1
|
Ren H, Zhu B, An Y, Xie F, Wang Y, Tan Y. Immune communication between the intestinal microbiota and the cardiovascular system. Immunol Lett 2023; 254:13-20. [PMID: 36693435 DOI: 10.1016/j.imlet.2023.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/27/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
The intestine hosts a large number of microbial communities. Recent studies have shown that gut microbiota-mediated immune responses play a vital role in developing cardiovascular diseases (CVD). Immune cells are extensively infiltrated in the gut and heart tissues, such as T cells, B cells, and macrophages. They play a crucial role in the crosstalk between the heart and gut microbiota. And the microbiota influences the bidirectional function of immune cells in CVD such as myocardial infarction and atherosclerosis, including through metabolites. The mapping of immune cell-mediated immune networks in the heart and gut provides us with new targets for treating CVD. This review discusses the role of immune cells in gut microbiota and cardiac communication during health and CVD.
Collapse
Affiliation(s)
- Hao Ren
- Department of Medical Microbiology, Central South University Changsha, Hunan Provinces, China
| | - Botao Zhu
- Department of Medical Microbiology, Central South University Changsha, Hunan Provinces, China
| | - Yuze An
- Department of Medical Microbiology, Central South University Changsha, Hunan Provinces, China
| | - Feng Xie
- Department of Medical Microbiology, Central South University Changsha, Hunan Provinces, China
| | - Yichuan Wang
- Department of Medical Microbiology, Central South University Changsha, Hunan Provinces, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University Changsha, Hunan Provinces, China.
| |
Collapse
|
2
|
Chawla S, Barman P, Tyagi R, Jindal AK, Sharma S, Rawat A, Singh S. Autoimmune Cytopenias in Common Variable Immunodeficiency Are a Diagnostic and Therapeutic Conundrum: An Update. Front Immunol 2022; 13:869466. [PMID: 35795667 PMCID: PMC9251126 DOI: 10.3389/fimmu.2022.869466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency (PID). CVID is a heterogenous condition and clinical manifestations may vary from increased susceptibility to infections to autoimmune manifestations, granulomatous disease, polyclonal lymphoproliferation, and increased risk of malignancy. Autoimmune manifestations may, at times, be the first and only clinical presentation of CVID, resulting in diagnostic dilemma for the treating physician.Autoimmune cytopenias (autoimmune haemolytic anaemia and/or thrombocytopenia) are the most common autoimmune complications seen in patients with CVID. Laboratory investigations such as antinuclear antibodies, direct Coomb’s test and anti-platelet antibodies may not be useful in patients with CVID because of lack of specific antibody response. Moreover, presence of autoimmune cytopenias may pose a significant therapeutic challenge as use of immunosuppressive agents can be contentious in these circumstances. It has been suggested that serum immunoglobulins must be checked in all patients presenting with autoimmune cytopenia such as immune thrombocytopenia or autoimmune haemolytic anaemia.It has been observed that patients with CVID and autoimmune cytopenias have a different clinical and immunological profile as compared to patients with CVID who do not have an autoimmune footprint. Monogenic defects have been identified in 10-50% of all patients with CVID depending upon the population studied. Monogenic defects are more likely to be identified in patients with CVID with autoimmune complications. Common genetic defects that may lead to CVID with an autoimmune phenotype include nuclear factor kappa B subunit 1 (NF-kB1), Lipopolysaccharide (LPS)-responsive beige-like anchor protein (LRBA), cytotoxic T lymphocyte antigen 4 (CTLA4), Phosphoinositide 3-kinase (PI3K), inducible T-cell costimulatory (ICOS), IKAROS and interferon regulatory factor-2 binding protein 2 (IRF2BP2).In this review, we update on recent advances in pathophysiology and management of CVID with autoimmune cytopenias.
Collapse
|
3
|
Jasiński M, Biliński J, Basak GW. The Role of the Crosstalk Between Gut Microbiota and Immune Cells in the Pathogenesis and Treatment of Multiple Myeloma. Front Immunol 2022; 13:853540. [PMID: 35432306 PMCID: PMC9009288 DOI: 10.3389/fimmu.2022.853540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
Around 10% of all hematologic malignancies are classified as multiple myeloma (MM), the second most common malignancy within that group. Although massive progress in developing of new drugs against MM has been made in recent years, MM is still an incurable disease, and every patient eventually has relapse refractory to any known treatment. That is why further and non-conventional research elucidating the role of new factors in MM pathogenesis is needed, facilitating discoveries of the new drugs. One of these factors is the gut microbiota, whose role in health and disease is still being explored. This review presents the continuous changes in the gut microbiota composition during our whole life with a particular focus on its impact on our immune system. Additionally, it mainly focuses on the chronic antigenic stimulation of B-cells as the leading mechanism responsible for MM promotion. The sophisticated interactions between microorganisms colonizing our gut, immune cells (dendritic cells, macrophages, neutrophils, T/B cells, plasma cells), and intestinal epithelial cells will be shown. That article summarizes the current knowledge about the initiation of MM cells, emphasizing the role of microorganisms in that process.
Collapse
Affiliation(s)
- Marcin Jasiński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Jarosław Biliński
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.,Human Biome Institute, Gdańsk, Poland
| | - Grzegorz W Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.,Human Biome Institute, Gdańsk, Poland
| |
Collapse
|
4
|
Pan J, Hu S, Ren X, Hu H, Deng X, Yu B, Cobos I, Chen X, Zhang W. Whole-Transcriptome Profiling and circRNA-miRNA-mRNA Regulatory Networks in B-Cell Development. Front Immunol 2022; 13:812924. [PMID: 35386709 PMCID: PMC8978327 DOI: 10.3389/fimmu.2022.812924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
The generation and differentiation of B lymphocytes (B cells) is a flexible process with many critical regulatory factors. Previous studies indicated that non-coding RNAs play multiple roles in the development of lymphocytes. However, little has been known about the circular RNA (circRNA) profiles and their competing endogenous RNA (ceRNA) networks in B-cell development and differentiation. Here, four B-cell subsets were purified from single-cell suspensions of mouse bone marrow. Then RNA sequencing (RNA-Seq) was used to display expression profiles of circRNAs, miRNAs and mRNAs during B-cell differentiation. 175, 203, 219 and 207 circRNAs were specifically expressed in pro-B cells, pre-B cells, immature B cells and mature B cells, respectively. The circRNA-associated ceRNA networks constructed in two sequential stages of B-cell differentiation revealed the potential mechanism of circRNAs in these processes. This study is the first to explore circRNA profiles and circRNA-miRNA-mRNA networks in different B-cell developmental stages of mouse bone marrow, which contribute to further research on their mechanism in B-cell development and differentiation.
Collapse
Affiliation(s)
- Jie Pan
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Saineng Hu
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xuanyao Ren
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Hao Hu
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiaoying Deng
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Xiaofan Chen
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wei Zhang
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
5
|
Huang Z, He A, Wang J, Lu H, Xu X, Zhang R, Liao W, Feng Q, Wu L. Toll-like receptor 3 is a potential prognosis marker and associated with immune infiltration in stomach adenocarcinoma. Cancer Biomark 2021; 34:77-93. [PMID: 34657879 DOI: 10.3233/cbm-210354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Toll-like receptors participate in various biological mechanisms, mainly including the immune response and inflammatory response. Nevertheless, the role of TLRs in STAD remains unclear. OBJECTIVE We aimed to explore the expression, prognosis performance of TLRs in STAD and their relationship with immune infiltration. METHODS Student's t-test was used to evaluate the expression of TLRs between STAD tissues and normal tissues. Kaplan-Meier method was applied to explored the prognosis value of TLRs in STAD. And qRT-PCR validated their expression and prognosis value. Spearman's correlation analysis and Wilcoxon rank-sum test were used to assess the association between TLRs and immune infiltration in STAD. RESULTS The mRNA level of TLR3 was downregulated in STAD. We summarized genetic mutations and CNV alteration of TLRs in STAD cohort. Prognosis analysis revealed that STAD patients with high TLR3 expression showed better prognosis in OS, FP and PPS. The result of qRT-PCR suggested that TLR3 expression was decreased in STAD tissues and STAD patients with high TLR3 mRNA level had a better OS. Univariate and multivariate cox regression analysis suggested TLR3 expression and clinical stage as independent factors affecting STAD patients' prognosis. A positive association existed between TLR3 expression and the abundance of immune cells and the expression of various immune biomarkers. Furthermore, key targets related to TLR3 were identified in STAD, mainly including MIR-129 (GCAAAAA), PLK1, and V$IRF1_01. CONCLUSIONS Our result demonstrated TLR3 as a prognosis marker and associated with immune infiltration in STAD.
Collapse
Affiliation(s)
- Zhihao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Aoxiao He
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiakun Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyun Xu
- Department of General Surgery, Jinxian People's Hospital, Nanchang, Jiangxi, China
| | - Rongguiyi Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Liao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qian Feng
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Yu B, Wang L, Chu Y. Gut microbiota shape B cell in health and disease settings. J Leukoc Biol 2021; 110:271-281. [PMID: 33974295 DOI: 10.1002/jlb.1mr0321-660r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Recent accumulating evidence supports the hypothesis that the intricate interaction between gut microbiota and the immune system profoundly affects health and disease in humans and mice. In this context, microbiota plays an important role in educating and shaping the host immune system which, in turn, regulates gut microbiota diversity and function to maintain homeostasis. Studies have demonstrated that intestinal microbiota participates in shaping B cells in health and disease settings. Herein, we review the recent progress in understanding how microbiota regulates B-cell development, focusing on early-life B-cell repertoire generation in GALT and how microbial products, including microbial antigens and metabolites, affect B-cell activation and differentiation to ultimately regulate B-cell function. We also discuss the interaction between gut microbiota and B cells under pathogenic conditions and highlight new approaches that can be applied to treat various diseases.
Collapse
Affiliation(s)
- Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Jin YH, Kim CX, Huang J, Kim BS. Infection and Activation of B Cells by Theiler's Murine Encephalomyelitis Virus (TMEV) Leads to Autoantibody Production in an Infectious Model of Multiple Sclerosis. Cells 2020; 9:cells9081787. [PMID: 32727036 PMCID: PMC7465974 DOI: 10.3390/cells9081787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022] Open
Abstract
Theiler’s murine encephalomyelitis virus (TMEV) induces immune-mediated inflammatory demyelinating disease in susceptible mice that is similar to human multiple sclerosis (MS). In light of anti-CD20 therapies for MS, the susceptibility of B cells to TMEV infection is particularly important. In our study, direct viral exposure to macrophages and lymphocytes resulted in viral replication and cellular stimulation in the order of DCs, macrophages, B cells, and T cells. Notably, B cells produced viral proteins and expressed elevated levels of CD69, an activation marker. Similarly, the expression of major histocompatibility complex class II and costimulatory molecules in B cells was upregulated. Moreover, TMEV-infected B cells showed elevated levels of antigen-presenting function and antibody production. TMEV infection appeared to polyclonally activate B cells to produce autoantibodies and further T cell stimulation. Thus, the viral infection might potentially affect the outcome of autoimmune diseases, and/or the development of other chronic infections, including the protection and/or pathogenesis of TMEV-induced demyelinating disease.
Collapse
Affiliation(s)
- Young-Hee Jin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Correspondence: (Y.-H.J.); (B.S.K.); Tel.: +82-42-610-8850 (Y.-H.J.); +1-312-503-8693 (B.S.K.)
| | - Charles X. Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- M Health Fairview Heart Clinic, University of Minnesota Health, Edina, MN 55435, USA
| | - Jocelin Huang
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- M Health Cancer Care, University of Minnesota Health, Edina, MN 55435, USA
| | - Byung S. Kim
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- Correspondence: (Y.-H.J.); (B.S.K.); Tel.: +82-42-610-8850 (Y.-H.J.); +1-312-503-8693 (B.S.K.)
| |
Collapse
|
8
|
Amaya-Uribe L, Rojas M, Azizi G, Anaya JM, Gershwin ME. Primary immunodeficiency and autoimmunity: A comprehensive review. J Autoimmun 2019; 99:52-72. [PMID: 30795880 DOI: 10.1016/j.jaut.2019.01.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
The primary immunodeficiency diseases (PIDs) include many genetic disorders that affect different components of the innate and adaptive responses. The number of distinct genetic PIDs has increased exponentially with improved methods of detection and advanced laboratory methodology. Patients with PIDs have an increased susceptibility to infectious diseases and non-infectious complications including allergies, malignancies and autoimmune diseases (ADs), the latter being the first manifestation of PIDs in several cases. There are two types of PIDS. Monogenic immunodeficiencies due to mutations in genes involved in immunological tolerance that increase the predisposition to develop autoimmunity including polyautoimmunity, and polygenic immunodeficiencies characterized by a heterogeneous clinical presentation that can be explained by a complex pathophysiology and which may have a multifactorial etiology. The high prevalence of ADs in PIDs demonstrates the intricate relationships between the mechanisms of these two conditions. Defects in central and peripheral tolerance, including mutations in AIRE and T regulatory cells respectively, are thought to be crucial in the development of ADs in these patients. In fact, pathology that leads to PID often also impacts the Treg/Th17 balance that may ease the appearance of a proinflammatory environment, increasing the odds for the development of autoimmunity. Furthermore, the influence of chronic and recurrent infections through molecular mimicry, bystander activation and super antigens activation are supposed to be pivotal for the development of autoimmunity. These multiple mechanisms are associated with diverse clinical subphenotypes that hinders an accurate diagnosis in clinical settings, and in some cases, may delay the selection of suitable pharmacological therapies. Herein, a comprehensively appraisal of the common mechanisms among these conditions, together with clinical pearls for treatment and diagnosis is presented.
Collapse
Affiliation(s)
- Laura Amaya-Uribe
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Doctoral Program in Biomedical Sciences, Universidad Del Rosario, Bogota, Colombia
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, USA.
| |
Collapse
|
9
|
Sharifi L, Moshiri M, Dallal MM, Asgardoon MH, Nourizadeh M, Bokaie S, Mirshafiey A. The Inhibitory Role of M2000 (β-D-Mannuronic Acid) on Expression of Toll-like Receptor 2 and 4 in HT29 Cell Line. RECENT PATENTS ON INFLAMMATION & ALLERGY DRUG DISCOVERY 2019; 13:57-65. [PMID: 30539708 PMCID: PMC6778985 DOI: 10.2174/1872213x13666181211160238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVES Anti-inflammatory agents play a crucial role in controlling inflammatory diseases such as Inflammatory Bowel Disease (IBD) but their use is restricted due to their vast side effects. M2000 (β-D-mannuronic acid) is a new immunomodulatory drug. According to the capacity of M2000 in suppressing some molecules involved in Toll Like Receptors (TLRs) signaling and reducing oxidative stress we hypothesize that, this molecule may have a potential role in decreasing inflammatory responses in IBD. The aim of this study was to evaluate the cytotoxicity of M2000 and its effect on the gene expression of TLR2 and TLR4. METHODS HEK293 cell line was grown and divided into 96-well cell plate and MTT assay was performed. HT29 cells were cultured and treated with low and high doses of M2000. Total RNA was extracted and cDNA synthesized and quantitative real-time PCR was done to quantify the TLR2 and TLR4 mRNA expression. RESULTS We found that M2000 at the concentration of ≤ 1000µg/ml had no obvious cytotoxicity effect on the HEK293 cells. Also, low and high doses of M2000 could significantly down-regulate both TLR2 and TLR4 mRNA expression. Moreover, a significant reduction in gene expression of TLR2 and TLR4 in an inflammatory condition resulted in high doses of M2000 in the presence of LPS. CONCLUSION Our study which was conducted in colonic epithelial cell model, shows that M2000 can be considered as a new anti-inflammatory agent in IBD. However, more comprehensive experimental and clinical studies are required to recognize the molecular mechanism of M2000 and also its safety and efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Abbas Mirshafiey
- Address correspondence to this author at the Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Tel/Fax: +98 (21) 88954913; E-mail:
| |
Collapse
|
10
|
Song J, Lleo A, Yang GX, Zhang W, Bowlus CL, Gershwin ME, Leung PSC. Common Variable Immunodeficiency and Liver Involvement. Clin Rev Allergy Immunol 2018; 55:340-351. [PMID: 28785926 PMCID: PMC5803456 DOI: 10.1007/s12016-017-8638-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Common variable immunodeficiency (CVID) is a primary B-cell immunodeficiency disorder, characterized by remarkable hypogammaglobulinemia. The disease can develop at any age without gender predominance. The prevalence of CVID varies widely worldwide. The underlying causes of CVID remain largely unknown; primary B-cell dysfunctions, defects in T cells and antigen-presenting cells are involved. Although some monogenetic defects have been identified in some CVID patients, it is likely that CVID is polygenic. Patients with CVID develop recurrent and chronic infections (e.g., bacterial infections of the respiratory or gastrointestinal tract), autoimmune diseases, lymphoproliferation, malignancies, and granulomatous lesions. Interestingly, autoimmunity can be the only clinical manifestation of CVID at the time of diagnosis and may even develop prior to hypogammaglobulinemia. The diagnosis of CVID is largely based on the criteria established by European Society for Immunodeficiencies and Pan-American Group for Immunodeficiency (ESID/PAGID) and with some recent modifications. The disease can affect multiple organs, including the liver. Clinical features of CVID patients with liver involvement include abnormal liver biochemistries, primarily elevation of alkaline phosphatase (ALP), nodular regenerative hyperplasia (NRH), or liver cirrhosis and its complications. Replacement therapy with immunoglobulin (Ig) and anti-infection therapy are the primary treatment regimen for CVID patients. No specific therapy for liver involvement of CVID is currently available, and liver transplantation is an option only in select cases. The prognosis of CVID varies widely. Further understanding in the etiology and pathophysiology will facilitate early diagnosis and treatments to improve prognosis.
Collapse
Affiliation(s)
- Junmin Song
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Guo Xiang Yang
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Nedoszytko B, Lange M, Renke J, Niedoszytko M, Zabłotna M, Gleń J, Nowicki R. The Possible Role of Gene Variant Coding Nonfunctional Toll-Like Receptor 2 in the Pathogenesis of Mastocytosis. Int Arch Allergy Immunol 2018; 177:80-86. [PMID: 29909409 DOI: 10.1159/000489343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Data on the genetic predisposition to mastocytosis are scarce. The aim of this work was to study the association of single nucleotide polymorphisms of Toll-like receptor (TLR)-2, TLR-4, and TLR-9 genes in Polish patients with mastocytosis. OBJECTIVES The study comprised 137 patients with mastocytosis (102 cutaneous [60 children and 42 adults] and 35 systemic cases); 171 disease-free individuals were used as controls. METHOD The frequency of polymorphisms R753Q (rs5743708) of TLR-2, 896 A>G (rs496790) of TLR-4, and -1237C>T (rs5743836) of TLR-9 genes were determined with the use of the amplification refractory mutation system polymerase chain reaction method. RESULTS It was found that the R753Q TLR-2 gene polymorphism was significantly more frequent in patients with mastocytosis in comparison to healthy controls (p = 0.037) and in the group of SM versus controls (p = 0.0076). The presence in the genotype 753Q variant of TLR-2 gene increased the risk of mastocytosis more than 2-fold (OR 2.51; p = 0.04), and the risk of SM more than 4-fold (OR 4.22; p = 0.01). TLR-4 and TLR-9 polymorphisms were not associated with mastocytosis. CONCLUSIONS Our results suggest that the R753Q polymorphism of the TLR-2 gene may be involved in the pathogenesis of mastocytosis.
Collapse
Affiliation(s)
- Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Lange
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Joanna Renke
- Department of General and Medical Biochemistry, University of Gdansk, Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Monika Zabłotna
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Jolanta Gleń
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Roman Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
12
|
Evaluation of the TLR negative regulatory network in CVID patients. Genes Immun 2018; 20:198-206. [PMID: 29618830 DOI: 10.1038/s41435-018-0022-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/17/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022]
Abstract
Common variable immunodeficiency (CVID), a clinically symptomatic primary immunodeficiency disease (PID), is characterized by hypogammaglobulinemia leading to recurrent infections and various complications. Recently, some defects in the signaling of TLRs have been identified in CVID patients which led us to investigate the expression of TLR4 and 9 negative regulatory molecules and their upregulation status following their activation. Using TaqMan real-time PCR, SOCS1, TNFAIP3, RFN216, and IRAK-M transcripts among peripheral blood mononuclear cells (PBMCs) were measured with/without TLR4 and 9 activations. TLR4 and 9 were activated by lipopolysaccharide (LPS) and unmethylated CpG-oligodeoxynucleotide (CpG-ODN), respectively. Production of IFN-α and TNF-α cytokines, as a part of the functional response of mentioned TLRs, was also measured using ELISA. Deficient transcripts of IRAK-M and TNFAIP3 in unstimulated PBMCs and lower production of TNF-α and IFN-α after treatments were observed. Upregulation of RFN216 and TNFAIP3 after TLR9 activation was abnormal compared to healthy individuals. Significant correlations were found between abnormal IRAK-M and TNFAIP3 transcripts, and lymphadenopathy and inflammatory scenarios in patients, respectively. It seems that the transcriptional status of some negative regulatory molecules is disturbed in CVID patients, and this could be caused by the underlying pathogenesis of CVID and could involve complications like autoimmunity and inflammatory responses.
Collapse
|
13
|
Bazregari S, Azizi G, Tavakol M, Asgardoon MH, Kiaee F, Tavakolinia N, Valizadeh A, Abolhassani H, Aghamohammadi A. Evaluation of infectious and non-infectious complications in patients with primary immunodeficiency. Cent Eur J Immunol 2017; 42:336-341. [PMID: 29479289 PMCID: PMC5820987 DOI: 10.5114/ceji.2017.72825] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Primary immunodeficiency diseases (PIDs) are a heterogeneous group of genetic immune disorders. PID patients suffer from a variety of complications. The aim of this study was to determine the infectious and non-infectious complications among PID patients. MATERIAL AND METHODS This retrospective cohort study was performed on recorded data of 202 PID patients who were diagnosed with eight major categories: common variable immunodeficiency (CVID), X-linked agammaglobulinemia, hyper-IgM syndrome, hyper IgE syndrome, chronic granulomatous disease (CGD), ataxia telangiectasia, hereditary angioedema and leukocyte adhesion deficiency. For all patients, infectious and non-infectious manifestations and laboratory data were collected in a comprehensive questionnaire. RESULTS Infectious complications were more frequent than non-infectious complications. Pneumonia and otitis media were the main infectious problems in PID patients, especially in patients with antibody deficiencies. Among the non-infectious complications, splenomegaly and hepatomegaly were the most common complications in PID patients, and were more commonly seen in CGD patients than others. Splenomegaly, hepatomegaly and autoimmunity were the most common findings in CVID patients. A significant correlation was observed between diagnostic delay and bronchiectasis in CVID patients (p = 0.042). CONCLUSIONS PID patients are at risk of multiple infectious and non-infectious problems. Timely diagnosis of PIDs not only improves their outcome and quality of life, but also helps prevent these troubling complications.
Collapse
Affiliation(s)
- Saeed Bazregari
- Department of Allergy and Immunology, Bandar Abbas Children’s Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Hosein Asgardoon
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kiaee
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Naeimeh Tavakolinia
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Valizadeh
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Azizi G, Ziaee V, Tavakol M, Alinia T, Yazdai R, Mohammadi H, Abolhassani H, Aghamohammadi A. Approach to the Management of Autoimmunity in Primary Immunodeficiency. Scand J Immunol 2017; 85:13-29. [PMID: 27862144 DOI: 10.1111/sji.12506] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022]
Abstract
Primary immunodeficiency diseases (PIDs) consist of a genetically heterogeneous group of immune disorders that affect distinct elements of the immune system. PID patients are more prone to infections and non-infectious complications, particularly autoimmunity. The concomitance of immunodeficiency and autoimmunity appears to be paradoxical and leads to difficulty in the management of autoimmune complications in PID patients. Therefore, management of autoimmunity in patients with PID requires special considerations because dysregulations and dysfunctions of the immune system along with persistent inflammation impair the process of diagnosis and treatment.
Collapse
Affiliation(s)
- G Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - V Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - M Tavakol
- Department of Allergy and Clinical Immunology, Shahid Bahonar Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - T Alinia
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - R Yazdai
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H Mohammadi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Azizi G, Abolhassani H, Asgardoon MH, Alinia T, Yazdani R, Mohammadi J, Rezaei N, Ochs HD, Aghamohammadi A. Autoimmunity in common variable immunodeficiency: epidemiology, pathophysiology and management. Expert Rev Clin Immunol 2016; 13:101-115. [DOI: 10.1080/1744666x.2016.1224664] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gholamreza Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mohammad Hosein Asgardoon
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Student Society for Immunodeficiencies, Student’s Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tina Alinia
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Mohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hans D. Ochs
- Seattle Children’s Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|