1
|
Zhou X, Gou K, Xu J, Jian L, Luo Y, Li C, Guan X, Qiu J, Zou J, Zhang Y, Zhong X, Zeng T, Zhou Y, Xiao Y, Yang X, Chen W, Gao P, Liu C, Zhou Y, Tao L, Liu X, Cen X, Chen Q, Sun Q, Luo Y, Zhao Y. Discovery and Optimization of Novel hDHODH Inhibitors for the Treatment of Inflammatory Bowel Disease. J Med Chem 2023; 66:14755-14786. [PMID: 37870434 DOI: 10.1021/acs.jmedchem.3c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
As a key rate-limiting enzyme in the de novo synthesis of pyrimidine nucleotides, human dihydroorotate dehydrogenase (hDHODH) is considered a known target for the treatment of autoimmune diseases, including inflammatory bowel disease (IBD). Herein, BAY 41-2272 with a 1H-pyrazolo[3,4-b]pyridine scaffold was identified as an hDHODH inhibitor by screening an active compound library containing 5091 molecules. Further optimization led to 2-(1-(2-chloro-6-fluorobenzyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)-5-cyclopropylpyrimidin-4-amine (w2), which was found to be the most promising and drug-like compound with potent inhibitory activity against hDHODH (IC50 = 173.4 nM). Compound w2 demonstrated acceptable pharmacokinetic characteristics and alleviated the severity of acute ulcerative colitis induced by dextran sulfate sodium in a dose-dependent manner. Notably, w2 exerted better therapeutic effects on ulcerative colitis than hDHODH inhibitor vidofludimus and Janus kinase (JAK) inhibitor tofacitinib. Taken together, w2 is a promising hDHODH inhibitor for the treatment of IBD and deserves to be developed as a preclinical candidate.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Kun Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunan Jian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chungen Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiao Zou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zhang
- School of Medicine, Tibet University, Lhasa 850000, China
| | - Xi Zhong
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Zeng
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuzhou Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Weijie Chen
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ping Gao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunqi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingchen Liu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingxiang Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Youfu Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Colombel JF, Osterman MT, Thorpe AJ, Salese L, Nduaka CI, Zhang H, Lawendy N, Friedman GS, Quirk D, Su C, Reinisch W. Maintenance of Remission With Tofacitinib Therapy in Patients With Ulcerative Colitis. Clin Gastroenterol Hepatol 2022; 20:116-125.e5. [PMID: 33039585 DOI: 10.1016/j.cgh.2020.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Tofacitinib is an oral, small molecule Janus kinase inhibitor for the treatment of ulcerative colitis (UC). The efficacy and safety of tofacitinib in patients with moderate to severe UC, up to 1 year, have been reported. We investigated maintenance of efficacy in patients in remission after 52 weeks of maintenance treatment in the pivotal phase 3 study (OCTAVE Sustain); these patients received open-label, long-term treatment with tofacitinib 5 mg twice daily. METHODS Patients with moderate to severe UC who completed a 52-week, phase 3 maintenance study (OCTAVE Sustain) were eligible to enroll into the ongoing, phase 3, multicenter, open-label, long-term extension (OCTAVE Open). We analyzed data from 142 patients who were in remission following tofacitinib treatment in OCTAVE Sustain who received tofacitinib 5 mg twice daily during OCTAVE Open. We assessed efficacy (including remission [based on total Mayo score], endoscopic improvement, clinical response, and partial Mayo score up to month 36 of OCTAVE Open) and safety data. RESULTS After 12 months of tofacitinib 5 mg twice daily in OCTAVE Open, 68.3% of patients were in remission, 73.9% had endoscopic improvement, and 77.5% had a clinical response. At month 36, 50.4%, of the patients were in remission, 55.3% had endoscopic improvement, and 56.0% had a clinical response. The safety profile of tofacitinib 5 mg twice daily revealed no new safety risks associated with long-term exposure up to 36 months. CONCLUSIONS Efficacy endpoints were maintained for up to 36 months, regardless of prior tofacitinib dose, including patients who reduced from tofacitinib 10 mg to 5 mg twice daily upon OCTAVE Open entry. No new safety risks were identified. ClinicalTrials.gov: OCTAVE Sustain (NCT01458574); OCTAVE Open (NCT01470612).
Collapse
Affiliation(s)
- Jean-Frederic Colombel
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark T Osterman
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | - Chinyu Su
- Pfizer Inc, Collegeville, Pennsylvania
| | | |
Collapse
|
3
|
Ahlawat S, Kumar P, Mohan H, Goyal S, Sharma KK. Inflammatory bowel disease: tri-directional relationship between microbiota, immune system and intestinal epithelium. Crit Rev Microbiol 2021; 47:254-273. [PMID: 33576711 DOI: 10.1080/1040841x.2021.1876631] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human gut microbiota contributes to host nutrition and metabolism, sustains intestinal cell proliferation and differentiation, and modulates host immune system. The alterations in their composition lead to severe gut disorders, including inflammatory bowel disease (IBD) or inflammatory bowel syndrome (IBS). IBD including ulcerative colitis (UC) and Crohn's disease (CD) are gamut of chronic inflammatory disorders of gut, mediated by complex interrelations among genetic, environmental, and internal factors. IBD has debateable aetiology, however in recent years, exploring the central role of a tri-directional relationship between gut microbiota, mucosal immune system, and intestinal epithelium in pathogenesis is getting the most attention. Increasing incidences and early onset explains the exponential rise in IBD burden on health-care systems. Industrialization, hypersensitivity to allergens, lifestyle, hygiene hypothesis, loss of intestinal worms, and gut microbial composition, explains this shifted rise. Hitherto, the interventions modulating gut microbiota composition, microfluidics-based in vitro gastrointestinal models, non-allergic functional foods, nutraceuticals, and faecal microbiota transplantation (FMT) from healthy donors are some of the futuristic approaches for the disease management.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pramod Kumar
- Ministry of Health and Family Welfare, Government of India, Indian Council of Medical Research, New Delhi, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sandeep Goyal
- Department of Medicine, Pt. BD Sharma Post-graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
4
|
Patil DT, Moss AC, Odze RD. Role of Histologic Inflammation in the Natural History of Ulcerative Colitis. Gastrointest Endosc Clin N Am 2016; 26:629-40. [PMID: 27633592 DOI: 10.1016/j.giec.2016.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goals of therapy for ulcerative colitis have moved from symptom improvement to mucosal healing, and finally histologic resolution. The natural history of histologic inflammation in ulcerative colitis progresses from initial cellular infiltration to architectural disruption and recovery on medical therapy. Many studies have linked histologic changes to clinical outcomes, providing prognostic value to histologic abnormalities. This review covers all these components.
Collapse
Affiliation(s)
- Deepa T Patil
- Cleveland Clinic, 9500 Euclid Av, L-25, Cleveland, OH 44195, USA.
| | - Alan C Moss
- Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Robert D Odze
- Gastrointestinal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Inflammatory Bowel Disease: An Overview of Immune Mechanisms and Biological Treatments. Mediators Inflamm 2015; 2015:493012. [PMID: 26339135 PMCID: PMC4539174 DOI: 10.1155/2015/493012] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of the intestinal tract associated with an imbalance of the intestinal microbiota. Crohn's disease (CD) and ulcerative colitis (UC) are the most widely known types of IBD and have been the focus of attention due to their increasing incidence. Recent studies have pointed out genes associated with IBD susceptibility that, together with environment factors, may contribute to the outcome of the disease. In ulcerative colitis, there are several therapies available, depending on the stage of the disease. Aminosalicylates, corticosteroids, and cyclosporine are used to treat mild, moderate, and severe disease, respectively. In Crohn's disease, drug choices are dependent on both location and behavior of the disease. Nowadays, advances in treatments for IBD have included biological therapies, based mainly on monoclonal antibodies or fusion proteins, such as anti-TNF drugs. Notwithstanding the high cost involved, these biological therapies show a high index of remission, enabling a significant reduction in cases of surgery and hospitalization. Furthermore, migration inhibitors and new cytokine blockers are also a promising alternative for treating patients with IBD. In this review, an analysis of literature data on biological treatments for IBD is approached, with the main focus on therapies based on emerging recombinant biomolecules.
Collapse
|