheumatic drug, markedly similar symptoms recurred, and random skin biopsies resulted in a diagnosis of IVLBCL. The patient received a rituximab-containing chemotherapy and achieved complete remission.
Collapse
Affiliation(s)
| | - Toru Mese
- Department of Hematology, Eiju General Hospital, Japan
| | - Shin Ohara
- Department of Hematology, Eiju General Hospital, Japan
| | - Jian Hua
- Department of Hematology, Eiju General Hospital, Japan
| | - Shiro Ide
- Department of Hematology, Eiju General Hospital, Japan
| | | |
Collapse
|
32
|
Li XL, Liu XC, Song YL, Hong RT, Shi H. Suspected drug-induced liver injury associated with iguratimod: a case report and review of the literature. BMC Gastroenterol 2018; 18:130. [PMID: 30143001 PMCID: PMC6108147 DOI: 10.1186/s12876-018-0858-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/14/2018] [Indexed: 02/25/2023] Open
Abstract
Background Iguratimod is a novel anti-rheumatic drug with the capability of anti-cytokines as report goes. It has been reported that iguratimod is effective and safe for rheumatoid arthritis and other rheumatisms. As side effects, iguratimod can cause gastrointestinal reactions, dizziness, headache and itchy. Case presentation In this case report, a 60-year-old female patient was admitted with suspected drug-induced liver injury (DILI) caused by iguratimod. The causality assessment was done by the updated RUCAM, and the possibility of the case in our paper diagnosed as highly probable for the score was 9 points. Iguratimod was discontinued immediately, and methylprednisolone was used for acute liver injury and Sjogren’s syndrome. The data showed the patient has improved gradually, and she was discharged on day 27. The true incidence of iguratimod-related hepatotoxicity and its pathogenic mechanism are largely unknown. It is difficult to recognize and diagnose DILI, and there is no standard for diagnosis of DILI. At the same time, the DILI is still lack of specific treatment. Conclusions Based on this rare case of severe liver injury, we recommend careful monitoring of liver function throughout iguratimod treatment for diseases.
Collapse
Affiliation(s)
- Xiao-Li Li
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, NO.218, Jixi Road, Hefei, 230022, Anhui Province, China
| | - Xiao-Chang Liu
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, NO.218, Jixi Road, Hefei, 230022, Anhui Province, China
| | - Yu-Lin Song
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, NO.218, Jixi Road, Hefei, 230022, Anhui Province, China
| | - Ru-Tao Hong
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, NO.218, Jixi Road, Hefei, 230022, Anhui Province, China
| | - Hai Shi
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, NO.218, Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
33
|
Xia Y, Zhao S, Gong M, Ding L. A rapid and sensitive LC-MS/MS method for analysis of iguratimod in human plasma: Application to a pharmacokinetic study in Chinese healthy volunteers. Biomed Chromatogr 2018; 32:e4277. [PMID: 29729125 DOI: 10.1002/bmc.4277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
A rapid, sensitive and reproducible LC-MS/MS method was developed and validated to determine iguratimod in human plasma. Sample preparation was achieved by protein precipitation with acetonitrile. Chromatographic separation was operated on an Ultimate® XB-C18 column (2.1 × 50 mm, 3.5 μm, Welch) with a flow rate of 0.400 mL/min, using a gradient elution with acetonitrile and water which contained 2 mm ammonium acetate and 0.1% formic acid as the mobile phase. The detection was performed on a Triple Quad™ 5500 mass spectrometer coupled with an electrospray ionization interface under positive-ion multiple reaction monitoring mode with the transition ion pairs of m/z 375.2 → 347.1 for iguratimod and m/z 244.3 → 185.0 for agomelatine (the internal standard), respectively. The method was linear over the range of 5.00-1500 ng/mL with correlation coefficients ≥0.9978. The accuracy and precision of intra- and inter-day, dilution accuracy, recovery and stability of the method were all within the acceptable limits and no matrix effect or carryover was observed. As a result, the main pharmacokinetic parameters of iguratimod were as follows: Cmax , 1074 ± 373 ng/mL; AUC0-72 , 13591 ± 4557 ng h/mL; AUC0-∞ , 13,712 ± 4613 ng h/mL; Tmax , 3.29 ± 1.23 h; and t1/2 , 8.89 ± 1.23 h.
Collapse
Affiliation(s)
- Ying Xia
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
- Nanjing Clinical Tech. Laboratories Inc., Nanjing, China
| | - Shunbo Zhao
- Nanjing Clinical Tech. Laboratories Inc., Nanjing, China
| | - Meng Gong
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
- Nanjing Clinical Tech. Laboratories Inc., Nanjing, China
| | - Li Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
- Nanjing Clinical Tech. Laboratories Inc., Nanjing, China
| |
Collapse
|
34
|
Yoshikawa A, Yoshida S, Kimura Y, Tokai N, Fujiki Y, Kotani T, Matsumura Y, Takeuchi T, Makino S. Add-on iguratimod as a therapeutic strategy to achieve remission in patients with rheumatoid arthritis inadequately responding to biological DMARDs: A retrospective study. Mod Rheumatol 2017. [DOI: 10.1080/14397595.2017.1336865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ayaka Yoshikawa
- Department of Internal Medicine IV, Osaka Medical College, Osaka, Japan
| | - Shuzo Yoshida
- Department of Internal Medicine IV, Osaka Medical College, Osaka, Japan
| | - Yuko Kimura
- Department of Internal Medicine IV, Osaka Medical College, Osaka, Japan
| | - Nao Tokai
- Department of Internal Medicine IV, Osaka Medical College, Osaka, Japan
| | - Yohei Fujiki
- Department of Internal Medicine IV, Osaka Medical College, Osaka, Japan
| | - Takuya Kotani
- Department of Internal Medicine IV, Osaka Medical College, Osaka, Japan
| | - Yoko Matsumura
- Department of Internal Medicine IV, Osaka Medical College, Osaka, Japan
| | - Tohru Takeuchi
- Department of Internal Medicine IV, Osaka Medical College, Osaka, Japan
| | - Shigeki Makino
- Department of Internal Medicine IV, Osaka Medical College, Osaka, Japan
| |
Collapse
|
35
|
Anti-allodynic action of the disease-modifying anti-rheumatic drug iguratimod in a rat model of neuropathic pain. Inflamm Res 2017; 66:855-862. [PMID: 28612120 DOI: 10.1007/s00011-017-1064-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/15/2017] [Accepted: 06/07/2017] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Patients with rheumatoid arthritis experience nociceptive as well as neuropathic pain. The effect of iguratimod (IGU), a disease-modifying anti-rheumatic drug, on neuropathic pain in a rat model of chronic constriction injury (CCI) was examined in this study. METHODS CCI was induced by making four ligations on the left sciatic nerve. Rats with stable signs of static allodynia were selected 2 weeks after the surgery and drug treatments were started (day 0). The test drugs were orally administered once daily for 15 days. The threshold of mechanical pain response in the hind paw was evaluated by the von Frey hair test in a blinded manner. To observe histological changes in the spinal cord, the L4 region was subjected to immunohistochemical analysis for the detection of microglial cells. RESULTS IGU showed an anti-allodynic effect on CCI-induced neuropathic pain at days 6 and 14, but not at 90 min after the first administration of IGU. This effect of IGU was observed until day 21. Furthermore, IGU decreased the number of Iba-1-positive cells, which had been increased at the ipsilateral side of the dorsal horn by CCI. CONCLUSIONS These results suggest that IGU suppresses neuropathic pain via a different mechanism from that of current therapeutics.
Collapse
|
36
|
Wedekind KJ, Ruff KJ, Atwell CA, Evans JL, Bendele AM. Beneficial effects of natural eggshell membrane (NEM) on multiple indices of arthritis in collagen-induced arthritic rats. Mod Rheumatol 2016; 27:838-848. [PMID: 27846748 DOI: 10.1080/14397595.2016.1259729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES This study was performed to evaluate the potential efficacy of natural eggshell membrane (NEM) in collagen-induced arthritic rats, a well-established rodent model of inflammation and rheumatoid arthritis. METHODS Rats with developing type II collagen-induced arthritis (CIA) were treated once daily by oral gavage on study days -14 to 17 with vehicle or NEM (52 mg/kg body weight). Rats were euthanized on study day 17. Efficacy was assessed by daily ankle caliper measurements, ankle diameter expressed as area under the curve (AUCd0-17), and histopathologic evaluation of ankles and knees. Serum biomarkers of cartilage function and inflammation [collagen type II C-telopeptide (CTXII), cartilage oligomeric matrix protein (COMP), and alpha-2-macroglobulin (A2M)] were measured by ELISA. RESULTS Treatment with NEM resulted in significant beneficial effects on the daily ankle diameter measurements and ankle diameter AUC. Ankle and knee histopathology scores were significantly reduced (36% and 43% reduction of summed individual histopathology scores for ankle and knee, respectively; p < 0.05) toward normal for rats given NEM compared to vehicle controls. The percent reduction of serum CTXII, COMP, and A2M in NEM-treated rats ranged from 30% to 72% (p < 0.05). CONCLUSIONS NEM significantly improved multiple aspects of inflammatory arthritis including inflammation, pannus, cartilage damage, bone resorption, and periosteal bone formation. This study provides further support for the use of CTXII, COMP, and A2M as relevant biomarkers that were responsive to NEM.
Collapse
Affiliation(s)
- Karen J Wedekind
- a Research and Development Department , Novus International , St. Charles , MO , USA
| | | | - Cindy A Atwell
- a Research and Development Department , Novus International , St. Charles , MO , USA
| | - Joseph L Evans
- c P and N Development Ventures , St. Louis , MO , USA , and
| | | |
Collapse
|
37
|
Yamamoto T, Hasegawa K, Onoda M, Tanaka K. Pharmacokinetic and Pharmacodynamic Analyses of Drug-Drug Interactions between Iguratimod and Warfarin. YAKUGAKU ZASSHI 2016; 136:905-11. [DOI: 10.1248/yakushi.15-00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Gan K, Yang L, Xu L, Feng X, Zhang Q, Wang F, Tan W, Zhang M. Iguratimod (T-614) suppresses RANKL-induced osteoclast differentiation and migration in RAW264.7 cells via NF-κB and MAPK pathways. Int Immunopharmacol 2016; 35:294-300. [DOI: 10.1016/j.intimp.2016.03.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 11/30/2022]
|