1
|
Kong D, Zhang Z, Chen L, Huang W, Zhang F, Wang L, Wang Y, Cao P, Zheng S. Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy. Redox Biol 2020; 36:101600. [PMID: 32526690 PMCID: PMC7287144 DOI: 10.1016/j.redox.2020.101600] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The massive production and activation of myofibroblasts (MFB) is key to the development of liver fibrosis. In many studies, it has been proven that hepatocytes are an important part of MFB, and can be transformed into MFB through epithelial-mesenchymal transition (EMT) during hepatic fibrogenesis. In our previous study, we confirmed that curcumin inhibited EMT procession and differentiation of hepatocytes into MFB. In addition, in previous studies, it has been shown that autophagy plays an important role in the regulation of cellular EMT procession. In the current study, we showed that curcumin inhibited TGF-β/Smad signaling transmission by activating autophagy, thereby inhibiting EMT. The mechanism of degradative polyubiquitylation of Smad2 and Smad3 is likely through inhibiting tetratricopeptide repeat domain 3 (TTC3) and by inducing ubiquitylation and proteasomal degradation of Smad ubiquitination regulatory factor 2 (SMURF2), which on account of the increase of autophagy in hepatocytes. Curcumin inhibits levels of reactive oxygen species (ROS) and oxidative stress in hepatocytes by activating PPAR-α, and regulates upstream signaling pathways of autophagy AMPK and PI3K/AKT/mTOR, leading to an increase of the autophagic flow in hepatocytes. In this study, we confirm that curcumin effectively reduced the occurrence of EMT in hepatocytes and inhibited production of the extracellular matrix (ECM) by activating autophagy, which provides a potential novel therapeutic strategy for hepatic fibrosis.
Collapse
Affiliation(s)
- Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liping Chen
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Weifang Huang
- Department of Pharmacology, School of Integral Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ling Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Wang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Peng Cao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Chava S, Lee C, Aydin Y, Chandra PK, Dash A, Chedid M, Thung SN, Moroz K, Wu T, Nayak NC, Dash S. Chaperone-mediated autophagy compensates for impaired macroautophagy in the cirrhotic liver to promote hepatocellular carcinoma. Oncotarget 2018; 8:40019-40036. [PMID: 28402954 PMCID: PMC5522234 DOI: 10.18632/oncotarget.16685] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022] Open
Abstract
Macroautophagy and chaperone-mediated autophagy (CMA) represent two major lysosomal degradation processes and often compensate for one another to facilitate cell survival. The aim of this study was to determine whether these autophagy pathways could compensate for one another to promote HCC cell survival in the cirrhotic liver. Analysis of normal liver tissue showed no expression of glypican-3 or p62 proteins, suggesting that macroautophagy is the major contributor to autophagic flux under non-pathological conditions. Of 46 cirrhotic livers with HCC examined, 39 (84%) of HCCs showed increased expression of p62, and 36 (78%) showed increased expression of glypican-3, while adjacent non-tumorous hepatocytes were negative for expression of p62 and glypican-3, similar to normal liver tissue. These results suggest that macroautophagy flux is impaired in HCC. Furthermore, more than 95% of HCCs showed altered expression of LAMP-2A compared to the surrounding non-tumorous cirrhotic liver, consistent with induction of CMA in HCC. Elevated expression of glucose-regulated protein 78 (GRP78) and heat shock cognate protein (Hsc70) were detected in 100% of HCC and adjacent non-tumorous cirrhotic livers, suggesting that unresolved ER-stress is associated with HCC risk in liver cirrhosis. Interestingly, inhibition of lysosomal degradation using hydroxychloroquine (HCQ) induced expression of the tumor suppressor p53, promoted apoptosis, and inhibited HCC growth, whereas activation of autophagy using an mTOR inhibitor (Torin1) promoted HCC growth. Results of this study suggest that induction of CMA compensates for the impairment of macroautophagy to promote HCC survival in the cirrhotic liver.
Collapse
Affiliation(s)
- Srinivas Chava
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Christine Lee
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Yucel Aydin
- Department of Medicine, Division of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Partha K Chandra
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Asha Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Milad Chedid
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Swan N Thung
- The Lillian and Henry M. Stratton-Hans Popper Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nabeen C Nayak
- Senior Consultant and Advisor, Sir Ganga Ram Hospital, Department of Pathology, New Delhi, India
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
Yu S, Wang Y, Jing L, Claret FX, Li Q, Tian T, Liang X, Ruan Z, Jiang L, Yao Y, Nan K, Lv Y, Guo H. Autophagy in the "inflammation-carcinogenesis" pathway of liver and HCC immunotherapy. Cancer Lett 2017; 411:82-89. [PMID: 28987386 DOI: 10.1016/j.canlet.2017.09.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
Autophagy plays a dual role in many types of cancer, such as hepatocellular carcinoma (HCC). Autophagy seems to be inhibited and functions as a tumor-suppression mechanism in the "inflammation-carcinogenesis" pathway of the liver, including hepatitis B virus and hepatitis C virus, alcoholic steatohepatitis and non-alcoholic steatohepatitis related HCC. However, in established tumors, autophagy plays a tumor-promoting role. Because of the varied function of autophagy in HCC, we hypothesized p62 as a marker to evaluate the autophagic level. Moreover, autophagy is critical in antigen presentation and homeostasis of immune cells and tumor microenvironment. Understanding the intricate relationships of autophagy, inflammation, and immunity provides us with new insights into HCC immunotherapy.
Collapse
Affiliation(s)
- Sizhe Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Li Jing
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - F X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Qing Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Zhiping Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Lili Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Kejun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
4
|
Ramadori P, Cubero FJ, Liedtke C, Trautwein C, Nevzorova YA. Alcohol and Hepatocellular Carcinoma: Adding Fuel to the Flame. Cancers (Basel) 2017; 9:cancers9100130. [PMID: 28946672 PMCID: PMC5664069 DOI: 10.3390/cancers9100130] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Primary tumors of the liver represent the fifth most common type of cancer in the world and the third leading cause of cancer-related death. Case-control studies from different countries report that chronic ethanol consumption is associated with an approximately 2-fold increased odds ratio for hepatocellular carcinoma (HCC). Despite the substantial epidemiologic data in humans demonstrating that chronic alcohol consumption is a major risk factor for HCC development, the pathways causing alcohol-induced liver cancer are poorly understood. In this overview, we summarize the epidemiological evidence for the association between alcohol and liver cancer, review the genetic, oncogenic, and epigenetic factors that drive HCC development synergistically with ethanol intake and discuss the essential molecular and metabolic pathways involved in alcohol-induced liver tumorigenesis.
Collapse
Affiliation(s)
- Pierluigi Ramadori
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Francisco Javier Cubero
- Department of Immunology, Complutense University School of Medicine, Madrid 28040, Spain.
- 13 de Octubre Health Research Institute (imas12), Madrid 28041, Spain.
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | - Yulia A Nevzorova
- Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid 28040, Spain.
| |
Collapse
|
5
|
Wu FL, Liu WY, Van Poucke S, Braddock M, Jin WM, Xiao J, Li XK, Zheng MH. Targeting endoplasmic reticulum stress in liver disease. Expert Rev Gastroenterol Hepatol 2016; 10:1041-52. [PMID: 27093595 DOI: 10.1080/17474124.2016.1179575] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The accumulation of unfolded protein in the endoplasmic reticulum (ER) initiates an unfolded protein response (UPR) via three signal transduction cascades, which involve protein kinase RNA-like ER kinase (PERK), inositol requiring enzyme-1α (IRE1α) and activating transcription factor-6α (ATF6α). An ER stress response is observed in nearly all physiologies related to acute and chronic liver disease and therapeutic targeting of the mechanisms implicated in UPR signaling have attracted considerable attention. AREAS COVERED This review focuses on the correlation between ER stress and liver disease and the possible targets which may drive the potential for novel therapeutic intervention. Expert Commentary: We describe pathways which are involved in UPR signaling and their potential correlation with various liver diseases and underlying mechanisms which may present opportunities for novel therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Fa-Ling Wu
- a Department of Hepatology, Liver Research Center , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China.,b Institute of Hepatology , Wenzhou Medical University , Wenzhou , China
| | - Wen-Yue Liu
- c Department of Endocrinology , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Sven Van Poucke
- d Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy , Ziekenhuis Oost-Limburg , Genk , Belgium
| | - Martin Braddock
- e Global Medicines Development , AstraZeneca R&D , Alderley Park , UK
| | - Wei-Min Jin
- f Department of Infection Diseases , People Hospital of Wencheng County , Wenzhou , China
| | - Jian Xiao
- g Institute of Biology Science , Wenzhou University , Wenzhou , China.,h School of Pharmacy , Wenzhou Medical University , Wenzhou , China
| | - Xiao-Kun Li
- g Institute of Biology Science , Wenzhou University , Wenzhou , China.,h School of Pharmacy , Wenzhou Medical University , Wenzhou , China
| | - Ming-Hua Zheng
- a Department of Hepatology, Liver Research Center , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China.,b Institute of Hepatology , Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
6
|
Potz BA, Lawandy IJ, Clements RT, Sellke FW. Alcohol modulates autophagy and apoptosis in pig liver tissue. J Surg Res 2016; 203:154-62. [PMID: 27338546 DOI: 10.1016/j.jss.2016.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/11/2016] [Accepted: 03/02/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury but excessive autophagy can also be detrimental leading to apoptosis. Our laboratory has previously shown that moderate alcohol consumption alters expression of proteins in the insulin signaling pathway and worsens glucose metabolism in the liver in a swine model of metabolic syndrome. We examined the effect of alcohol consumption on apoptosis and autophagy signaling in the liver in our clinically relevant animal model of chronic hypercholesterolemia. MATERIAL AND METHODS Twenty-six Yorkshire swine were fed a high-fat diet for 4 wks and were then split into three groups: hypercholesterolemic diet alone (HCC, n = 9), hypercholesterolemic diet with vodka (hypercholesterolemic vodka [HCV], n = 9), and hypercholesterolemic diet with wine (hypercholesterolemic wine [HCW], n = 8) for 7 wks. Animals underwent euthanasia, and liver tissue samples were harvested for analysis. Liver tissue was analyzed via Western blot analysis. Protein density data were normalized to GAPDH and is reported as fold-change values ± standard error of the mean compared to the high-cholesterol diet control group. A Kruskal-Wallis test with a Dunn's multiple comparison test was used to compare the means among groups. RESULTS The HCV group showed significant increases in several proapoptotic proteins (including caspase 3, caspase 8, caspase 9, and cleaved caspase 9) compared with the HCC group. There was a decrease in the proapoptotic protein (BAD) and an increase in anti-apoptotic signal (B-cell lymphoma-2) in the HCW group compared with HCC control. There were increases in pro-survival proteins (AKT, p-AKT, mTOR, p-mTOR) in the HCW and the HCV group compared with control (HCC). There were decreases in autophagy protein LCB-3 in the HCW and HCV compared with the control. CONCLUSIONS We found that moderate alcohol consumption altered protein expression related to apoptosis and autophagy signaling in pig liver in the setting of hypercholesterolemia. Interestingly, vodka may induce proapoptotic pathways in liver tissue, whereas wine may induce anti-apoptotic signaling. These results provide a mechanism by which vodka may contribute to alcoholic liver disease and supports the notion that wine, containing resveratrol, may prevent cellular apoptosis in liver tissue in the setting of hypercholesterolemia.
Collapse
Affiliation(s)
- Brittany A Potz
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Isabella J Lawandy
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Richard T Clements
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island.
| |
Collapse
|