1
|
Sun A, Hayat H, Sanchez SW, Moore A, Wang P. Magnetic Particle Imaging of Transplanted Human Islets Using a Machine Learning Algorithm. Methods Mol Biol 2023; 2592:185-194. [PMID: 36507994 PMCID: PMC10754649 DOI: 10.1007/978-1-0716-2807-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human islet transplantation is a promising therapy to restore normoglycemia for type 1 diabetes (T1D). Despite recent advances, human islet transplantation remains suboptimal due to significant islet graft loss after transplantation. Various immunological and nonimmunological factors contribute to this loss therefore signifying a need for strategies and approaches for visualizing and monitoring transplanted human islet grafts. One such imaging approach is magnetic particle imaging (MPI), an emerging imaging modality that detects the magnetization of iron oxide nanoparticles. MPI is known for its specificity due to its high image contrast and sensitivity. MPI through its noninvasive nature provides the means for monitoring transplanted human islets in real time. Here we summarize an approach to track transplanted human islets using MPI. We label human islet from donors with dextran-coated ferucarbotran iron oxide nanoparticles, transplant the labeled human islet into under the left kidney capsule, and image graft cells using an MPI scanner. We engineer a K-means++, clustering-based unsupervised machine learning algorithm for standardized image segmentation and iron quantification of the MPI, which solves problems with selection bias and indiscriminate signal boundary that accompanies this newer imaging modality. In this chapter, we summarize the methods of this emerging imaging modality of MPI in conjunction with unsupervised machine learning to monitor and visualize islets after transplantation.
Collapse
Affiliation(s)
- Aixia Sun
- Precision Health Program, Michigan State University, East Lansing, MI, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Hasaan Hayat
- Precision Health Program, Michigan State University, East Lansing, MI, USA
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Simon W Sanchez
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, MI, USA.
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Current Status, Barriers, and Future Directions for Humanized Mouse Models to Evaluate Stem Cell–Based Islet Cell Transplant. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:89-106. [DOI: 10.1007/5584_2022_711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Marfil-Garza BA, Hefler J, Bermudez De Leon M, Pawlick R, Dadheech N, Shapiro AMJ. Progress in Translational Regulatory T Cell Therapies for Type 1 Diabetes and Islet Transplantation. Endocr Rev 2021; 42:198-218. [PMID: 33247733 DOI: 10.1210/endrev/bnaa028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Tregs) have become highly relevant in the pathophysiology and treatment of autoimmune diseases, such as type 1 diabetes (T1D). As these cells are known to be defective in T1D, recent efforts have explored ex vivo and in vivo Treg expansion and enhancement as a means for restoring self-tolerance in this disease. Given their capacity to also modulate alloimmune responses, studies using Treg-based therapies have recently been undertaken in transplantation. Islet transplantation provides a unique opportunity to study the critical immunological crossroads between auto- and alloimmunity. This procedure has advanced greatly in recent years, and reports of complete abrogation of severe hypoglycemia and long-term insulin independence have become increasingly reported. It is clear that cellular transplantation has the potential to be a true cure in T1D, provided the remaining barriers of cell supply and abrogated need for immune suppression can be overcome. However, the role that Tregs play in islet transplantation remains to be defined. Herein, we synthesize the progress and current state of Treg-based therapies in T1D and islet transplantation. We provide an extensive, but concise, background to understand the physiology and function of these cells and discuss the clinical evidence supporting potency and potential Treg-based therapies in the context of T1D and islet transplantation. Finally, we discuss some areas of opportunity and potential research avenues to guide effective future clinical application. This review provides a basic framework of knowledge for clinicians and researchers involved in the care of patients with T1D and islet transplantation.
Collapse
Affiliation(s)
| | - Joshua Hefler
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Mario Bermudez De Leon
- Department of Molecular Biology, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, Mexico
| | - Rena Pawlick
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Current Progress and Perspective: Clinical Imaging of Islet Transplantation. Life (Basel) 2020; 10:life10090213. [PMID: 32961769 PMCID: PMC7555367 DOI: 10.3390/life10090213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Islet transplantation has great potential as a cure for type 1 diabetes. At present; the lack of a clinically validated non-invasive imaging method to track islet grafts limits the success of this treatment. Some major clinical imaging modalities and various molecular probes, which have been studied for non-invasive monitoring of transplanted islets, could potentially fulfill the goal of understanding pathophysiology of the functional status and viability of the islet grafts. In this current review, we summarize the recent clinical studies of a variety of imaging modalities and molecular probes for non-invasive imaging of transplanted beta cell mass. This review also includes discussions on in vivo detection of endogenous beta cell mass using clinical imaging modalities and various molecular probes, which will be useful for longitudinally detecting the status of islet transplantation in Type 1 diabetic patients. For the conclusion and perspectives, we highlight the applications of multimodality and novel imaging methods in islet transplantation.
Collapse
|
5
|
Marfil‐Garza BA, Polishevska K, Pepper AR, Korbutt GS. Current State and Evidence of Cellular Encapsulation Strategies in Type 1 Diabetes. Compr Physiol 2020; 10:839-878. [DOI: 10.1002/cphy.c190033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Abdulreda MH, Molano RD, Faleo G, Lopez-Cabezas M, Shishido A, Ulissi U, Fotino C, Hernandez LF, Tschiggfrie A, Aldrich VR, Tamayo-Garcia A, Bayer AS, Ricordi C, Caicedo A, Buchwald P, Pileggi A, Berggren PO. In vivo imaging of type 1 diabetes immunopathology using eye-transplanted islets in NOD mice. Diabetologia 2019; 62:1237-1250. [PMID: 31087105 PMCID: PMC6561836 DOI: 10.1007/s00125-019-4879-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/22/2019] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Autoimmune attack against the insulin-producing beta cells in the pancreatic islets results in type 1 diabetes. However, despite considerable research, details of the type 1 diabetes immunopathology in situ are not fully understood mainly because of difficult access to the pancreatic islets in vivo. METHODS Here, we used direct non-invasive confocal imaging of islets transplanted in the anterior chamber of the eye (ACE) to investigate the anti-islet autoimmunity in NOD mice before, during and after diabetes onset. ACE-transplanted islets allowed longitudinal studies of the autoimmune attack against islets and revealed the infiltration kinetics and in situ motility dynamics of fluorescence-labelled autoreactive T cells during diabetes development. Ex vivo immunostaining was also used to compare immune cell infiltrations into islet grafts in the eye and kidney as well as in pancreatic islets of the same diabetic NOD mice. RESULTS We found similar immune infiltration in native pancreatic and ACE-transplanted islets, which established the ACE-transplanted islets as reliable reporters of the autoimmune response. Longitudinal studies in ACE-transplanted islets identified in vivo hallmarks of islet inflammation that concurred with early immune infiltration of the islets and preceded their collapse and hyperglycaemia onset. A model incorporating data on ACE-transplanted islet degranulation and swelling allowed early prediction of the autoimmune attack in the pancreas and prompted treatments to intercept type 1 diabetes. CONCLUSIONS/INTERPRETATION The current findings highlight the value of ACE-transplanted islets in studying early type 1 diabetes pathogenesis in vivo and underscore the need for timely intervention to halt disease progression.
Collapse
Affiliation(s)
- Midhat H Abdulreda
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - R Damaris Molano
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Gaetano Faleo
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Maite Lopez-Cabezas
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Alexander Shishido
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Ulisse Ulissi
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Carmen Fotino
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Luis F Hernandez
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Ashley Tschiggfrie
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Virginia R Aldrich
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
| | - Alejandro Tamayo-Garcia
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Allison S Bayer
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Camillo Ricordi
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Diabetes Research Institute Federation, Hollywood, FL, USA
| | - Alejandro Caicedo
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Peter Buchwald
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA.
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Antonello Pileggi
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
- Center for Scientific Review, National Institutes of Health, 6701 Rockledge Drive, Bethesda, MD, 20892, USA.
| | - Per-Olof Berggren
- Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL, 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- Diabetes Research Institute Federation, Hollywood, FL, USA.
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-17176, Stockholm, Sweden.
| |
Collapse
|
7
|
Groot Nibbelink M, Skrzypek K, Karbaat L, Both S, Plass J, Klomphaar B, van Lente J, Henke S, Karperien M, Stamatialis D, van Apeldoorn A. An important step towards a prevascularized islet microencapsulation device: in vivo prevascularization by combination of mesenchymal stem cells on micropatterned membranes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:174. [PMID: 30413974 PMCID: PMC6244873 DOI: 10.1007/s10856-018-6178-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Extrahepatic transplantation of islets of Langerhans could aid in better survival of islets after transplantation. When islets are transfused into the liver 60-70% of them are lost immediately after transplantation. An important factor for a successful extrahepatic transplantation is a well-vascularized tissue surrounding the implant. There are many strategies known for enhancing vessel formation such as adding cells with endothelial potential, the combination with angiogenic factors and / or applying surface topography at the exposed surface of the device. Previously we developed porous, micropatterned membranes which can be applied as a lid for an islet encapsulation device and we showed that the surface topography induces human umbilical vein endothelial cell (HUVEC) alignment and interconnection. This was achieved without the addition of hydrogels, often used in angiogenesis assays. In this work, we went one step further towards clinical implementation of the device by combining this micropatterned lid with Mesenchymal Stem Cells (MSCs) to facilitate prevascularization in vivo. As for HUVECs, the micropatterned membranes induced MSC alignment and organization in vitro, an important contributor to vessel formation, whereas in vivo (subcutaneous rat model) they contributed to improved implant prevascularization. In fact, the combination of MSCs seeded on the micropatterned membrane induced the highest vessel formation score in 80% of the sections.
Collapse
Affiliation(s)
- Milou Groot Nibbelink
- Developmental BioEngineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Maastricht, The Netherlands.
| | - Katarzyna Skrzypek
- (Bio)artificial organs. Department of Biomaterials Science and Technology, MIRA Institute of Biomedical Technology and Technical Medicine University of Twente, Maastricht, The Netherlands
| | - Lisanne Karbaat
- (Bio)artificial organs. Department of Biomaterials Science and Technology, MIRA Institute of Biomedical Technology and Technical Medicine University of Twente, Maastricht, The Netherlands
| | - Sanne Both
- Developmental BioEngineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Maastricht, The Netherlands
| | - Jacqueline Plass
- Developmental BioEngineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Maastricht, The Netherlands
| | - Bettie Klomphaar
- Biomedical Signals and Systems, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Maastricht, The Netherlands
| | - Jéré van Lente
- Developmental BioEngineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Maastricht, The Netherlands
| | - Sieger Henke
- Developmental BioEngineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Maastricht, The Netherlands
| | - Marcel Karperien
- Developmental BioEngineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Maastricht, The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs. Department of Biomaterials Science and Technology, MIRA Institute of Biomedical Technology and Technical Medicine University of Twente, Maastricht, The Netherlands
| | - Aart van Apeldoorn
- Developmental BioEngineering, MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente, Maastricht, The Netherlands
- Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Kawser Hossain M, Abdal Dayem A, Han J, Kumar Saha S, Yang GM, Choi HY, Cho SG. Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells. Int J Mol Sci 2016; 17:256. [PMID: 26907255 PMCID: PMC4783985 DOI: 10.3390/ijms17020256] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus (DM) is a widespread metabolic disease with a progressive incidence of morbidity and mortality worldwide. Despite extensive research, treatment options for diabetic patients remains limited. Although significant challenges remain, induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any cell type, including insulin-secreting pancreatic β cells, highlighting its potential as a treatment option for DM. Several iPSC lines have recently been derived from both diabetic and healthy donors. Using different reprogramming techniques, iPSCs were differentiated into insulin-secreting pancreatic βcells. Furthermore, diabetes patient-derived iPSCs (DiPSCs) are increasingly being used as a platform to perform cell-based drug screening in order to develop DiPSC-based cell therapies against DM. Toxicity and teratogenicity assays based on iPSC-derived cells can also provide additional information on safety before advancing drugs to clinical trials. In this review, we summarize recent advances in the development of techniques for differentiation of iPSCs or DiPSCs into insulin-secreting pancreatic β cells, their applications in drug screening, and their role in complementing and replacing animal testing in clinical use. Advances in iPSC technologies will provide new knowledge needed to develop patient-specific iPSC-based diabetic therapies.
Collapse
Affiliation(s)
- Mohammed Kawser Hossain
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Jihae Han
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
9
|
Ariyachet C, Tovaglieri A, Xiang G, Lu J, Shah MS, Richmond CA, Verbeke C, Melton DA, Stanger BZ, Mooney D, Shivdasani RA, Mahony S, Xia Q, Breault DT, Zhou Q. Reprogrammed Stomach Tissue as a Renewable Source of Functional β Cells for Blood Glucose Regulation. Cell Stem Cell 2016; 18:410-21. [PMID: 26908146 DOI: 10.1016/j.stem.2016.01.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/05/2015] [Accepted: 01/08/2016] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) epithelium is a highly regenerative tissue with the potential to provide a renewable source of insulin(+) cells after undergoing cellular reprogramming. Here, we show that cells of the antral stomach have a previously unappreciated propensity for conversion into functional insulin-secreting cells. Native antral endocrine cells share a surprising degree of transcriptional similarity with pancreatic β cells, and expression of β cell reprogramming factors in vivo converts antral cells efficiently into insulin(+) cells with close molecular and functional similarity to β cells. Induced GI insulin(+) cells can suppress hyperglycemia in a diabetic mouse model for at least 6 months and regenerate rapidly after ablation. Reprogramming of antral stomach cells assembled into bioengineered mini-organs in vitro yielded transplantable units that also suppressed hyperglycemia in diabetic mice, highlighting the potential for development of engineered stomach tissues as a renewable source of functional β cells for glycemic control.
Collapse
Affiliation(s)
- Chaiyaboot Ariyachet
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Alessio Tovaglieri
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Guanjue Xiang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jiaqi Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Manasvi S Shah
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Camilla A Richmond
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Catia Verbeke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ben Z Stanger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ramesh A Shivdasani
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - David T Breault
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Qiao Zhou
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Ochayon DE, Baranovski BM, Malkin P, Schuster R, Kalay N, Ben-Hamo R, Sloma I, Levinson J, Brazg J, Efroni S, Lewis EC, Nevo U. Experimental Support for the Ecoimmunity Theory: Distinct Phenotypes of Nonlymphocytic Cells in SCID and Wild-Type Mice. Cell Transplant 2016; 25:1575-88. [PMID: 26850009 DOI: 10.3727/096368916x690809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Immune tolerance toward "self" is critical in multiple immune disorders. While there are several mechanisms to describe the involvement of immune cells in the process, the role of peripheral tissue cells in that context is not yet clear. The theory of ecoimmunity postulates that interactions between immune and tissue cells represent a predator-prey relationship. A lifelong interaction, shaped mainly during early ontogeny, leads to selection of nonimmune cell phenotypes. Normally, therefore, nonimmune cells that evolve alongside an intact immune system would be phenotypically capable of evading immune responses, and cells whose phenotype falls short of satisfying this steady state would expire under hostile immune responses. This view was supported until recently by experimental evidence showing an inferior endurance of severe combined immunodeficiency (SCID)-derived pancreatic islets when engrafted into syngeneic immune-intact wild-type (WT) mice, relative to islets from WT. Here we extend the experimental exploration of ecoimmunity by searching for the presence of the phenotypic changes suggested by the theory. Immune-related phenotypes of islets, spleen, and bone marrow immune cells were determined, as well as SCID and WT nonlymphocytic cells. Islet submass grafting was performed to depict syngeneic graft functionality. Islet cultures were examined under both resting and inflamed conditions for expression of CD40 and major histocompatibility complex (MHC) class I/II and release of interleukin-1α (IL-1α), IL-1β, IL-6, tumor necrosis factor-α (TNF-α), IL-10, and insulin. Results depict multiple pathways that appear to be related to the sculpting of nonimmune cells by immune cells; 59 SCID islet genes displayed relative expression changes compared with WT islets. SCID cells expressed lower tolerability to inflammation and higher levels of immune-related molecules, including MHC class I. Accordingly, islets exhibited a marked increase in insulin release upon immunocyte depletion, in effect resuming endocrine function that was otherwise suppressed by resident immunocytes. This work provides further support of the ecoimmunity theory and encourages subsequent studies to identify its role in the emergence and treatment of autoimmune pathologies, transplant rejection, and cancer.
Collapse
Affiliation(s)
- David E Ochayon
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang P, Moore A. In Vivo Magnetic Resonance Imaging of Small Interfering RNA Nanodelivery to Pancreatic Islets. Methods Mol Biol 2016; 1372:25-36. [PMID: 26530912 DOI: 10.1007/978-1-4939-3148-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pancreatic islet transplantation is a promising therapeutic approach for type 1 diabetes.However, recent advances in islet transplantation are limited by significant graft loss after transplantation. Multiple immunological and nonimmunological factors contribute to this loss. Novel therapies that could target the core reasons for the islet graft loss are desperately needed. Small interfering RNA can be used to inhibit the expression of virtually any gene with single-nucleotide specificity including genes responsible for islet damage. Applying adequate delivery of siRNA molecules to pancreatic islets prior to transplantation holds a great potential for improving the survival of islet grafts. Noninvasive imaging provides means for monitoring the survival of transplanted islets in real time. Here, we summarize the approach that has been developed to deliver siRNA to pancreatic islets in conjunction with tracking of the graft outcome by in vivo magnetic resonance imaging (MRI). We synthesize a nano-sized theranostic agent consisting of magnetic nanoparticles (MN), a reporter for MRI, labeled with Cy5.5 dye for near-infrared fluorescence (NIRF) imaging, and conjugated to siRNA molecule targeting genes that are harmful to islet grafts. Pre-labeling of islets by MN-Cy5.5-siRNA allowed us to monitor the survival of transplanted islet grafts by MRI and NIRF imaging and resulted in efficient silencing of the target genes in vivo. This novel approach combines a therapeutic effect provided by RNA interference technology with in vivo MR imaging and is expected to significantly improve the outcome of islet transplantation in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Ping Wang
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Building 75, 13th Street, Charlestown, MA, 02129, USA
- , Boston, USA
| | - Anna Moore
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Building 75, 13th Street, Charlestown, MA, 02129, USA.
- , Boston, USA.
| |
Collapse
|
12
|
Phelps EA, Templeman KL, Thulé PM, García AJ. Engineered VEGF-releasing PEG-MAL hydrogel for pancreatic islet vascularization. Drug Deliv Transl Res 2015; 5:125-36. [PMID: 25787738 PMCID: PMC4366610 DOI: 10.1007/s13346-013-0142-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofunctionalized polyethylene glycol maleimide (PEG-MAL) hydrogels were engineered as a platform to deliver pancreatic islets to the small bowel mesentery and promote graft vascularization. VEGF, a potent stimulator of angiogenesis, was incorporated into the hydrogel to be released in an on-demand manner through enzymatic degradation. PEG-MAL hydrogel enabled extended in vivo release of VEGF. Isolated rat islets encapsulated in PEG-MAL hydrogels remained viable in culture and secreted insulin. Islets encapsulated in PEG-MAL matrix and transplanted to the small bowel mesentery of healthy rats grafted to the host tissue and revascularized by 4 weeks. Addition of VEGF release to the PEG-MAL matrix greatly augmented the vascularization response. These results establish PEG-MAL engineered matrices as a vascular-inductive cell delivery vehicle and warrant their further investigation as islet transplantation vehicles in diabetic animal models.
Collapse
Affiliation(s)
- Edward A. Phelps
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332
| | - Kellie L. Templeman
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332
| | - Peter M. Thulé
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332
- Division of Endocrinology, Metabolism and Lipids, Emory University School of Medicine, Atlanta Veterans Affairs Medical Center, 1670 Clairmont Road NE, Decatur, GA 30033
| | - Andrés J. García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332
| |
Collapse
|
13
|
Yang L, Liao YT, Yang XF, Reng LW, Qi H, Li FR. Immune protective effect of human alpha-1-antitrypsin gene during β cell transplantation in diabetic mice. Immunol Res 2015; 62:71-80. [DOI: 10.1007/s12026-015-8636-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Ochayon DE, Mizrahi M, Shahaf G, Baranovski BM, Lewis EC. Human α1-Antitrypsin Binds to Heat-Shock Protein gp96 and Protects from Endogenous gp96-Mediated Injury In vivo. Front Immunol 2013; 4:320. [PMID: 24191154 PMCID: PMC3808895 DOI: 10.3389/fimmu.2013.00320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/21/2013] [Indexed: 12/11/2022] Open
Abstract
The extracellular form of the abundant heat-shock protein, gp96, is involved in human autoimmune pathologies. In patients with type 1 diabetes, circulating gp96 is found to be elevated, and is bound to the acute-phase protein, α1-antitrypsin (AAT). The two molecules also engage intracellularly during the physiological folding of AAT. AAT therapy promotes pancreatic islet survival in both transplantation and autoimmune diabetes models, and several clinical trials are currently examining AAT therapy for individuals with type 1 diabetes. However, its mechanism of action is yet unknown. Here, we examine whether the protective activity of AAT is related to binding of extracellular gp96. Primary mouse islets, macrophages, and dendritic cells were added recombinant gp96 in the presence of clinical-grade human AAT (hAAT, Glassia™, Kamada Ltd., Israel). Islet function was evaluated by insulin release. The effect of hAAT on IL-1β/IFNγ-induced gp96 cell-surface levels was also evaluated. In vivo, skin transplantation was performed for examination of robust immune responses, and systemic inflammation was induced by cecal puncture. Endogenous gp96 was inhibited by gp96-inhibitory peptide (gp96i, Compugen Ltd., Israel) in an allogeneic islet transplantation model. Our findings indicate that hAAT binds to gp96 and diminishes gp96-induced inflammatory responses; e.g., hAAT-treated gp96-stimulated islets released less pro-inflammatory cytokines (IL-1β by 6.16-fold and TNFα by 2.69-fold) and regained gp96-disrupted insulin release. hAAT reduced cell activation during both skin transplantation and systemic inflammation, as well as lowered inducible surface levels of gp96 on immune cells. Finally, inhibition of gp96 significantly improved immediate islet graft function. These results suggest that hAAT is a regulator of gp96-mediated inflammatory responses, an increasingly appreciated endogenous damage response with relevance to human pathologies that are exacerbated by tissue injury.
Collapse
Affiliation(s)
- David E Ochayon
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev , Be'er Sheva , Israel
| | | | | | | | | |
Collapse
|
15
|
Li Z, Sun H, Zhang J, Zhang H, Meng F, Cui Z. Development of in vitro 3D TissueFlex® islet model for diabetic drug efficacy testing. PLoS One 2013; 8:e72612. [PMID: 23977329 PMCID: PMC3744493 DOI: 10.1371/journal.pone.0072612] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
Increasing individuals diagnosed with type II diabetes pose a strong demand for the development of more effective anti-diabetic drugs. However, expensive, ethically controversial animal-based screening for anti-diabetic compounds is not always predictive of the human response. The use of in vitro cell-based models in research presents obviously ethical and cost advantages over in vivo models. This study was to develop an in vitro three-dimensional (3D) perfused culture model of islets (Islet TF) for maintaining viability and functionality longer for diabetic drug efficacy tests. Briefly fresh isolated rat islets were encapsulated in ultrapure alginate and the encapsulated islets were cultured in TissueFlex(®), a multiple, parallel perfused microbioreactor system for 7 days. The encapsulated islets cultured statically in cell culture plates (3D static) and islets cultured in suspension (2D) were used as the comparisons. In this study we demonstrate for the first time that Islet TF model can maintain the in vitro islet viability, and more importantly, the elevated functionality in terms of insulin release and dynamic responses over a 7-day culture period. The Islet TF displays a high sensitivity in responding to drugs and drug dosages over conventional 2D and 3D static models. Actual drug administration in clinics could be simulated using the developed Islet TF model, and the patterns of insulin release response to the tested drugs were in agreement with the data obtained in vivo. Islet TF could be a more predictive in vitro model for routine short- and long-term anti-diabetic drug efficacy testing.
Collapse
Affiliation(s)
- Zhaohui Li
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - He Sun
- Tianjin Weikai Bioeng Ltd, Tianjin, China
| | | | | | - Fanyu Meng
- Tianjin Weikai Bioeng Ltd, Tianjin, China
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Chia JS, McRae JL, Thomas HE, Fynch S, Elkerbout L, Hill P, Murray-Segal L, Robson SC, Chen JF, d’Apice AJ, Cowan PJ, Dwyer KM. The protective effects of CD39 overexpression in multiple low-dose streptozotocin-induced diabetes in mice. Diabetes 2013; 62:2026-35. [PMID: 23364452 PMCID: PMC3661652 DOI: 10.2337/db12-0625] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Islet allograft survival limits the long-term success of islet transplantation as a potential curative therapy for type 1 diabetes. A number of factors compromise islet survival, including recurrent diabetes. We investigated whether CD39, an ectonucleotidase that promotes the generation of extracellular adenosine, would mitigate diabetes in the T cell-mediated multiple low-dose streptozotocin (MLDS) model. Mice null for CD39 (CD39KO), wild-type mice (WT), and mice overexpressing CD39 (CD39TG) were subjected to MLDS. Adoptive transfer experiments were performed to delineate the efficacy of tissue-restricted overexpression of CD39. The role of adenosine signaling was examined using mutant mice and pharmacological inhibition. The susceptibility to MLDS-induced diabetes was influenced by the level of expression of CD39. CD39KO mice developed diabetes more rapidly and with higher frequency than WT mice. In contrast, CD39TG mice were protected. CD39 overexpression conferred protection through the activation of adenosine 2A receptor and adenosine 2B receptor. Adoptive transfer experiments indicated that tissue-restricted overexpression of CD39 conferred robust protection, suggesting that this may be a useful strategy to protect islet grafts from T cell-mediated injury.
Collapse
Affiliation(s)
- Joanne S.J. Chia
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Jennifer L. McRae
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, Victoria, Australia
| | | | - Stacey Fynch
- St Vincent’s Institute, Fitzroy, Victoria, Australia
| | | | - Prue Hill
- Department of Pathology, St. Vincent’s Hospital, Melbourne, Victoria, Australia
| | - Lisa Murray-Segal
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, Victoria, Australia
| | - Simon C. Robson
- Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Anthony J.F. d’Apice
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Peter J. Cowan
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Karen M. Dwyer
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Victoria, Australia
- Corresponding author: Karen M. Dwyer,
| |
Collapse
|
17
|
Allogeneic bone marrow cocultured with human islets significantly improves islet survival and function in vivo. Transplantation 2013; 95:801-9. [PMID: 23416682 DOI: 10.1097/tp.0b013e31828235c7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND A significant barrier to islet transplantation is the rapid loss of human islet function in vivo. The present study evaluates whether bone marrow (BM) could be used to support human islet survival and function in vivo. METHODS We cocultured human islets and BM for 3 weeks before transplantation into the left subrenal capsule of diabetic severe combined immunodeficient mice. RESULTS The cocultured human islets before transplantation demonstrated improved viability, increased size, and migration capacity in vitro. After 4 months, animals transplanted with precultured BM/islets exhibited euglycemia and detectable human insulin levels (157 μU/mL), whereas no human insulin was detected in the islet-only transplantation group. Furthermore, the removal of the transplants on day 126 resulted in hyperglycemia, indicating that the reduction of blood glucose was dependent on the transplants. Diabetic mice transplanted with BM/islets demonstrated the longest survival period (130 vs. 40 days for those with islet-only transplants). The transplanted BM/islets showed signs of vascularization and migration from the renal capsule into medulla. CONCLUSIONS Our results suggest that BM precultured with human islets may enhance the survival and function of transplanted islets, thus significantly improving the therapeutic efficacy of islet transplantation for type 1 diabetes.
Collapse
|
18
|
Insulin-Like growth factor-II (IGF-II) prevents proinflammatory cytokine-induced apoptosis and significantly improves islet survival after transplantation. Transplantation 2013; 95:671-8. [PMID: 23364485 DOI: 10.1097/tp.0b013e31827fa453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The early loss of functional islet mass (50-70%) due to apoptosis after clinical transplantation contributes to islet allograft failure. Insulin-like growth factor (IGF)-II is an antiapoptotic protein that is highly expressed in β-cells during development but rapidly decreases in postnatal life. METHODS We used an adenoviral (Ad) vector to overexpress IGF-II in isolated rat islets and investigated its antiapoptotic action against exogenous cytokines interleukin-1β- and interferon-γ-induced islet cell death in vitro. Using an immunocompromised marginal mass islet transplant model, the ability of Ad-IGF-II-transduced rat islets to restore euglycemia in nonobese diabetic/severe combined immunodeficient diabetic recipients was assessed. RESULTS Ad-IGF-II transduction did not affect islet viability or function. Ad-IGF-II cytokine-treated islets exhibited decreased cell death (40% ± 2.8%) versus Ad-GFP and untransduced control islets (63.2% ± 2.5% and 53.6% ± 2.3%, respectively). Ad-IGF-II overexpression during cytokine treatment resulted in a marked reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive apoptotic cells (8.3% ± 1.4%) versus Ad-GFP control (41% ± 4.2%) and untransduced control islets (46.5% ± 6.2%). Western blot analysis confirmed that IGF-II inhibits apoptosis via activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Transplantation of IGF-II overexpressing islets under the kidney capsule of diabetic mice restored euglycemia in 77.8% of recipients compared with 18.2% and 47.5% of Ad-GFP and untransduced control islet recipients, respectively (P<0.05, log-rank [Mantel-Cox] test). CONCLUSIONS Antiapoptotic IGF-II decreases apoptosis in vitro and significantly improved islet transplant outcomes in vivo. Antiapoptotic gene transfer is a potentially powerful tool to improve islet survival after transplantation.
Collapse
|
19
|
Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials 2013; 34:4602-11. [PMID: 23541111 DOI: 10.1016/j.biomaterials.2013.03.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/05/2013] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1DM) affects one in every 400 children and adolescents in the US. Due to the limitations of exogenous insulin therapy and whole pancreas transplantation, pancreatic islet transplantation has emerged as a promising therapy for T1DM. However, this therapy is severely limited by donor islet availability and poor islet engraftment and function. We engineered an injectable bio-synthetic, polyethylene glycol-maleimide hydrogel to enhance vascularization and engraftment of transplanted pancreatic islets in a mouse model of T1DM. Controlled presentation of VEGF-A and cell-adhesive peptides within this engineered material significantly improved the vascularization and function of islets delivered to the small bowel mesentery, a metabolically relevant site for insulin release. Diabetic mice receiving islets transplanted in proteolytically degradable hydrogels incorporating VEGF-A exhibited complete reversal of diabetic hyperglycemia with a 40% reduction in the number of islets required. Furthermore, hydrogel-delivered islets significantly improved weight gain, regulation of a glucose challenge, and intra-islet vascularization and engraftment compared to the clinical standard of islet infusion through the hepatic portal vein. This study establishes a simple biomaterial strategy for islet transplantation to promote enhanced islet engraftment and function.
Collapse
|
20
|
Luan NM, Iwata H. Xenotransplantation of islets enclosed in agarose microcapsule carrying soluble complement receptor 1. Biomaterials 2012; 33:8075-81. [DOI: 10.1016/j.biomaterials.2012.07.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
|
21
|
O'Grady MJ, Retterath AJ, Keenan DB, Kurtz N, Cantwell M, Spital G, Kremliovsky MN, Roy A, Davis EA, Jones TW, Ly TT. The use of an automated, portable glucose control system for overnight glucose control in adolescents and young adults with type 1 diabetes. Diabetes Care 2012; 35:2182-7. [PMID: 22875230 PMCID: PMC3476913 DOI: 10.2337/dc12-0761] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 05/26/2012] [Indexed: 02/03/2023]
Abstract
OBJECTIVE A key milestone in progress towards providing an efficacious and safe closed-loop artificial pancreas system for outpatient use is the development of fully automated, portable devices with fault detection capabilities to ensure patient safety. The ability to remotely monitor the operation of the closed-loop system would facilitate future physician-supervised home studies. RESEARCH DESIGN AND METHODS This study was designed to investigate the efficacy and safety of a fully automated, portable, closed-loop system. The Medtronic Portable Glucose Control System (PGCS) consists of two subcutaneous glucose sensors, a control algorithm based on proportional-integral-derivative with insulin feedback operating from a BlackBerry Storm smartphone platform, Bluetooth radiofrequency translator, and an off-the-shelf Medtronic Paradigm Veo insulin pump. Participants with type 1 diabetes using insulin pump therapy underwent two consecutive nights of in-clinic, overnight, closed-loop control after a baseline open-loop assessment. RESULTS Eight participants attended for 16 overnight studies. The PGCS maintained mean overnight plasma glucose levels of 6.4 ± 1.7 mmol/L (115 ± 31 mg/dL). The proportion of time with venous plasma glucose <3.9, between 3.9 and 8 (70 and 144 mg/dL), and >8 mmol/L was 7, 78, and 15%, respectively. The proportion of time the sensor glucose values were maintained between 3.9 and 8 mmol/L was greater for closed-loop than open-loop (84.5 vs. 46.7%; P < 0.0001), and time spent <3.3 mmol/L was also reduced (0.9 vs. 3%; P < 0.0001). CONCLUSIONS These results suggest that the PGCS, an automated closed-loop device, is safe and effective in achieving overnight glucose control in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Michael J. O'Grady
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Adam J. Retterath
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | | | | | | - Elizabeth A. Davis
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Timothy W. Jones
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Trang T. Ly
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
22
|
Molecular imaging: a promising tool to monitor islet transplantation. J Transplant 2011; 2011:202915. [PMID: 22013504 PMCID: PMC3195545 DOI: 10.1155/2011/202915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/29/2011] [Indexed: 12/18/2022] Open
Abstract
Replacement of insulin production by pancreatic islet transplantation has great potential as a therapy for type 1 diabetes mellitus. At present, the lack of an effective approach to islet grafts assessment limits the success of this treatment. The development of molecular imaging techniques has the potential to fulfill the goal of real-time noninvasive monitoring of the functional status and viability of the islet grafts. We review the application of a variety of imaging modalities for detecting endogenous and transplanted beta-cell mass. The review also explores the various molecular imaging strategies for assessing islet delivery, the metabolic effects on the islet grafts as well as detection of immunorejection. Here, we highlight the use of combined imaging and therapeutic interventions in islet transplantation and the in vivo monitoring of stem cells differentiation into insulin-producing cells.
Collapse
|
23
|
|
24
|
Clinical applications in molecular imaging. Pediatr Radiol 2011; 41:199-207. [PMID: 21127854 DOI: 10.1007/s00247-010-1902-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/21/2010] [Accepted: 10/10/2010] [Indexed: 10/18/2022]
Abstract
Molecular imaging is aimed at the noninvasive in vivo characterization and measurement of processes at a cellular and molecular level with clinical imaging methods. Contrast agents are constructed to target markers that are specific either for certain diseases or for functional states of specialized tissues. Efforts are currently focused mainly on processes involved in angiogenesis, inflammation, and apoptosis. Cell tracking is performed for diagnostic purposes as well as for monitoring of novel cell therapies. Visualization of these processes would provide more precise information about disease expansion as well as treatment response, and could lead to a more individualized therapy for patients. Many attempts have shown promising results in preclinical studies; however, translation into the clinic remains a challenge. This applies especially to paediatrics because of more stringent safety concerns and the low prevalence of individual diseases. The most promising modalities for clinical translation are nuclear medicine methods (positron emission tomography [PET] and single photon emission CT [SPECT]) due to their high sensitivity, which allows concentrations below biological activity. However, special dose consideration is required for any application of ionizing radiation especially in children. While very little has been published on molecular imaging in a paediatric patient population beyond fluorodeoxyglucose (FDG)-PET and metaiodobenzylguanidine (MIBG) tracers, this review will attempt to discuss approaches that we believe have promise for paediatric imaging. These will include agents that already reached clinical trials as well as preclinical developments with high potential for clinical application.
Collapse
|